2012 人教版中考复习 一次函数(含答案)
- 格式:doc
- 大小:615.50 KB
- 文档页数:12
中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。
中考数学复习之一次函数的图象与性质(含答案)1.一个正比例函数的图象经过点(2,-1),则它的表达式为 ( )A. y =-2xB. y =2xC. y =-12xD. y =12x 2.若b >0,则一次函数y =-x +b 的图象大致是 ( )3.一次函数y =x +2的图象与y 轴的交点坐标为( )A. (0,2)B. (0,-2)C. (2,0)D. (-2,0)4. 将直线y =2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A. y =2x -4B. y =2x +4C. y =2x +2D. y =2x -2 5.等腰三角形底角与顶角之间的函数关系是( )A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数 6.如图,直线y =kx +b (k ≠0)经过点A (-2,4),则不等式kx +b >4的解集为 ( )A. x >-2B. x <-2C. x >4D. x <47. 一次函数y =kx -1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A. (-5,3)B. (1,-3)C. (2,2)D. (5,-1)8.如图,直线l 是一次函数y =kx +b 的图象,如果点A (3,m )在直线l 上,则m 的值为 ( )A. -5B. 32C. 52 D. 79. 点A (x 1,y 1),B (x 2,y 2)在一次函数y =12x +b 的图象上,且x 1>x 2,则y 1与y 2的大小关系是_____________.10.已知点A 是直线y =x +1上一点,其横坐标为-12.若点B 与点A 关于y 轴对称,则点B 的坐标为_____________.11. 如图,一次函数l 1∶y =k 1x +b 1与l 2∶y =k 2x +b 2的图象交于P 点,则方程组⎩⎨⎧y =k 1x +b 1y =k 2x +b 2的解为_____________.12.如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (-2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.13. 如图,在平面直角坐标系中,直线y =-43x +4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为 ( )A. (-5,2)B. (-3,5)C. (-2,2)D. (-3,2)14. 如图,在平面直角坐标系中,点A (0,4)、B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为_______________.15.如图,在平面直角坐标系中,直线y=-x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.16.问题:探究函数y=|x|-2的图象与性质.小华根据学习函数的经验,对函数y=|x|-2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|-2中,自变量x可以是任意实数;(2)下表是y与x的几组对应值.①m=________;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=________;(3)如图,在平面直角坐标系xOy中,描出以上表中各对应值为坐标的点,并根据描出的点,画出该函数的图象;根据函数图象可得:①该函数的最小值为________;②已知直线y1=12x-12与函数y=|x|-2的图象交于C、D两点,当y1≥y时x的取值范围是_____________.17.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是__________(写出一个即可).18.当-2≤x≤2时,函数y=kx-k+1(k为常数且k<0)有最大值3,则该函数的解析式为_______________.参考答案:1-4 CCAA 5-8 BACC 9. y 1>y 2 10. (12,12) 11. ⎩⎨⎧x =-1y =-212. 解:(1)∵点C 的横坐标为1,且在y =3x 的图象上,∴C 点坐标为(1,3),将A 、C 点的坐标代入y =kx +b , 得⎩⎨⎧6=-2k +b 3=k +b ,解得⎩⎨⎧k =-1b =4; (2)由(1)知直线AC 的函数解析式为y =-x +4,当y =0时,解得x =4, ∴B 点坐标为(4,0),即OB =4, ∴S △BOC =12×4×3=6,∴S △COD =13×6=2,△COD 边OD 上的高为C 点的横坐标1, 则S △COD =12×1×|y D |=2,∴|y D |=4,∵点D 在y 轴负半轴上,∴y D =-4,故D 点的坐标为(0,-4). 13. A14. y =-12x +3215. 解:(1)∵直线y =-x +3过点A (5,m ),∴m =-5+3=-2, ∴点A 的坐标为(5,-2), 由平移可得点C 的坐标为C (3,2), 设直线CD 的解析式为y =kx +b (k ≠0), ∵直线CD 与直线y =2x 平行, ∴k =2,∵点C (3,2)在直线CD 上,∴2×3+b =2, 解得b =-4,∴直线CD 的解析式为y =2x -4; (2)∵直线y =-x +3与y 轴的交点为B , ∴点B 的坐标为(0,3),∵直线CD 的解析式为y =2x -4, 令y =0,则x =2,∴直线CD 与x 轴的交点为(2,0);设直线CD 平移到经过点B (0,3)时的解析式为y =2x +b 1, ∴3=2×0+b 1,解得b 1=3,∴此时直线CD 的解析式为y =2x +3, 令y =0,则x =-32,∴平移后的直线CD 与x 轴的交点为(-32,0),∴直线CD 沿EB 方向平移,平移到经过点B 的位置时,直线CD 在平移过程中与x 轴交点的横坐标的取值范围为-32≤x ≤2. 16. 解:(2)①1;②-10;(3)该函数的图象如解图;①-2;②-1≤x ≤3. 17. -1(答案不唯一) 18. y =-23x +53。
中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。
专项训练一次函数的最值应用一、一次函数最值问题的基本模型1.如果n≤x≤m,那么y=kx+b有最大或最小值.当x=n时,y有最小值,当x=m时,y有最大值.当x=n时,y有最大值,当x=m时,y有最小值.2.如果x≥n,那么y=kx+b有最大或最小值.当x=n时,y有最小值;当x=n时,y有最大值.3.如果x≤m,那么y=kx+b有最大或最小值.当x=m时,y有最大值;当x=n时,y有最小值.4.如果n<x<m,x取值不定,那么y=kx+b既没有最大值也没有最小值.但是,如果x 取特殊值(如x取整数值),可参照前述三条求最值.二、一次函数最值应用的步骤1.审题,求一次函数的解析式;3.根据题意确定自变量的取值范围;4.结合增减性和自变量的取值范围确定函数的最值.类型一实际应用中直接求最值1.为迎接国庆节的到来,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍各种奖品的单价如下表所示如果计划一等奖买x件,买50件奖品的总钱数是w元.(1)求与x的函数关系式及自变量x的取值范围;(2)请你计算一下,如果购买这三种奖品所花的总钱数最少,最少是多少元?2.某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要原料0.25吨,每生产1吨乙产品需要原料0.5吨,受市场影响,该厂能获得的原料至多为1000吨,其他原料充足.求该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.4.