随机过程复习提纲汇总
- 格式:docx
- 大小:37.04 KB
- 文档页数:2
第一章 随机过程的基本概念一、随机过程的定义例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。
例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。
令X n 表示第n 次统计所得的值,则X n 是随机变量。
为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性. 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1—p 后退一步(假设步长相同)。
以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。
例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。
乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X (t)表示t 时刻的队长,用Y (t)表示t 时刻到来的顾客所需等待的时间,则{X (t ), t ∈T }和{Y (t), t ∈T }都是随机过程。
定义:设给定参数集合T ,若对每个t ∈T, X(t )是概率空间),,(P ℑΩ上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集.E X t →Ω:)(ω,E 称为状态空间,即X(t )的所有可能状态构成的集合。
例1:E 为{0,1} 例2:E 为[0, 10]例3:E 为},2,2,1,1,0{ -- 例4:E 都为),0[∞+注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。
(2)参数集T 通常代表时间,当T 取R , R +, [a,b]时,称{X(t), t ∈T }为连续参数的随机过程;当T 取Z, Z +时,称{X(t ), t ∈T}为离散参数的随机过程。
第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。
若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。
随机过程复习提纲2017第⼀章1. 简述样本空间、基本事件、事件、随机事件、事件域的概念。
2. 设概率空间(,,)F P Ω,,A B F ∈(随机试验中两个随机事件A 、B ),()0P A >,B 1,B 2,…,B n 为Ω的⼀个分割,请写出:(1)事件A 出现条件下事件B 出现的概率公式P(B |A );(2)事件A 、B 同时发⽣的乘法公式P (AB );(3)事件A 的全概率公式P (A );(4)P (B i |A )的贝叶斯公式。
3. 某化验室检测某种疾病的⾎液检查,当确实有病时的有效率是95%.可是,该检测也在1%的健康⼈中产⽣“假阳性”结果(即⼀个健康⼈去检查, 检测结果为阳性的概率是0.01).如果总体⼈群中有0.5%真有此病,问已知某⼈检测结果为阳性时,他有病的概率是多少?4. 假设离散随机变量X 的分布律为:p(1)=1/2,p(2)=1/3, p(3)=1/6,请写出关于X 的累积分布函数F(x)。
5. 设⼆维随机变量X 、Y 的联合分布函数为,(,)X Y F x y ,请分别写出关于X 和关于Y 的边缘分布函数和边缘PDF ,并写出(,)XY f x y 、|(|)Y X f y x 和()X f x 三者关系式。
6. 随机变量X ,Y 的联合概率密度函数为|| (,0)(,)0, y XY Ae y x x y f x y ,其它-?>-∞<<∞>=??求:常数A 、边缘概率密度函数()X f x ,()Y f y 和条件概率密度函数|(|)Y X f y x ,|(|)X Y f x y ,判断是否统计独⽴。
7. 随机变量Y =sin X , X 为(-π,π)均匀分布,1()2X f x π=,求)(y f Y 。
8. 已知随机变量X 1,X 2的联合PDF 为1212(,)X X f x x ,试借助⼆维随机变量函数的分布来求随机变量Y=X 1-X 2的PDF 。
第一章:1. 填空若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 2.设P(S)是X 的母函数,试证: (1)若E(X)存在,则EX=P ′(1)(2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2 证明:(1)因为p 〔s 〕=sp kk k∑∞=0,则p ′〔s 〕=skpk k k11-∞=∑,令s ↑1,得EX==∑∞=1k kkpp ′(1)。
