类比法研究万有引力场的高斯定理
- 格式:pdf
- 大小:118.73 KB
- 文档页数:4
《高斯定理与环路定理在万有引力场中的推广》读后感课本中从电场到磁场,我们学习或是解题过程中总是免不了要运用到高斯定理和静电环路定理作为解题的第一步骤。
因此我们知道了电磁学中的高斯定理和静电环路定理是反应静电场基本性质的两个定理,利用这两个定理可以解决很多电荷具有对称分布的静电学问。
本篇文章则利用了类比的科学研究方法,将静电场中的高斯定理和静电环路定理推广到了经典万有引力场中。
进一步引入引力场强度,引力势能,引力场强通量,说明了万有引力场是一种有源场,并引入引力环流的概念,说明了,万有引力场也是一种无旋场。
文章中通过大量的计算,公式的推导,结合利用牛顿万有引力定律和微积分,万有引力势能导出第一、第二字宙速度,用万有引力场中的高斯定理等求解相关的问题来证明了其类比假设的正确性。
最值得注意的就是其中的类比方法,有时在学习或是生活中适当地掺入类比的思想,不仅可以全面提高分析问题和解决问题的能力,或许还会受到其他更多的意想不到的效果。
电磁学中的高斯定理和静电环路定理是反应静电场基本性质的两个定理,利用这两个定理可以解决很多电荷具有对称分布的静电学问题。
高斯定理的定义:通过任意闭合曲面的电通量等于该闭合曲面所包围的所有电荷量的代数和与电常数之比。
高斯定理的说明:高斯定理反映了静电场是有源场这一特性,它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。
环路定理静电场环路定理:在静电场中,场强沿任意闭合路径的线积分等于0. 与静电场力作功和路径无关是一致的.这种力场也叫保守力场或势场.安培环路定理:在稳恒磁场中,磁感强度H沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流之代数和。
万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量乘积成正比,跟它们的距离的二次方成反比。
引力场:引力场中的某点的是该点位置的矢量函数,对于多个质点产生的引力场,引力场强满足叠加原理万有引力场中高斯定理:万有引力场中的高斯定理,与静电场中的高斯定理具有相似的形式万有引力场中的环路定理:即引力场强在闭合回路上的积分为零,称为万有引力场中的环路定理引力势能:在量值上等于将物体。
引言概述:在大学物理中,高斯定理是一项重要的物理原理,它描述了电场和磁场的性质。
高斯定理由德国物理学家卡尔·弗里德里希·高斯于18世纪中叶提出,是电磁学的基础之一。
本文将介绍高斯定理的概念、原理及其在电场和磁场中的应用。
正文内容:1. 高斯定理的概念1.1 定义高斯定理是描述电场和磁场分布的一种数学工具,它通过计算电场或磁场通过一个闭合曲面(高斯面)的总通量来研究场的分布。
1.2 数学表达高斯定理可以用数学表达式表示为:∮E·dA = q/ε0,其中∮E·dA表示场在闭合曲面上的总通量,q表示闭合曲面内的电荷量,ε0为真空介电常数。
2. 高斯定理的原理2.1 高斯面的选择高斯定理中的高斯面是根据具体问题选择的,一般情况下我们选择对称性较高的闭合曲面,以简化计算。
2.2 电场线的特性高斯定理的基础是电场线的性质,电场线从正电荷流向负电荷,且与介质边界垂直,通过一个封闭曲面的电场线数目与该封闭曲面内的电荷量有关。
2.3 通量与电场强度高斯定理中的总通量与电场强度呈正相关关系,通过计算总通量可以得到闭合曲面内的电场强度大小。
3. 高斯定理在电场中的应用3.1 点电荷的场分布高斯定理可以用来研究点电荷周围的电场分布,通过选择以点电荷为中心的球面作为高斯面,可以计算出球面内外的电场强度大小。
3.2 均匀带电球壳的场分布对于均匀带电球壳,可以通过选择以球壳为中心的闭合曲面来计算球壳内外的电场分布,根据高斯定理可以得到球壳内外的电场强度大小。
4. 高斯定理在磁场中的应用4.1 磁场的总通量类似于电场,磁场也可以使用高斯定理来描述,通过计算磁场通过闭合曲面的总通量可以了解磁场的分布情况。
4.2 磁场的磁感应强度高斯定理在磁场中的应用可以得到磁场的磁感应强度大小,通过选择合适的闭合曲面,可以计算出曲面内外的磁感应强度。
5. 高斯定理的实际应用5.1 高斯定理在电容器中的应用电容器是电子器件中常见的元件,根据高斯定理,可以计算电容器两极板之间的电场强度,进而了解电容器的性能。
引力场中高斯定理的应用
王宁;孙彩霞;齐玉红
【期刊名称】《山东轻工业学院学报(自然科学版)》
【年(卷),期】2010(024)004
【摘要】本文用类比的方法将静电场中的高斯定理的形式推广到万有引力场中,从而引出万有引力场中的"高斯定理".通过万有引力场中的"高斯定理",将某些质量分布具有对称性的物体引起的引力场强的计算得到简化.