我市一水果批发市场某商家批发苹果采取分段计价的方式,其价格如表所示:购买苹果数x(千克)不超过50千克的部分超过50千克的部分每千克价格(元)10 8(1)小刚购买苹果40千克,应付多少元?(2)若小刚购买苹果x千克,用去了y元分别写出当0≤x≤50和x>50时,y与x的关系式;(3)计算出小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40千克)所付的费用少多少元?5.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?类型二方案设计中的最值6.煤炭是陕西省的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨要全部运往A,B两厂,通过了解获得A,B两厂的有关信息如表(表中运费栏“元/t·km”表示每吨煤炭运送一千米所需的费用):(1)写出总运费y(元)与运往A厂的煤炭量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.7.某水果商从外地购进某种水果若干箱,需要租赁货车运回.经了解,当地运输公司有大、小两种型号货车,其运力和租金如表:(1)若该水果商计划租用大、小货车共8辆,其中大货车x辆,共需付租金y元,请写出y与x的函数关系式;(2)在(1)的条件下,若这批水果共340箱,所租用的8辆货车可一次将购进的水果全部运回,请给出最节省费用的租车方案,并求出最低费用.8.年初,武汉暴发新冠疫情,“一方有难,八方支援”,某地为助力武汉抗疫,紧急募集到一批物资运往武汉的A,B两县,用载重量为16吨的大货车8辆和载重量10吨的小货车10辆恰好一次性运完这批物资.运往A,B两县的运费标准如表:(1)如果安排到A,B两县的货车都是9辆,设前往A县的大货车为x辆,前往A,B两县的总运费为y元,求出y与x的函数关系式(写出自变量的取值范围);(2)在(1)的条件下,若运往A县的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.9.在抗击新冠肺炎疫情期间,市场上的消毒液和防护口罩热销.某药店推出两种优惠方案,方案①:购买1瓶消毒液,赠送1个口罩,方案②:消毒液和口罩一律按9折优惠.消毒液每瓶定价40元,口罩每个定价5元小明需买4瓶消毒液和若干个口罩(不少于4个),设购买口罩x 个,用优惠方案①购买费用为y 1元,用优惠方案②购买费用为y 2元. (1)请分别写出y 1,y 2与x 之间的函数关系式; (2)什么情况下选择方案②更优惠?(3)若要买4瓶消毒液和12个口罩,请你设计怎样购买最便宜.参考答案1.解:(1)w = 12x +10(2x-10)+5[50-x-(2x-10)]= 17x +200.由⎪⎪⎩⎪⎪⎨⎧-⨯≤--->--->->)102(105.1)]102(50[50)]102(50[01020x x x x x x x ,得10≤x <20.∴自变量的取值范围是10≤x <20,且x 为整数;(2)w =17x +200,∵k =17>0,∴w 随x 的增大而增大,减小而减小. ∵1≤0x <20,当x =10时,有w 最小值,最小值为w =17×10+200=370. 2.解: (1) y =0.3x +0.4(2500-x )=-0.1x +1000, 因此y 与x 之间的函数表达式为:y =-0.1x +1 000;⎧≤-+1000)2500(5.025.0x x又∵k =-0.1<0,∴y 随x 的减小而增大. ∴当x =1000时, y 最大,此时2500-x =1500, 因此,生产甲产品1000吨,乙产品1500吨时,利润最大.3,解:(1)设y 甲=k 1x ,根据题意得:5k 1=100,解得:k 1=20.∴у甲=20x. 设y 乙=k 2x +100,根据题意得:20k 2+100=300,解:k 2=10. ∴y 乙= 10x +100;(2)①y 甲<y 乙,即20x <10x-100,解得:x <10,当入园次数小于10次时,选择甲消费卡比较合算;②y 甲=y 乙,即20x =10x-100,解得:x =10,当入园次数等于10次时,选择两种消费卡费用一样;③y 甲>y 乙,即 20x >10x +100,解得:x >10,当入园次数大于10次时,选择乙消费卡比较合算.4,解:(1)由表格可得,40×10=400(元), 答:小刚购买苹果40千克,应付400元; (2)由题意可得,当0≤x ≤50时, y 与x 的关系式是y =10x ,当x >50时,y 与x 的关系式是y =10×50—8(x-50)=8x +100, 即当x >50时,y 与x 的关系式是y =8x +100;(3)小刚若一次性购买80千克所付的费用为:8×80-100=740(元),分两次共购买80千克(每次都购买40千克)所付的费用为:40×10×2=800(元),800—740=60(元),答:小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40 千克)所付的费用少60元.5.解:(1)依题意得:y =4x +3(50-x ) =x +150;(2)依题意得:⎩⎨⎧≤-+≤-+,②,①17)50(4.03.019)50(2.05.0x x x x解不等式①得:x ≤30,解不等式②得:x ≥28, ∴不等式组的解集为28≤x ≤30.∵y =x +150, y 是随2的增大而增大,且28≤x ≤30,∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,y 最小=28+150=1786,解:(1)若运往A 厂x 吨,则运往B 厂为(1000-x )吨. 依题意得:y =200×0.45x +150×a ×(1000-x )=90x-150ax + 150000a =(90-150a )x + 150000a ,依题意得⎩⎨⎧≤-≤8001000600x x ,解得200≤x ≤600.故函数关系式为y =(90-150a )x +150000a , (200≤x ≤600) ; (2)当0<a <0.6时,90-150a >0,∴当x =200时,y 最小=(90-150a )×200+150000a =120000a +18000. 此时,1000-x =1000-200=800.当a >0.6时,90-150a <0,又因为运往A 厂总吨数不超过600吨, ∴当x =600时,y 最小=(90-150a )×600+150000a =60000a +54000. 此时,1000-x =1000-600=400.当a =0.6时,y =90000,答:当0<a <0.6时,运往A 厂200吨, B 厂800吨时,总运费最低,最低运费(120000a +18000)元.当a >0.6时,运往A 厂600吨,B 厂400吨时,总运费最低,最低运费(60000a +54000)元.当a =0.6时,运费90000元.7.解:(1)由题意可得,y =400x +320(8-x )=80x +2560. 即y 与x 的函数关系式为y =80x +2560;(2)由题意可得,45x +35(8-x )≥340,解得,x ≥6, ∵y =80x +2560,∴k =80,y 随x 的增大而增大. ∴当x =6时, y 取得最小值,此时y =3040,8-x =2.答:最节省费用的租车方案是大货车6辆,小货车2辆,最低费用是3040元.8.解:(1)设前往A 县的大货车为z 辆,则前往A 县的小货车为(9-x )辆;前往B 县的大货车为(8-x )辆,前往B 县的小货车为(1+x )辆,根据题意得:y =1080x +750(9-x )+120(8-x )+950(1+x )=80x +17300 (0≤x ≤8); (2)由题意得,16x +10(9-x )≥120,解得x ≥5. 又∵0≤x ≤8,∴5≤x ≤8且为整数.∵y =80x +17300,且80>0,∴y 随x 的增大而增大, ∴当x =5时,y 最小,最小值为y =80×5+17300=17700.货车前往B县.最少运费为17700元.9.解:(1)由题意得:y1=40×4+5(x-4)=5x+140;y2=40×0.9×4+5×0.9x=4.5x+144;(2)当y1>y2时,5x+140>4.5x+144,解得x>8,答:当x>8时,选择方案②更优惠;(3)方案①:y1=5×12+140=220(元);方案②:y2=4.5×12+144=198(元);方案③:先按方案①买4瓶消毒液,送4个口罩,剩下8个口罩按方案②购买,总价为:40×4+5×0.9×8=196(元),∵200>198>196,∴方案③最省钱.答:购买4瓶消毒液和12个口罩用方案③最优惠.。