〔2〕同理可证DX=p 〞(1)+ p ′(1) —[p ′(1)] 23.设X 服从B(n,p),求X 的特征函数g(t)与EX,EX 2,DX. 解:X 的分布列为P(X=k)=1k k n nC p q -,q=1-p ,k=0,1,2,...n,()00k n n n itk k k n k k it n k it g t e C p q C pe q pe q n n k k ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--===+∑∑== 由性质得()()np itdtdi i EX t n q ep g=-=-==+0,()()()p nq e p dtdg i EX npq iti t n 2222"220+=-===+-()npq DX EX EX=-=224. 设X~N(0,1),求特征函数g(t).解dx xt g eitx ⎰∞+∞--=2221)(π由于e exx xix itx 2222=-,且〈+∞⎰∞+∞--dx xeitx 2221π,故由积分号下求导公式有⎥⎥⎦⎤⎢⎢⎣⎡-==-∞+∞-∞+∞--⎰⎰de e ixeg x i dx xt ixt itx 22'22221)(ππdx xt xi eeitx itx ⎰⎰∞+∞--∞+∞-∞+∞---=222222ππ)(t tg -=于是得微分方程g ’(t)+tg(t)=0 解得方程的通解为e Ctt g +-=22)(由于g(0)=1,所以C=0, 于是得X 的特征函数为ett g 22)(-=5. 设随机变量Y~N(μ,σ2),求Y 的特征函数是g Y (t). 解:设X~N(0,1),则由例1.3知X 的特征函数ett g 22)(-=令Y=μσ+X ,则Y~N(μ,σ2),由前面的命题知Y 的特征函数是()()eg e g tt t t i Xxi Y222σσμμ-==,6. 设X 1,X 2…X n 是相互独立的随机变量,且X i ~b(n i ,p),i=1,2,…n,则⎥⎦⎤⎢⎣⎡=∑∑==n i i ni i p b Y n X 11,~证 因为X i ~b(n i ,p),所以其特征函数为()(),,...2,1,n i it nt X q e p g ii==+由特征函数的性质知,∑==ni i x Y 1的特征函数为()()()(),111∏++∏==∑====ni ni Yq e p q e p g g it n it nt X t ni iii再有唯一性定理知⎥⎦⎤⎢⎣⎡=∑∑==ni i ni i p b Y n X 11,~7. 设X 1,X 2…X n 是相互独立的随机变量,且(),,...2,1,~n i iiX=λπ则⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ证 因为(),~λπii X 所以其特征函数为()n i e t Xe g itii,...2,1,1==⎪⎭⎫⎝⎛-λ有特征函数的性质知,∑==ni i X Y 1的特征函数为()()e eg g ni iti iti ie et X t ni n i Y ∑====⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=∏∏11111λλ再由唯一性定理知⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ。
第一章:1. 填空若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 2.设P(S)是X 的母函数,试证: (1)若E(X)存在,则EX=P ′(1)(2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2 证明:(1)因为p (s )=sp kk k∑∞=0,则p ′(s )=skpk k k11-∞=∑,令s ↑1,得EX==∑∞=1k kkpp ′(1)。
(2)同理可证DX=p 〞(1)+ p ′(1) —[p ′(1)] 2 3.设X 服从B(n,p),求X 的特征函数g(t)及EX,EX 2,DX. 解:X 的分布列为P(X=k)=1k k n nC p q -,q=1-p ,k=0,1,2,...n,()00k n n n itk k k n k k it n k it g t e C p q C pe q pe q n n k k ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--===+∑∑== 由性质得()()np itdtdi i EX t n q ep g=-=-==+0,()()()p nq e p dtdg i EX npq iti t n 2222"220+=-===+-()npq DX EX EX=-=224. 设X~N(0,1),求特征函数g(t). 解dx xt g eitx ⎰∞+∞--=2221)(π由于e exx xix itx 2222=-,且〈+∞⎰∞+∞--dx xeitx 2221π,故由积分号下求导公式有⎥⎥⎦⎤⎢⎢⎣⎡-==-∞+∞-∞+∞--⎰⎰de e ixeg x i dx xt ixt itx 22'22221)(ππdx xtxi eeitx itx ⎰⎰∞+∞--∞+∞-∞+∞---=222222ππ)(t tg -=于是得微分方程g ’(t)+tg(t)=0 解得方程的通解为e Ctt g +-=22)(由于g(0)=1,所以C=0, 于是得X 的特征函数为ett g 22)(-=5. 设随机变量Y~N(μ,σ2),求Y 的特征函数是g Y (t). 解:设X~N(0,1),则由例1.3知X 的特征函数ett g 22)(-=令Y=μσ+X ,则Y~N(μ,σ2),由前面的命题知Y 的特征函数是()()eg e g tt t t i Xxi Y222σσμμ-==,6. 设X 1,X 2…X n 是相互独立的随机变量,且X i ~b(n i ,p),i=1,2,…n,则⎥⎦⎤⎢⎣⎡=∑∑==n i i ni i p b Y n X 11,~证 因为X i ~b(n i ,p),所以其特征函数为()(),,...2,1,n i it nt X q e p g ii==+由特征函数的性质知,∑==ni i x Y 1的特征函数为()()()(),111∏++∏==∑====ni n i Y q e p q e p g g it n it n t X t ni iii再有唯一性定理知⎥⎦⎤⎢⎣⎡=∑∑==n i i ni i p b Y n X 11,~7. 