万有引力的高斯定理1
- 格式:doc
- 大小:106.00 KB
- 文档页数:4
引力场中的高斯定理引力和静电力都是有势力,相应的引力势和静电势都满足三维空间里最简单的二阶(偏微分)方程——拉普拉斯方程.用ψ代表引力势或者静电势场,它在三维空间里所满足的拉普拉斯方程采取如下的形式:(∂2/∂x2+∂2/∂y2+∂2/∂z2)ψ(x,y,z)=0.由于相应的静电力和引力等于势的微分(的负值),它的大小便与半径r成反比了,即ψ(r)∝1/r,F(r)=- dψ/dr∝1/r2由于万有引力定律与Coulomb,s law本质是一样的,因此引力场中也存在高斯定理,并且与万有引力定律等价.Ⅰ、预备知识引力场场强:引力场场强是一个向量,其大小等于1千克的质点在该处所受引力的大小,方向与该质点在该处所受引力的方向一致.引力线:如果在引力场中出一些曲线,使这些曲线上每一点的切线方向和该点的引力场强方向一致,那么所有这样可以作出的曲线叫做引力线.引力线数密度:在引力场中任一点取一小面元ΔS与该点的场强方向垂直,设穿过ΔS 的引力线有ΔN根,则比值ΔN/ΔS叫做该点的引力线数密度,它的意义是通过该点单位垂直截面的引力线根数,规定引力场场强E∝ΔN/ΔS.引力线性质:引力线其自无穷远点,止与该质点,引力线在宇宙中处处存在.一个质点的任何两条引力线不会相交,不形成闭合线.引力通量:通过一面元ΔS的引力通量为该点场强的大小E与ΔS在垂直于场强方向的投影面积ΔS′=ΔScosθ的乘积.Ⅱ、通过一个任意闭合曲面S的引力通量φ=4πG∑m,与闭合曲面外的引力质量无关.证明:(1)通过包括质点m的同心球面的引力通量都等于4πGm.以质点m所在处为中心以任意半径r作一球面.根据万有引力定律,在球面上各点场强大小一样E=G m /r2,场强的方向沿半径向外呈辐射状.在球面上任意取一面元dS,其外法线向量n也是沿着半径方向向外的,即n和E间夹角θ=0,所以通过dS的引力通量为dφ=EcosθdS=EdS= G m /r2dS,通过整个闭合球面的引力通量为φ=dS= G m /r2×4πr2=4πGm.(2)通过包围质点的任意闭合曲面S的引力通量都等于4πGm在闭合面S内以质点m所在处O为中心作一任意半径的球面S′,根据(1)通过此球面的事情感兴趣,要勤奋地工作!”。
高斯定理表达式及其物理意义
高斯定理:在一个封闭的曲面上,任意一点外部电荷的积分等于曲面内部电荷的积分。
高斯定理是由德国数学家卡尔·马克斯·费马于1813年发现的,它是电动势的基本定理,是研究电场的基础。
它有着极其重要的物理意义,是电磁理论的基础。
高斯定理的物理意义是:在一个封闭的曲面上,任意一点外部电荷的积分等于曲面内部电荷的积分。
高斯定理是一个重要的数学定理,它的公式表达为:∮⃗E⋅d⃗s=q/ε,其中,∮⃗E⋅d⃗s是曲面上某一点外电荷的电场积分,q是曲面内部电荷的总量,ε是介电常数。
这一定理可以用来研究电场及其相关问题,可以用来计算电场的强度、电势等。
换句话说,高斯定理告诉我们,在一个封闭的曲面上,外部电荷的积分等于曲面内部电荷的积分,这一定理是计算电场强度、电势等问题的重要依据。
高斯定理还可以用来研究磁场及相关问题,它可以用来计算磁场的强度、磁势等。
其公式表达为:∮⃗B⋅d⃗s=μq/ε,其中,∮⃗B⋅d⃗s是曲面上某一点外磁荷的磁场积分,μ是磁导率,q是曲面内部磁荷的总量,ε是介电常数。
高斯定理可以用来研究电场、磁场的强度、电势、磁势等,它的物
理意义是:在一个封闭的曲面上,任意一点外部电荷或磁荷的积分等于曲面内部电荷或磁荷的积分。
高斯定理是电磁理论的基础,是研究电磁场的重要依据。
高斯定理的推导高斯定理,也称为高斯通量定理,是电磁学中非常重要的一个定理,它描述了一个闭合曲面内的电场通量与该曲面内所有电荷的总电量之间的关系。
高斯定理的推导过程较为复杂,但是我们可以通过一些简化的方式来理解和应用它。