初中数学中考复习考点知识与题型专题讲解专题11 一次函数【知识要点】考点知识一变量与函数变量:在一个变化过程中数值发生变化的量。
常量:在一个变化过程中数值始终不变的量。
【注意】1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。
2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。
函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
【函数概念的解读】1、有两个变量。
2、一个变量的数值随另一个变量的数值变化而变化。
3、对于自变量每一个确定的值,函数有且只有一个值与之对应。
函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。
确定函数定义域的方法:(自变量取值范围)(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a时的函数值。
函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。
函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
画函数图像的一般步骤:1、列表2、描点3、连线函数图像上点的坐标与解析式之间的关系:1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。
2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。
函数的三种表示法及其优缺点1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
专题03 一次函数中的交点问题知识对接考点一、一次函数y=kx+b(k ≠0)中k,b 的符号对函数性质的影响 1.k 的符号决定函数的增减性: 当k>0时,y 随x 的增大而增大; 当k<0时,y 随x 的增大而减小.2.b 的符号决定函数的图象与y 轴交点的位置: 当b>0时,交点在y 轴的正半轴上; 当b=0时,交点在原点;当b<0时,交点在y 轴的负半轴上.专项训练一、单选题1.若2x =是关于x 的方程()00,0mx n m n +=≠>的解,则一次函数()1y m x n =---的图象与x 轴的交点坐标是( ) A .()2,0 B .()3,0C .()0,2D .()0,3【答案】B 【分析】直线y =mx +n 与x 轴的交点的横坐标就是函数值为0时的方程的解,根据题意得到一次函数y =mx +n 的图象与x 轴的交点为(2,0),进而得到一次函数y =-mx -n 的图象与x 轴的交点为(2,0),由于一次函数y =-mx -n 的图象向右平移一个单位得到y =-m (x -1)-n ,即可求得一次函数y =-m (x -1)-n 的图象与x 轴的交点坐标. 【详解】解:∵方程的解为x =2, ∵当x =2时mx +n =0;∵一次函数y =mx +n 的图象与x 轴的交点为(2,0), ∵一次函数y =-mx -n 的图象与x 轴的交点为(2,0),∵一次函数y =-mx -n 的图象向右平移一个单位得到y =-m (x -1)-n , ∵一次函数y =-m (x -1)-n 的图象与x 轴的交点坐标是(3,0), 故选:B . 【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax +b =0 (a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.2.如图,一次函数y kx b =+的图象经过点(2,0)-,则下列说法正确的是( )A .0k <B .0b <C .方程0kx b +=的解是2x =-D .y 随x 的增大而减小【答案】C 【分析】利用函数的图象结合一次函数的性质进行解答即可. 【详解】解:∵图象过第一、二、三象限,∵k >0,b >0,y 随x 的增大而而增大,故ABD 错误; 又∵图象与x 轴交于(−2,0), ∵kx +b =0的解为x =−2,故C 正确; 故选:C . 【点睛】此题主要考查了一次函数与一元一次方程,关键是正确从函数图象中获取信息,掌握一次函数的性质.3.如图,经过点()3,0B -的直线y kx b =+与直线42y x =+相交于点()1,2--A ,则420kx b x +<+<的解集为( )A .3x <-B .31x -<<-C .12x >-D .112x -<<-【答案】D 【分析】由图象得到直线y =kx +b 与直线y =4x +2的交点A 的坐标(-1,-2),求出直线y =4x +2与x 轴的交点坐标,观察直线y =kx +b 落在直线y =4x +2的下方且直线y =4x +2落在x 轴下方的部分对应的x 的取值即为所求. 【详解】解:∵经过点B (-2,0)的直线y =kx +b 与直线y =4x +2相交于点A (-1,-2), ∵直线y =kx +b 与直线y =4x +2的交点A 的坐标为(-1,-2), ∵当x >-1时,kx +b <4x +2, 当x <-12时,4x +2<0,∵不等式kx +b <4x +2<0的解集为-1<x <-12. 故选:D . 【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =ax +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合. 4.如图,若一次函数1y k x b =+与反比例函数2k y x=的图象交(,3),(,2)A m B n -两点,过点B 作BC x ⊥轴,垂足为C ,且5ABCS=,则不等式210k k x b x-+<的解集为( )A .2x <-或01x <<B .1x >或20x -<<C .2x >或30x -<<D .3x <-或02x <<【答案】D 【分析】根据题意可得21k k x b x+<,再由图象可得不等式的解集为x n <或0x m <<,根据(,3),(,2)A m B n -,可得CB 长为2,ABC 底边CB 上的高为m n -,然后由5ABCS =,可得5m n -=,根据反比例函数的特征可得32m n =-,可求出2,3m n ==-,即可求解.【详解】 解:由题知,210k k x b x -+<,即为21k k x b x+<, 由图象可知,不等式的解集为x n <或0x m <<, ∵(,3),(,2)A m B n -,∵CB 长为2,ABC 底边CB 上的高为m n -, ∵三角形的面积为12()52m n ⨯⨯-=,∵5m n -=,∵点(,3),(,2)A m B n -的图象在反比例函数2k y y=的图象上, ∵32m n =-,即23m n , ∵5m n -=, ∵2,3m n ==-,∵不等式的解集为3x <-或02x <<. 故选:D . 【点睛】本题主要考查了一次函数与反比例函数的交点问题,函数与不等式解集的关系,求出2,3m n ==-,利用数形结合的思想是解题的关键.5.一次函数2y x m =-+与2y x =+图象的交点位于第二象限,则m 的值可能是( ) A .-4 B .1C .2D .3【答案】B 【分析】根据题意将两个函数联立方程组,再根据交点在第二象限列不等式组,即可求出m 的取值范围. 【详解】解:∵一次函数y =-2x +m 和y =x+2图象相交,∵22y x m y x =-+⎧⎨=+⎩,解得2343m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∵交点位于第二象限,∵203403m m -⎧<⎪⎪⎨+⎪>⎪⎩①②,解不等式∵得2m <, 解不等式∵得4m >-, ∵不等式的解集为42m -<<, ∵m 的值可能为1, 故选B . 【点睛】本题考查了解不等式及两直线相交:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.6.如图所示,已知函数y ax b =+和y kx =的图象相交于点P ,则关于x ,y 的二元一次方程组y ax b y kx =+⎧⎨=⎩的解是( )A .42x y =⎧⎨=⎩B .42x y =⎧⎨=-⎩C .24x y =-⎧⎨=-⎩D .42x y =-⎧⎨=-⎩【答案】D 【分析】由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解. 【详解】解:∵函数y =ax +b 和y =kx 的图象交于点P 的坐标为(-4,-2),∵关于x ,y 的二元一次方程组y ax by kx =+⎧⎨=⎩的解是42x y =-⎧⎨=-⎩.故选D . 【点睛】本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.7.若直线2y kx k =++与x 轴的交点位于x 轴正半轴上,则它与直线21y x =-交点的横坐标a 的取值范围为( )。