设X 1,X 2…X n 是相互独立的随机变量,且(),,...2,1,~n i ii X =λπ则⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ证 因为(),~λπiiX所以其特征函数为()n i e t Xe g it ii,...2,1,1==⎪⎭⎫ ⎝⎛-λ有特征函数的性质知,∑==ni i X Y 1的特征函数为()()e eg g ni iti iti ie et X t ni n i Y ∑====⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=∏∏11111λλ再由唯一性定理知⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ。
《概率统计与随机过程》知识总结第1章 随机事件及其概率一、随机事件与样本空间 1、随机试验我们将具有以下三个特征的试验称为随机试验,简称试验, (1)重复性:试验可以在相同的条件下重复进行;(2)多样性:试验的可能结果不止一个,并且一切可能的结果都已知; (3)随机性:在每次试验前,不能确定哪一个结果会出现。
随机试验一般用大写字母E 表示,随机试验中出现的各种可能结果称为试验的基本结果。
2、样本空间随机试验E 的所有可能结果组成的集合称为试验的样本空间,记为S ,样本空间中的元素,即E 的每个基本结果,称为样本点。
3、随机事件称随机试验E 的样本空间S 的子集为E 的随机事件,简称事件。
随机事件通常利用大写字母A 、B 、C 等来表示。
在一次试验中,当且仅当这一子集(事件)中的某个样本点出现时,称这一事件发生。
特别地,将只含有一个样本点的事件称为基本事件;样本空间S 包含所有的样本点,它在每次试验中都发生,称S 为必然事件;事件∅(S ∅⊂)不包含任何样本点,它在每次试验中都不发生,称∅为不可能事件。
4、随机事件间的关系及运算(1)包含关系:若B A ⊂,则称事件A 包含事件B ,也称事件B 含在事件A 中,它表示:若事件B 发生必导致事件A 发生。
(2)相等关系:若B A ⊂且A B ⊂,则称事件A 与事件B 相等,记为A B =。
(3)事件的和:称事件{|A B x x A ⋃=∈或}x B ∈为事件A 与事件B 的和事件。
事件A B ⋃发生意味着事件A 发生或事件B 发生,即事件A 与事件B 至少有一件发生。
类似地,称1n i i A =⋃为n 个事件12n A A A ⋯、、、的和事件,称1i i A ∞=⋃为可列个事件12 A A ⋯、、的和事件。
(4)事件的积:称事件{|A B x x A ⋂=∈且}x B ∈为事件A 与事件B 的积事件。
事件A B ⋂发生意味着事件A 发生且事件B 发生,即事件A 与事件B 都发生。
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k kp xEX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p e t g k )( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX =二项分布 kn k k n q p C k X P -==)( np EX = npq DX =泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21ex p{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
随机过程复习提纲汇总
随机过程是概率论中研究随机现象的一种数学工具,它描述了随机事件或变量在时间或空间上的演化规律。
随机过程在概率论、统计学以及各个科学领域中都有广泛的应用。
在复习随机过程的过程中,可以按照以下提纲进行系统地总结和复习:
一、随机过程的定义和基本概念
1.随机过程的定义和基本性质
2.随机变量和随机过程的关系
3.有限维分布和无限维分布
4.随机过程的连续性和可测性
二、随机过程的分类
1.马尔可夫链和马尔可夫过程
2.马尔可夫链的平稳分布和细致平衡条件
3.各类随机过程的特性和应用(如泊松过程、布朗运动等)
三、随机过程的数学描述
1.随机过程的表示方法(如状态空间表示、样本函数表示等)
2.随机过程的独立增量性质
3.随机过程的平稳性质和相关函数
四、随机过程的统计特性
1.随机过程的均值和方差
2.随机过程的相关函数和自相关函数
3.随机过程的功率谱密度和自相关函数之间的关系
五、随机过程的极限理论
1.强大数定律和中心极限定理在随机过程中的应用
2.极限理论在随机过程中的应用(如大数定律、中心极限定理等)
六、马尔可夫过程的统计推断
1.马尔可夫链的参数估计
2.马尔可夫过程的参数估计
3.马尔可夫过程的隐马尔可夫模型和参数估计
七、随机过程的应用
1.随机过程在金融领域的应用
2.随机过程在电信领域的应用
3.随机过程在信号处理领域的应用
以上是一个较为全面的随机过程复习提纲,按照这个提纲进行复习可
以帮助系统地回顾和学习随机过程的各个重要概念、定理和应用。
在复习
的过程中,可以结合课本、教材以及相关资料进行深入学习和巩固。
同时,通过解答题目、做习题和实际应用案例的分析,可以提高对随机过程的理
解和应用能力。
复习随机过程时,要注意理论和实践相结合,注重理论概
念的理解和应用技巧的掌握。