我们来了解一下高斯定理所涉及的一些基本概念。
在电磁学中,电场是由电荷产生的一种力场,它的大小和方向决定了空间中其他电荷所受到的力。
而电场通量则是描述电场通过一个给定面积的量,可以理解为电场线通过该面积的密度。
在这里,我们要特别强调的是电场通量是通过一个面积,而不是一个体积。
高斯定理的推导过程涉及到微积分的一些知识,但是我们可以通过一个简化的情景来理解它。
假设我们有一个均匀分布的电荷球体,其半径为R,电荷密度为ρ。
现在我们在球体内部任意选取一个闭合曲面,这个曲面可以是球面、柱面或者任意形状的曲面。
根据高斯定理,这个闭合曲面内的电场通量与该曲面内所有电荷的总电量之间存在一定的关系。
具体来说,我们可以通过对闭合曲面进行积分,得到曲面上的电场通量。
在这个过程中,我们需要确定曲面上每个点的电场强度和法向量的夹角,然后将它们的乘积相加。
这样,我们就可以得到整个曲面上的电场通量。
那么,这个电场通量与曲面内的电荷有什么关系呢?根据高斯定理,电场通量等于曲面内部电荷的总电量除以真空介电常数ε0。
也就是说,电场通量与曲面内的电荷量成正比。
通过这个简化的情景,我们可以更好地理解高斯定理的物理意义。
它告诉我们,一个闭合曲面内的电场通量与该曲面内所有电荷的总电量之间存在一种关系,从而让我们能够通过测量电场通量来推断曲面内的电荷量。
高斯定理的应用非常广泛,它不仅可以用于求解简单的电场问题,还可以应用于更复杂的情况,比如电场在介质中的传播和变化。
在实际工程和科学研究中,高斯定理是解决电场问题的重要工具之一。
需要注意的是,高斯定理只适用于静电场问题,也就是说,电荷的分布不随时间变化。
对于动态电场问题,我们需要使用其他方法来求解。
高斯定理在万有引力场中的应用
高斯定理是物理学界以及数学界较为重要的定理之一,它可以被广泛地用于万有引力场的研究中。
首先,我们需要了解高斯定理的核心部分——高斯梯度定理:它指出了引力场的数学表示和图像的梯度的空间表示之间的联系,即:万有引力场的空间表示有一个正定的悬赏函数,和任意点的梯度之间存在明确的联系,此外,这个悬赏函数的倒数是一个完全定义的单值函数,接下来,我们就可以用这个悬赏函数来求出万有引力场的强度以及各种有关物理量。
另一方面,万有引力场对空间上某点上发生的结构变化也有着重要的影响,它可以通过高斯梯度定理来计算这种变化。
高斯梯度定理中,梯度是一个十分重要的概念,它是三维空间中某点处的万有引力场变化速率。
对此,高斯定理可以让我们通过知道梯度 at 点 P 的方向和大小来推断出空间上某个点处的引力场的强度和变化情况,也就是我们可以根据某点的梯度来计算出空间上的点的引力场的强度以及计算出不同空间上的点之间的引力场是否在变化。
至此,我们可以看出,高斯定理在万有引力场的有效应用中发挥了重要作用,它提供了万有引力场变化情况的推断,可以让我们很快的分析出物体之间的引力场变化情况,这样使我们可以进一步研究万有引力场,更好的理解它。
此外,高斯定理也有许多其它的应用,例如他可以用于空气动力学,静电学以及地学等领域。
引力的高斯定理赵旋物理系201011141030 众所周知,我们学习过的电场力的高斯定理:EdS=q/ε0.对于与电场力极其相似的万有引力,也会不会有相同于高斯定理的表现其有源性的公式呢?我们知道,电场力是有源的;同样,万有引力也是有源的。
所以,我们完全可以根据电场力的高斯定理,仿造出万有引力的高斯定理。
首先,由于万有引力F=GMmR2∙e n,所以定义F=m∙E′或者E′=Fm,对于两质点间的万有引力即是定义E′=GMmR2。
为了更好地类比引力高斯定理,我们在定义q′=m.这时万有引力的公式变为:F=q′∙E′.又根据点电荷之间电场力的表达式:F=14πε0∙q1q2R2,按照F=GMmR2∙e n可得到ε0′=14πG.到此我们将万有引力公式完完全全地改为了:F=10∙q1′q2′其中,q′=m,ε0′=14πG。