《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。
中考复习专题练习中考数学复习(2)《一次函数》1、已知一次函数的图象经过点(2,1)和点(-1,-3).求此一次函数的解析式。
2、弹簧的长度与所挂物体的质量的关系为一次函数,如图,则不挂物体的弹簧长度是___cm 。
3、作出函数y=4x-1的图像,并回答下列问题:(1) y 的值随x 值的增大怎样变化?(2) 图像与x 轴的交点坐标是什么?与y 轴的交点坐标呢? (3) 若函数2m x y +-=与y=4x-1的图像交于x 轴上同一点,你能求出m 的值吗?4、已知一次函数y=kx+b 的图象经过点(-1,1)和点(1,-5),求 (1)函数的解析式 (2)当x=5时,函数y 的值。
5、一次函数y =kx +b 表示的直线经过点A(1,-1)、B(2,-3),请你判断点P(0,1)是否在直线AB 上,并说明你的理由.6、声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)有关,下表列出了一组不同气温时的音速:(1)求y 与x 之间的函数关系式;(2)当气温为22°时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地约相距多少米?7、某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销量y (件)之 间的关系如下表:若日销量(1)求出日销量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定位多少元?此时每日的销售利润是多少?8、已知一次函数的图象与双曲线xy 2-=交于点(-1,m),且过点(0,1),求该一次函数的解析式.9、如图,一次函数y=kx+b 的图象与反比例函数xmy =的图象交于A(-2,1),B(1,n)两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求三角形AOB 的面积.(3)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.) 第2题图。
第三章 《函数及其图象》自我测试[时间:90分钟 分值:100分]一、选择题(每小题3分,满分30分) 1.(2011·衡阳)函数y =x +3x -1中自变量x 的取值范围是( )A .x ≥-3B .x ≥-3且x ≠1C .x ≠1D .x ≠-3且x ≠1 2.(2011·芜湖)二次函数y =ax 2+bx +c 的图象如图所示, 则反比例函数y =ax 与一次函数y =bx +c 在同一坐标系中的大致图象是( )A B C D3.(2011·广州)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A .y =x 2B .y =x -1C .y =34xD .y =1x4.(2011·东营)如图,直线l 和双曲线y =kx (k >0)交于A 、B 两点,P是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 面积是S 1、△BOD 面积是S 2、△POE 面积是S 3、则( ) A. S 1<S 2<S 3 B .S 1>S 2>S 3 C .S 1=S 2>S 3 D .S 1=S 2<S 35.(2011·黄石)设一元二次方程(x -1)(x -2)=m (m >0)的两实根分别为α、β,则α、β满足( )A .1<α<β<2B .1<α<2 <βC .α<1<β<2D .α<1且β>26.(2011·桂林)在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( )A .y =-(x +1)2+2B .y =-(x -1)2+4C .y =-(x -1)2+2D .y =-(x +1)2+47.(2011·泰州)某公司计划新建一个容积V (m 3)一定的长方体污水处理池,池的底面积S (m 2)与其深度h (m)之间的函数关系式为S =Vh(h ≠0),这个函数的图象大致是( )A B C D8.(2011·菏泽)如图为抛物线y =ax 2+bx +c 的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )A. a +b =-1 B .a -b =-1 C .b <2a D .ac <0(第8题) (第9题) (第10题)9.(2010·常州)如图,一次函数y =-12x +2的图象上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为a (0<a <4且a ≠2),过点A 、B 分别作x 的垂线,垂足为C 、D ,△AOC 、△BOD 的面积分别为S 1、S 2,则S 1、S 2的大小关系是( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .无法确定10.(2011·宜宾)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A B C D 二、填空题(每小题3分,满分30分)11.(2011·广州)已知反比例函数y =kx的图象经过(1,-2),则k =________.12.(2011·上海)一次函数y =3x -2的函数值y 随自变量x 值的增大而________(填“增大”或“减小”).13.(2011·黄冈)如图,点A 在双曲线y =k x上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k =______.(第13题) (第17题) (第18题) 14.(2011·黄冈)已知函数y ={ ()x -12-1()x ≤3, ()x -52-1()x >3,则使y =k 成立的x 值恰好有三个,则k 的值为________.15.(2011·黄石)若一次函数y =kx +1的图象与反比例函数y =1x 的图象没有公共点,则实数k 的取值范围是________.16.(2011·潍坊)一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y随x 的增大而减小.这个函数解析式为____________________(写出一个即可). 17.(2011·内江)在直角坐标系中,正方形A 1B 1C 1O 1、A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n -1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数y =kx +b 的图象上,点C 1、C 2、C 3、…、C n 均在x 轴上.若点B 1的坐标为(1,1),点B 2的坐标为(3,2),则点A n 的坐标为____________.18.