【总页数】3页(P78-80)
【作者】王宁;孙彩霞;齐玉红
【作者单位】黄河科技学院实验中心,河南,郑州,450006;黄河科技学院数理部,河南,郑州,450006;郑州大学,河南,郑州,450006
【正文语种】中文
【中图分类】O314
【相关文献】
1.高斯定理与环路定理在万有引力场中的推广 [J], 陈国云;骆成洪;辛勇;黄国庆;文小庆;赵书毅
2.高斯定理在万有引力场中的应用 [J], 唐淑红
3.引力场的高斯定理及应用 [J], 魏益焕
4.引力场中的高斯定理在计算煤矸石重量方面的应用 [J], 李颢
5.高斯定理在万有引力场中的推广及应用 [J], 谢谦;唐卫斌;刘俊
因版权原因,仅展示原文概要,查看原文内容请购买。
引力场中的高斯定理引力和静电力都是有势力,相应的引力势和静电势都满足三维空间里最简单的二阶(偏微分)方程——拉普拉斯方程.用ψ代表引力势或者静电势场,它在三维空间里所满足的拉普拉斯方程采取如下的形式:(∂2/∂x2+∂2/∂y2+∂2/∂z2)ψ(x,y,z)=0.由于相应的静电力和引力等于势的微分(的负值),它的大小便与半径r成反比了,即ψ(r)∝1/r,F(r)=- dψ/dr∝1/r2由于万有引力定律与Coulomb,s law本质是一样的,因此引力场中也存在高斯定理,并且与万有引力定律等价.Ⅰ、预备知识引力场场强:引力场场强是一个向量,其大小等于1千克的质点在该处所受引力的大小,方向与该质点在该处所受引力的方向一致.引力线:如果在引力场中出一些曲线,使这些曲线上每一点的切线方向和该点的引力场强方向一致,那么所有这样可以作出的曲线叫做引力线.引力线数密度:在引力场中任一点取一小面元ΔS与该点的场强方向垂直,设穿过ΔS 的引力线有ΔN根,则比值ΔN/ΔS叫做该点的引力线数密度,它的意义是通过该点单位垂直截面的引力线根数,规定引力场场强E∝ΔN/ΔS.引力线性质:引力线其自无穷远点,止与该质点,引力线在宇宙中处处存在.一个质点的任何两条引力线不会相交,不形成闭合线.引力通量:通过一面元ΔS的引力通量为该点场强的大小E与ΔS在垂直于场强方向的投影面积ΔS′=ΔScosθ的乘积.Ⅱ、通过一个任意闭合曲面S的引力通量φ=4πG∑m,与闭合曲面外的引力质量无关.证明:(1)通过包括质点m的同心球面的引力通量都等于4πGm.以质点m所在处为中心以任意半径r作一球面.根据万有引力定律,在球面上各点场强大小一样E=G m /r2,场强的方向沿半径向外呈辐射状.在球面上任意取一面元dS,其外法线向量n也是沿着半径方向向外的,即n和E间夹角θ=0,所以通过dS的引力通量为dφ=EcosθdS=EdS= G m /r2dS,通过整个闭合球面的引力通量为φ=dS= G m /r2×4πr2=4πGm.(2)通过包围质点的任意闭合曲面S的引力通量都等于4πGm在闭合面S内以质点m所在处O为中心作一任意半径的球面S′,根据(1)通过此球面的事情感兴趣,要勤奋地工作!”。
高斯定理在万有引力场中的应用