这就是一个跟电场力完全相同的万有引力公式。
然后根据电场力的高斯定理:EdS=q/ε0可以得出万有引力的高斯定理:E′dS=q′/ε0′将其还原为万有引力我们通常使用的量即是:F∙dS=4πG∙M.公式的意义在于表示对于某一区域引力场强度在一封闭曲面上的面积分与封闭曲面所包围的物体质量成正比,与曲面内质量的分布情况无关,与封闭曲面外的质量亦无关。
对于引力高斯定理的证明,由于我们在之前已经把万有引力的所有重要的公式都换成了跟电场力很是相似的公式,所以对引力高斯定理进行证明的时候,只需要对照电场力高斯定理就可以了,在证明的时候只需把E、q、ε0分别换成E′、q′、ε0′就可以了。
步骤基本完全相似……于此同时,与电场力有关的所有定理几乎都可以移植到万有引力。
比如会有万有引力的环路定理:E′∙dl=0.等等……。
万有引力场的高斯定理一 问题的提出在大一上学期学习力学,在学到简谐运动那一章时,胡老师曾举个一个例子,是摘自老版本大学物理学的一道书上例题,题目是这样的:将地球看做一个半径为R 的均匀球体,密度为ρ,假定沿直径开一条通道,若有质量为m 的质点沿通道做无摩擦运动,证明此运动为简谐运动。
(题目示意图如下)例题图当时做这道题时不知道如何列出质点的受力方程,后来老师直接讲到质点的受力大小仅与质点所在圆面内包围的质量有关,而与外部的质量无关。
列出受力大小公式,经过化简发现受到的万有引力大小是一个和质点所在面的半径r 成正比的○1,即质点在地球内部受到了一个线性回复力的作用,方向和质点相对于平衡位置(地心)的位移方向相反,即质点做的是简谐运动。
具体的解题公式和过程不再写出,这些不是本文章的重点。
场景转换到大一下学期(现在),在老师讲到电磁学中静电场的高斯定理时,惊奇的发现:∑⎰⎰==Φ)(01cos 内S iE q dS E εθ这个公式告诉我们:通过一个任意闭合曲面S 的电通量E Φ等于该面所包围的所有电荷的代数和Σq 除以ε0,与闭合面外的电荷无关。
这就是著名的电场中的高斯定理的表述。
其他有关高斯定理的证明请见《电磁学》(赵凯华、陈熙谋版)第54页至59页,这里不再抄写证明。
高斯提出了电通量的概念,并根据库仑定律推导出来,使很多电场问题步骤和思路大大简化,并提炼出了这个公式。
学到这里时我就突然想到了本文最开始的那道有关万有引力的题目,并且想到牛顿的万有引力定律公式——221r m m GF =万和库仑定律公式——221cr q q k=F 有着十分相似的形式,既然库仑定律能够推导出电场的高斯定理,那么高斯定理应该在万有引力场中同样适用。
在这里先给几个定义和公式:万有引力强度,用g表示,定义式为2rm 中万G m F g == ,但正方向为从内到外,与g实际方向相反。
对于球状质点系,通过单位表面积的引力通量是:-g r4r 4*g -S 22==Φ=Φππ万d 1, 万有引力通量,⎰⎰∆-=ΦSS gcos θ万(注意负号)2, 仿照041πε=k ,令041g G π=,这里的0g 姑且命名为真空介万常数,呵呵,根据真空介电常数改的,大小约为1.193*10^9。
万有引力与高斯定理--类比在物理学中的应用
万有引力定律和高斯定理是两个非常重要的物理概念,它们分别描述了物体间的引力和电场的分布。
虽然它们描述的是不同的物理现象,但它们之间有着深刻的类比关系。
在物理学中,高斯定理经常用来计算电场或者磁场的分布,而万有引力定律则用来描述天体之间的引力作用。
然而,这两个定理的数学形式却非常相似,因此它们在物理学中经常被类比使用。
例如,在研究地球上的引力问题时,可以使用与高斯定理类似的方法来计算引力的分布。
具体而言,可以将地球看作是一个非常大的球体,对球心外的任意一点上的引力进行积分,从而得到该点的引力大小和方向。
这个积分过程与高斯定理类似,只不过换成了引力场的积分。