(2011·衢州)在直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,sin ∠AOB =35,反比例函数y =kx (k >0)的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为_______________.19.(2011·广安)如图所示,直线OP 经过点P (4, 4 3),过x 轴上的点1、3、5、7、9、11……分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S 1、S 2、S 3……S n 则S n 关于n 的函数关系式是________.(第19题) (第20题) 20.(2010·兰州)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为__________米.三、解答题(21~22题各6分,23题8分,24~25题各10分)21.(2011·菏泽)已知一次函数y =x +2与反比例函数y =kx ,其中一次函数y =x +2的图象经过点P (k,5).(1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标.22.(2011·日照)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机 电冰箱 甲连锁店 200 170 乙连锁店160150设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?23.(2011·扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示______槽中的深度与注水时间之间的关系,线段DE表示________槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B的纵坐标表示的实际意义是______________________________________________________;(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).24.(2011·温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B 的坐标为(0,b)(b>0). P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y 轴的对称点为P′(点P′不在y轴上),连结PP′、P′A、P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D∶DC=1∶3时,求a的值;(3)是否同时存在a、b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a、b的值;若不存在,请说明理由.25.(2011·安徽)如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证h1=h3;(2)设正方形ABCD的面积为S,求证S=(h2+h3)2+h12;(3)若32h1+h2=1,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况.参考答案一、选择题(每小题3分,满分30分) 1.(2011·衡阳)函数y =x +3x -1中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且x ≠1 C .x ≠1 D .x ≠-3且x ≠1 答案 B解析 由x +3≥0且x -1≠0,得x ≥-3且x ≠1.2.(2011·芜湖)二次函数y =ax 2+bx +c 的图象如图所示,则反比例函数y =ax 与一次函数y=bx +c 在同一坐标系中的大致图象是( )A B C D答案 D解析 由抛物线的位置,得a <0,b <0,c =0,所以双曲线y =ax 分布在第二、四象限,直线y =bx +c 过原点,且经过第二、四象限.3.(2011·广州)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A .y =x 2B .y =x -1C .y =34xD .y =1x答案 D解析 y =1x分布第一、三象限,当x >0时,y 随x 的增大而减小.4.(2011·东营)如图,直线l 和双曲线y =kx (k >0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 面积是S 1、△BOD 面积是S 2、△POE 面积是S 3、则( ) A. S 1<S 2<S 3 B .S 1>S 2>S 3 C .S 1=S 2>S 3 D .S 1=S 2<S 3 答案 D解析 S 1=S △AOC =12k ,S 2=S △BOD =12k ,S 3=S △POE >12k .所以S 1=S 2<S 3.5.(2011·黄石)设一元二次方程(x -1)(x -2)=m (m >0)的两实根分别为α、β,则α、β满足( )A .1<α<β<2B .1<α<2 <βC .α<1<β<2D .α<1且β>2 答案 D解析 当y =(x -1)(x -2)时,抛物线与x 轴交点的横坐标为1,2,抛物线与直线y =m (m >0)交点的横坐标为α,β,可知α<1,β>2.6.(2011·桂林)在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( )A .y =-(x +1)2+2B .y =-(x -1)2+4C .y =-(x -1)2+2D .y =-(x +1)2+4 答案 B解析 抛物线y =x 2+2x +3的顶点为(-1,2),与y 轴交于点(0,3),开口向上;旋转后其顶点为(1,4),开口向下. 所以y =-(x -1)2+4.7.(2011·泰州)某公司计划新建一个容积V (m 3)一定的长方体污水处理池,池的底面积S (m 2)与其深度h (m)之间的函数关系式为S =Vh(h ≠0),这个函数的图象大致是( )答案 C解析 S =Vh(h ≠0),S 是h 的反比例函数,当h >0时,图象仅在第一象限.8.(2011·菏泽)如图为抛物线y =ax 2+bx +c 的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )A. a +b =-1 B .a -b =-1 C .b <2a D .ac <0 答案 B解析 由OA =OC =1,得A (-1,0),C (0,1),所以{ a -b +c =0, c =1,则a -b =-1.9.(2010·常州)如图,一次函数y =-12x +2的图象上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为a (0<a <4且a ≠2),过点A 、B 分别作x 的垂线,垂足为C 、D ,△AOC 、△BOD 的面积分别为S 1、S 2,则S 1、S 2的大小关系是( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .无法确定 答案 A解析 当x =2时,y =-12x +2=1,A (2,1),S 1=S △AOC =12×2×1=1;当x =a 时,y =-12x +2=-12a +2,B (a ,-12a +2),S 2=S △BOD =12×a ×⎝⎛⎭⎫-12a +2=-14a 2+a =-14(a -2)2+1,当a =2时,S 2有最大值1,当a ≠2时,S 2<1.所以S 1>S 2.10.(2011·宜宾)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A B C D答案 B解析 当点P 在AD 上时,S △APD =0;当点P 在DC 上时,S △APD =12×4×(x -4)=2x -8;当点P 在CB 上时,S △APD =12×4×4=8;当点P 在BA 上时,S △APD =12×4×(16-x )=-2x +32.故选B.二、填空题(每小题3分,满分30分)11.(2011·广州)已知反比例函数y =kx的图象经过(1,-2),则k =________.