高斯定理是物理学界以及数学界较为重要的定理之一,它可以被广泛地用于万有引力场的研究中。
首先,我们需要了解高斯定理的核心部分——高斯梯度定理:它指出了引力场的数学表示和图像的梯度的空间表示之间的联系,即:万有引力场的空间表示有一个正定的悬赏函数,和任意点的梯度之间存在明确的联系,此外,这个悬赏函数的倒数是一个完全定义的单值函数,接下来,我们就可以用这个悬赏函数来求出万有引力场的强度以及各种有关物理量。
另一方面,万有引力场对空间上某点上发生的结构变化也有着重要的影响,它可以通过高斯梯度定理来计算这种变化。
高斯梯度定理中,梯度是一个十分重要的概念,它是三维空间中某点处的万有引力场变化速率。
对此,高斯定理可以让我们通过知道梯度 at 点 P 的方向和大小来推断出空间上某个点处的引力场的强度和变化情况,也就是我们可以根据某点的梯度来计算出空间上的点的引力场的强度以及计算出不同空间上的点之间的引力场是否在变化。
至此,我们可以看出,高斯定理在万有引力场的有效应用中发挥了重要作用,它提供了万有引力场变化情况的推断,可以让我们很快的分析出物体之间的引力场变化情况,这样使我们可以进一步研究万有引力场,更好的理解它。
此外,高斯定理也有许多其它的应用,例如他可以用于空气动力学,静电学以及地学等领域。
引力的高斯定理赵旋物理系201011141030 众所周知,我们学习过的电场力的高斯定理:EdS=q/ε0.对于与电场力极其相似的万有引力,也会不会有相同于高斯定理的表现其有源性的公式呢?我们知道,电场力是有源的;同样,万有引力也是有源的。
所以,我们完全可以根据电场力的高斯定理,仿造出万有引力的高斯定理。
首先,由于万有引力F=GMmR2∙e n,所以定义F=m∙E′或者E′=Fm,对于两质点间的万有引力即是定义E′=GMmR2。
为了更好地类比引力高斯定理,我们在定义q′=m.这时万有引力的公式变为:F=q′∙E′.又根据点电荷之间电场力的表达式:F=14πε0∙q1q2R2,按照F=GMmR2∙e n可得到ε0′=14πG.到此我们将万有引力公式完完全全地改为了:F=10∙q1′q2′其中,q′=m,ε0′=14πG。
这就是一个跟电场力完全相同的万有引力公式。
然后根据电场力的高斯定理:EdS=q/ε0可以得出万有引力的高斯定理:E′dS=q′/ε0′将其还原为万有引力我们通常使用的量即是:F∙dS=4πG∙M.公式的意义在于表示对于某一区域引力场强度在一封闭曲面上的面积分与封闭曲面所包围的物体质量成正比,与曲面内质量的分布情况无关,与封闭曲面外的质量亦无关。
对于引力高斯定理的证明,由于我们在之前已经把万有引力的所有重要的公式都换成了跟电场力很是相似的公式,所以对引力高斯定理进行证明的时候,只需要对照电场力高斯定理就可以了,在证明的时候只需把E、q、ε0分别换成E′、q′、ε0′就可以了。
步骤基本完全相似……于此同时,与电场力有关的所有定理几乎都可以移植到万有引力。
比如会有万有引力的环路定理:E′∙dl=0.等等……。