同样的方法也可以用来描述其他天体之间的引力作用。
例如,在计算行星之间的引力时,我们可以将每个行星看作是一个点电荷,然后利用高斯定理类似的方法来计算电场强度的分布。
除了在计算引力场和电场分布时,万有引力定律和高斯定理还可以在其他物理学问题中相互类比使用。
例如,在研究气体分子运动时,我们可以将分子间的相互作用看作是引力作用,然后用类似于高斯定理的方法来计算分子间的引力和方向。
这种方法被称为分子动力学模拟,在化学、材料科学、生物学等领域均有重要应
用。
总之,万有引力定律和高斯定理虽然描述的是不同的物理现象,但它们之间的数学类比关系使得它们在物理学的各个领域中都具有广泛的应用。
高斯定理内容高斯定理是电磁学中的一项重要定理,它描述了电场与电荷分布之间的关系。
高斯定理是由德国数学家卡尔·弗里德里希·高斯在19世纪初提出的,被广泛应用于电磁学、静电学和电动力学等领域。
高斯定理的核心思想是通过计算电场通过一个闭合曲面的总通量来求解电荷分布。
通量是指电场线通过一个曲面的总数,它是一个矢量量。
根据高斯定理,闭合曲面的总通量正比于该曲面内的电荷总量,即通量与电荷的比例关系是恒定的。
这个比例常数就是电场介质的电容率。
高斯定理的数学表达方式是:Φ = ∮E·dA = Q/ε0其中,Φ表示电场通过曲面的总通量,E表示电场强度矢量,dA表示曲面上一个微小面元的面积矢量,Q表示曲面内的电荷总量,ε0表示真空中的电容率。
根据高斯定理,当电荷分布具有对称性时,可以通过选取合适的闭合曲面来简化计算。
例如,当电荷分布具有球对称性时,可以选择一个以球心为中心的球面作为闭合曲面。
由于球对称性,球面上每个微小面元的面积矢量与电场强度矢量的夹角相同,从而简化了计算。
这种简化计算的方法被称为高斯球面法。
高斯定理的应用非常广泛。
在静电学中,可以利用高斯定理求解电场分布。
例如,可以通过高斯定理计算一根无限长直导线产生的电场强度分布。
在电动力学中,高斯定理可以用于求解电场与电荷分布之间的关系。
例如,可以通过高斯定理推导出库仑定律,即两个点电荷之间的电场强度与它们之间的距离的平方成反比。
高斯定理还可以用于计算电场的散度。
散度描述了电场在空间中变化的趋势。
根据高斯定理,电场的散度与电荷分布之间存在直接的关系。
当电荷分布较为均匀时,电场的散度较小;当电荷分布不均匀时,电场的散度较大。
通过计算电场的散度,可以揭示电荷分布的特征。
高斯定理是电磁学中的一项重要定理,它描述了电场与电荷分布之间的关系。
通过计算电场通过一个闭合曲面的总通量,可以求解电荷分布的特征。
高斯定理的应用范围广泛,可以用于求解电场分布、推导库仑定律以及计算电场的散度等。
物理中结果为g的表达式
物理学中,“g”是重力加速度的文字符号,一般用于描述自由落体运动。
以下是一般表达式,其中t为时间:
简单表达式:
g=dv/dt
其中dv/dt 是速度变化的率,即速度的函数的导数(即加速度)。
此外,还有几种还原得更清楚的表达方式:
1. 牛顿运动定律:F=ma、g=F/m
其中F为物体受到的外力,m为物体的质量,ma为物体总加速度,g 为重力加速度。
2. 高斯定理:g=G*M/r²
其中G为万有引力常数,M为物体的质量,r为物体和引力的作用点的距离。
3. 物体受重力潜力时的加速度公式:g=G*M/(h+r)²
其中G为万有引力常数,M为物体的质量,h为物体到引力的作用点
的距离,r为物体的原点到引力的作用点的距离。
关于重力加速度g的表达式是由于它与物体质量、场强和力间的距离有关,故有多种表示方式,除此以上表达式外,也有物体受力时加速度和米勒定理表达式:a=Fnet/m和g=G*M/r^2。
总之,关于“g”的表达式可以有多种,只要表达出它与物体质量、场强和力间的距离有关就OK。
高斯定理的解释和公式
高斯定理,也称为散度定理,是数学中的一个重要定理。