答案 -2解析 点(1,-2)在双曲线y =kx上,有k =1×(-2)=-2.12.(2011·上海)一次函数y =3x -2的函数值y 随自变量x 值的增大而________(填“增大”或“减小”). 答案 增大解析 一次出数y =3x -2,k =3>0,可知y 随x 的增大而增大.13.(2011·黄冈)如图,点A 在双曲线y =k x上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k =______.答案 -4解析 设A (x ,y ).S △AOB =12OA ·AB =12·|x |·|y |=12x ·(-y )=-12xy =2.所以xy =-4,即k =-4.14.(2011·黄冈)已知函数y ={ ()x -12-1()x ≤3, ()x -52-1()x >3,则使y =k 成立的x 值恰好有三个,则k 的值为________. 答案 3解析 如图,画函数图象.当y =3时,对应的x 值恰好有三个,∴k =3.15.(2011·黄石)若一次函数y =kx +1的图象与反比例函数y =1x 的图象没有公共点,则实数k 的取值范围是________. 答案 k <-14解析 直线y =kx +1与双曲线y =1x 没有公共点,则方程组⎩⎨⎧y =kx +1, y =1x 无实根,kx +1=1x ,kx 2+x -1=0,得{ k ≠0, 1+4k <0,解之,得⎩⎨⎧k ≠0, k <-14,所以k <-14. 16.(2011·潍坊)一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y随x 的增大而减小.这个函数解析式为____________________(写出一个即可). 答案 如:y =2x,y =-x +3,y =-x 2+5等,写出一个即可17.(2011·内江)在直角坐标系中,正方形A 1B 1C 1O 1、A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n -1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数y =kx +b 的图象上,点C 1、C 2、C 3、…、C n 均在x 轴上.若点B 1的坐标为(1,1),点B 2的坐标为(3,2),则点A n 的坐标为____________.答案 (2n -1-1,2n -1)解析 可求得A 1(0,1),A 2(1,2),A 3(3,4),A 4(7,8),…,其横坐标0,1,3,7…的规律为2n-1-1,纵坐标1,2,4,8…的规律为2n -1,所以点A n 的坐标为(2n -1-1,2n -1).18.(2011·衢州)在直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,sin ∠AOB =35,反比例函数y =kx (k >0)的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为_______________.答案 (8,32)解析 在Rt △AOB 中,AO =10.sin ∠AOB =AB AO =35,则AB =6,OB =8.又点C 是AC 中点,得C (4,3),k =4×3=12,y =12x .当x =8时,y =128=32.∴D 坐标为⎝⎛⎭⎫8,32. 19.(2011·广安)如图所示,直线OP 经过点P (4, 4 3),过x 轴上的点1、3、5、7、9、11……分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S 1、S 2、S 3……S n 则S n 关于n 的函数关系式是________.答案 (8n -4) 3解析 设直线OP 的解析式为y =kx ,由P (4,4 3),得4 3=4k ,k =3,∴y =3x .则S 1=12×(3-1)×(3+3 3)=4 3,S 2=12×(7-5)×(5 3+7 3)=12 3,S 3=12×(11-9)×(9 3+11 3)=20 3,……,所以S n =4(2n -1)3=(8n -4) 3.20.(2010·兰州)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为__________米. 答案 0.5解析 如下图,建立平面直角坐标系,可得抛物线y =ax 2+c 经过点(-0.5,1),(1,2.5),则⎩⎨⎧14a +c =1, a +c =2.5,解之,得{ a =2, c =0.5,∴y =2x 2+0.5,抛物线顶点坐标为(0,0.5),距地面的距离为0.5米.三、解答题(21~22题各6分,23题8分,24~25题各10分)21.(2011·菏泽)已知一次函数y =x +2与反比例函数y =kx ,其中一次函数y =x +2的图象经过点P (k,5).(1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标. 解 (1)因为直线y =x +2过点P (k,5), ∴5=k +2,k =3.∴反比例函数的表达式为y =3x.(2)解方程组⎩⎨⎧y =x +2, y =3x ,得{ x =1, y =3,或{ x =-3, y =-1.故第三象限的交点Q 的坐标为(-3,-1).22.(2011·日照)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机 电冰箱 甲连锁店 200 170 乙连锁店160150设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?解 (1)根据题意知,调配给甲连锁店电冰箱(70-x )台, 调配给乙连锁店空调机(40-x )台,电冰箱(x -10)台,则y =200x +170(70-x )+160(40-x )+150(x -10),即y =20x +16800.∵ ⎩⎪⎨⎪⎧x ≥0,70-x ≥0,40-x ≥0,x -10≥0,∴10≤x ≤40.∴y =20x +16800(10≤x ≤40).(2)按题意知:y =(200-a )x +170(70-x )+160(40-x )+150(x -10), 即y =(20-a )x +16800. ∵200-a >170,∴a <30.当0<a <20时,y 随x 增大而增大,则x =40时,利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a =20时,x 的取值在10≤x ≤40内的所有方案利润相同;当20<a <30时,y 随x 增大而减小,x =10时,利润最大,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台.23.(2011·扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示______槽中的深度与注水时间之间的关系,线段DE 表示________槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B 的纵坐标表示的实际意义是______________________________________________________;(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).解 (1)乙,甲;乙槽内的圆柱形铁块的高度为14厘米.(2)设线段AB 的解析式为y 1=kx +b ,由过点(0,2)、(4,14),可求得解析式为y 1=3x +2; 设线段DE 的解析式为y 2=mx +n ,由过点(0,12)、(6,0),可求得解析式为y 2=-2x +12; 当y 1=y 2时,3x +2=-2x +12,∴x =2.∴注水2分钟时,甲、乙两水槽中水的深度相同.(3)∵水由甲槽匀速注入乙槽,∴乙槽前4分钟注入水的体积是后2分钟的2倍. 设乙槽底面积与铁块底面积之差为S ,则 (14-2)S =2×36×(19-14),解得S =30cm 2. ∴铁块底面积为36-30=6cm 2. ∴铁块的体积为6×14=84cm 3. (4)甲槽底面积为60cm 2.∵铁块的体积为112cm 2,∴铁块底面积为112÷14=8(cm 2). 设甲槽底面积为s (cm 2),则注水的速度为12s6=2s (cm 3/min).由题意得2s ×6-4 19-14-2s ×414-2=8,解得s =60.∴甲槽底面积为60cm 2.24.(2011·温州)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b )(b >0). P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为C .记点P 关于y 轴的对称点为P ′(点P ′不在y 轴上),连结PP ′、P ′A 、P ′C .设点P 的横坐标为a . (1)当b =3时,①求直线AB 的解析式;②若点P ′的坐标是(-1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D ∶DC =1∶3时,求a 的值; (3)是否同时存在a 、b ,使△P ′CA 为等腰直角三角形?若存在,请求出所有满足要求的a 、b 的值;若不存在,请说明理由.解 (1)①设直线AB 的解析式为y =kx +3, 把x =-4,y =0代入上式,得-4k +3=0, ∴k =34,∴y =34x +3.②由已知得,点P 的坐标是(1,m ), ∴m =34×1+3,∴m =334.(2)∵PP ′∥AC , ∴△PP ′D ∽△ACD , ∴P ′D DC =P ′P CA ,即2a a +4=13, ∴a =45.(3)以下分三种情况讨论. ①当点P 在第一象限时,i)若∠AP ′C =90°,P ′A =P ′C (如图1),过点P ′作P ′H ⊥x 轴于点H , ∴PP ′=CH =AH =P ′H =12AC ,∴2a =12(a +4),∴a =43.∵P ′H =PC =12AC ,△ACP ∽△AOB ,∴OB OA =PC AC =12,即b 4=12, ∴b =2.ii)若∠P ′AC =90°,P ′A =CA (如图2),则PP ′=AC ,∴2a =a +4,∴a =4.∵P ′A =PC =AC ,△ACP ∽△AOB , ∴OB OA =PC AC =1,即b4=1,∴b =4. iii)若∠P ′CA =90°,则点P ′、P 都在第一象限,这与前提条件矛盾, ∴△P ′CA 不可能是以C 为直角顶点的等腰直角三角形.②当点P 在第二象限时,∠P ′CA 为锐角(如图3),此时△P ′CA 不可能是等腰直角三角形.③当点P 在第三象限时,∠P ′AC 为钝角(如图4),此时△P ′CA 不可能是等腰直角三角形.∴所有满足条件的a 、b 的值为⎩⎪⎨⎪⎧a =43,b =2,或⎩⎪⎨⎪⎧a =4,b =4.25.(2011·安徽)如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3;(2)设正方形ABCD 的面积为S ,求证S =(h 2+h 3)2+h 12;(3)若32h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况.解 (1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G ,利用两角一边对应相等,证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF ,且两直角边长分别为h 1、h 3+h 2,四边形EFGH 是边长为h 2的正方形,所以S =4×12h 1()h 3+h 2+h 22=2h 1h 3+2h 1h 2+h 22=2h 12+2h 1h 2+h 22=(h 1+h 2)2+h 12.(3)由题意,得h 2=1-32h 1,所以S =⎝⎛⎭⎫h 1+1-32h 12+h 12=54h 12-h 1+1=54⎝⎛⎭⎫h 1-252+45.又⎩⎪⎨⎪⎧h 1>0,1-32h 1>0, 解得0<h 1<23.∴当0<h 1<25时,S 随h 1的增大而减小;当h 1=25时,S 取得最小值45;当25<h 1<23时,S 随h 1的增大而增大.。
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。
2. 一次函数的图像:是不经过原点的一条直线。
3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。
专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。
第三章 函数中考目标1. 理解正比例函数和一次函数的概念,会根据已知条件确定一次函数表达式.2. 会画一次函数的图象,根据一次函数的图象和解析式)0(≠+=k b kx y 理解其性质(k >0或k <0时,图象的变化情况).3. 能根据一次函数的图象求二元一次方程组的近似解. 能用一次函数解决实际问题4.理解一次函数与二元一次方程(组)、一元一次不等式(组)之间的关系.知识要点:1. 一次函数的概念把形如y=kx+b (k,b 是常数,k ≠0)的函数叫一次函数. 当b=0时一次函数 ① 也叫正比例函数. 2. 一次函数的图象是一条直线(1)一次函数y=kx+b (k ≠0)的图象是经过(0,b ). ② 两点的一条直线. (2)正比例函数y=kx(k ≠0)的图象是经过(0,0). ③ 两点的一条直线. 3.一次函数的图象所在的象限由k,b 的符号决定(1)k >0,b=0时, 图象经过 ④ 象限. (2)k >0,b >0时,图象经过 ⑤ 象限. (3)k >0,b <0时,图象经过 ⑥ 象限. (4)k <0,b=0时, 图象经过 ⑦ 象限. (5)k <0,b >0时,图象经过 ⑧ 象限. (6)k <0,b <0时,图象经过 ⑨ 象限. 4.一次函数的性质,一次函数的增减性只与k 的正负有关 (1)k >0时,y 随x 的增大而增大 (2)k <0时,y 随x 的增大而 ⑩5.同一平面直角坐标系中直线y=k 1x+b 1和直线y=k 2x+b 2位置关系 (1)当k 1=k 2时, 两直线平行(2)当k 1≠k 2时,两直线相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 的解6.求一次函数解析式常用待定系数法求一次函数解析式 重难点剖析1. 一次函数与一次方程(组),一元一次不等式(组)一次函数的值为0时,相应的自变量的值为方程的根;一次函数值大于(或者小于)0,相应的自变量的值为不等式的解集 2. 用一次函数解决实际问题能熟练地根据图象的位置判断系数的情况或函数的变化趋势,又能依据函数的性质或系数的正负判断函数的图象的位置,注意把实际问题转化为数学问题 3. 解本章内容的题目,要特别注意数形结合等数学思想方法的运用温馨提示:①.()0≠=k kx y ②. ⎪⎭⎫⎝⎛-0,k b ③.()k ,1 ④.一、三 ⑤.一、二、三⑥.一、三、四 ⑦. 二、四 ⑧.一、二、四 ⑨.二、三、四 ⑩.减小◎◎◎典型例题剖析与互练◎◎◎考点1:一次函数图象和性质例1[2011贵州遵义,7]若一次函数()22--=x m y 的函数值y 随x 的增大而减小,则m 的取值范围是( )A. 0<mB. 0>mC. 2<mD. 2>m【分析】因为y 随x 的增大而减小,所以,02<-m 解得:2>m ,本题应选D 【答案】D 互动练习1-1.[2011呼和浩特,12]已知关于x 的一次函数n mx y +=的图象如图所示,则 2||m m n --可化简为___n______________.1-2.[2011江西,8]时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运 行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( A ).1-3.[2011江苏苏州10]如图,已知A 点坐标为(5,0),直线(0)y x b b =+>与y 轴交于点B ,连接AB ,∠a =75°,则b 的值为( ) A .3 B .533 C .4 D .534答案:1-1. n 【解析】由图象得m <0,n >0,所以n-m >0 所以()n m m n m m n m m n =---=--=--2||1-2. A 【解析】由题意得:()3005.55.06≤≤=-=t t t t y ,所以图象过()()165,30,0,0.选A1-3. B 【解析】因为直线(0)y x b b =+>与x 轴交于(),0,b -与y 轴交于(),,0b 所以直线O xy30 O180 y (度) t (分)165A.30 O180y (度) t (分)B.30 O180y (度) t (分)195 C.30 O180y (度) t (分)D.y=x+b 与x 轴的夹角为45°,而∠a =75°,所以∠BAO=30°,又因为A 点坐标为(5,0),所以OA=5,所以OB=OAtan 30°=335.选B考点2:用待定系数法求一次函数的解析式例2[2011浙江杭州,17] 点A ,B ,C ,D 的坐标如图,求直线AB 与直线CD 的交点坐标【分析】根据图象上两点的坐标,用待定系数法分别求出函数解析式,最会联立解析式求出交点坐标.【答案】解:设直线AB 的解析式为y kx b =+.根据题意,当x=0时,y=6;当x=-3时,y=0.所以⎩⎨⎧+-==b k 30b 6 解得⎩⎨⎧==2k 6b所以,直线AB 的解析式为:6x 2y +=同理可求直线CD 的解析式为:1x 21y +-= 解方程组26112y x y x =+⎧⎪⎨=-+⎪⎩,得22x y =-⎧⎨=⎩,所以直线AB ,CD 的交点坐标为(-2,2). 互动练习2-1.[2011湖南株洲,14]如图,直线l 过A 、B 两点,A (0,1-),B (1,0),则直线l 的解析式为 .2-2. [2011日照,9]在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是 B(A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4) 答案:2-1. 1yx =-2-2. B 【解析】如图,把坐标平面沿直线AC 折叠,点B 落在了x 轴上的点D 处,连接BD 和AC 的延长线交于E,则E 是BD 的中点.只要求出直线AE 的解析式即可得到点C 的坐标.由题意可求得:点A 的坐标是(4,0),点B 的坐标是(0,3),AB=AD=5,所以点D 的坐标是(-1,0),所以点E 的坐标是(23,21-),由A 、E 两点的坐标可求得直线AE 的解析式为:.3431+-=x y .所以点C 的坐标是(0,34).考点3:用一次函数解决实际问题例3[2011湖北武汉, 15]一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过多少分钟,容器中的水恰好放完.【分析】由图象得进水速度为20÷4=5升/分,结合题意求出出水速度,可设出水速度为m 升/分,则8×5-8m=30-20,得m=830升/分,30÷830=8分钟所以再经过8分钟,容器中的水恰好放完. 【答案】8分钟 互动练习3-1.[2011江苏泰州,25]小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m /min 速度从邮局同一条道路步行回家,小明在邮局停留2min 后沿原路以原速返回,设他们出发后经过t min 时,小明与家之间的距离为s 1 m ,小明爸爸与家之间的距离为s 2 m ,图中折线OABD 、线段EF 分别表示s 1、s 2与t 之间的函数关系的图象。
(1)求s 2与t 之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?3-2. [2011江苏连云港,27]因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h ,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m 3) 与时间t(h) 之间的函数关系.s(m)A OD CBt(min) 240010 12 F (第25题图)t (h )Q (万m 3) ABCD80 40 20Oa 400 500 600 (第27题图)求:(1)线段BC 的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?答案:3-1.(1)解由题意得:s 2= -96t+2400(2)由图象得小明骑车速度为:min240102400m=÷则他返回的速度为:min240m-所以可设直线BD 表达式为:S = -240t+b 将点B (12,2400)代入得:2400= -240×12+b 解得b=5280所以S = -240t+5280 由-96t+2400=-240t+5280 解得t=20 当t=20时,s=480 所以小明从家出发,经过20min 在返回途中追上爸爸.这时他们距离家还有480m. 3-2.解:(1)设线段BC 的函数表达式为Q =kx +b .∵B ,C 两点的坐标分别为 (20,500) ,B 的坐标 (40,600) . ∴500=20 k +b ,600=40 k +b ,解得,k =5,b =400 ∴线段BC 的函数表达式为Q =5x +400(20≤t ≤40).(2)设乙水库的供水速度为x 万m 3/ h ,甲水库一个排灌闸的灌溉速度为y 万m 3/ h .由题意得,⎩⎨⎧20(x -y ) =600-50040(x -2y )=400-600 解得⎩⎨⎧x =15y =10,答:乙水库的供水速度为15万m 3/ h ,甲水库一个排灌闸的灌溉速度为10万m 3/ h .(3)因为正常水位最低值为a =500-15×20=200(万m 3/ h ),所以(400-200)÷(2×10)=10(h )答:经过10 h 甲水库蓄水量又降到了正常水位的最低值.◎◎◎2011中考真题再现◎◎◎19503000y/m 【时间:60分钟 满分:80分】一、选择题(每小题3分,共18分) 1. [2011江西,5]已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( ).A .-2 B.-1 C. 0 D. 22.[2011河北,5]一次函数y =6x +1的图象不经过...( ) A .第一象限B .第二象限C .第三象限D .第四象限3.[2011山东枣庄,10]如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >24.[2011安徽芜湖,7]已知直线y kx b =+经过点(k ,3)和(1,k),则k 的值为( )A .3B . 3±C . 2D .2±5. [2011湖北黄石,10]已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -, (5,0)B ,(2,2)C ,(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为( )A. 23-B.29-C. 47-D. 27- 6. [2011四川乐山,8]已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( ) (A) x<-1 (B)x> -1 (C )x>1 (D )x<1二、解答题(共62分)8. [2011南京,22]小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m /min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.⑪小亮行走的总路程是____________㎝,他途中休息了________min . ⑫①当50≤x ≤80时,求y 与x 的函数关系式; (-1,1)1y (2,2)2yxyO第10题图②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?9.[2011山东潍坊,21]2010年秋冬北方严重干旱.凤凰社区人畜饮用水紧张.每天需从社区外调运饮用水120吨.有关部门紧急部署.从甲、乙两水厂调运饮用水到社区供水点.甲厂每天最多可调出80吨.乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x吨.总运费为y元。