它描述了一个向量场通过一个封闭曲面的总量。
高斯定理在物理学和工程学的许多领域中都有广泛的应用,如电磁学、流体力学和热传导等。
高斯定理的数学表达形式如下:
对于一个平滑的三维矢量场F=(Fx,Fy,Fz),定义一个封闭曲面S来围绕一个具有体积V的区域D。
那么,高斯定理可以写作:
∬S F·dS = ∭D ∇·F dV
其中,F·dS表示向量场F在曲面元dS上的点积积分,∇·F表示向量场F的散度,dV表示体积元。
这个定理的物理解释是,对于一个流经封闭曲面的流体量,其发散性(流出和流入区域的总和)等于其在包围该区域的体积中的源和汇的总量。
高斯定理的应用非常广泛。
在电磁学中,它可以用来计算通过一个闭合曲面的电场强度和磁场强度的总量。
在流体力学中,它可以用来计算液体或气体通过一个封闭曲面的流量。
在热传导中,它可以用来计算热量通过一个封闭曲面的扩散量。
总之,高斯定理提供了一个非常强大的工具,用于计算向量场通过封闭曲面的总量。
它在物理和工程学中的应用使得我们能够更好地理解和分析各种自然现象和工程问题。
高斯定理的三个公式高斯定理在物理学中可是个相当重要的概念,它有三个关键公式,咱们一起来瞅瞅。
咱先来说说高斯定理的第一个公式。
这就好比你有一个充满电荷的球体,你想知道这个球体产生的电场强度在球体外的分布情况。
这个时候,高斯定理就派上用场啦!它能帮咱们快速算出电场的分布。
想象一下,你站在一个大大的操场上,操场上有一个透明的大球,里面装满了电荷。
你从远处观察这个球,虽然看不到里面的电荷具体是怎么分布的,但通过高斯定理,就能算出这个球在周围空间产生的电场强度。
接下来是第二个公式。
这就像是在一个封闭的房间里,电荷在房间里到处跑,但不管它们怎么跑,通过高斯定理咱们都能清楚地知道整体的情况。
比如说,你在一个房间里,灯光有点昏暗,电荷就像那些忽明忽暗的光影,而高斯定理就是能让你看清整体状况的神奇工具。
最后是第三个公式。
这个公式就更有趣啦!它就像一个超级侦探,能帮我们解决很多复杂的电场问题。
比如说,有一个形状不规则的带电体,用常规方法很难计算它产生的电场,但是用高斯定理的第三个公式,就能巧妙地找到答案。
记得我之前给学生们讲高斯定理的时候,有个小家伙一脸迷茫地问我:“老师,这高斯定理到底有啥用啊?”我笑着回答他:“这就好比你要在一堆乱麻中找到线头,高斯定理就是那根能让你快速理清头绪的神奇线头!”然后我给他举了个例子,假如我们要计算一个无限大带电平面产生的电场,按照常规思路,那得费好大的劲。
但是用高斯定理,咱们只需要做一个合适的高斯面,就能轻松得出结果。
那个小家伙听完,眼睛一下子亮了起来,好像突然明白了其中的奥妙。
其实啊,高斯定理的这三个公式就像是三把神奇的钥匙,能打开很多电学难题的大门。
只要我们认真理解、多多练习,就能熟练运用它们解决各种各样的问题。
不管是在学习中还是在实际的科学研究中,高斯定理都是我们的得力助手。
所以,同学们,可别小看了这三个公式,好好掌握它们,能让我们在电学的世界里畅游无阻!。
μ = m / 4πa (面密度 )之一 ,它是反映电磁场的基本规律的重要定理. 高 d U = - G m ′2πa 2μsin θd θ/ r 斯定理在静电场的应用是最为普遍的 ,利用它可以 分析和解决许多复杂的电磁学问题. 本文将其推广 到同具有保守性的引力场 ,为解决引力场问题提供 新思路 ,利用它可解决较复杂的引力计算问题.所以 利用2 r 2 2= a + R - 2R a c o sθ 两边微分得 r d r = R a s i nθd θ s i nθd θ d r 即 = R a1 引力场中的球壳问题设有一只薄球壳 ,半径为 a, 质量为 m , 现求距球心 R 处一个质量为 m ′的质点所受的力.取球壳中的一个圆环 , 圆环上的所有点与点 P 距离均为 r . 这个圆环对 P 点质量为 m ′产生的引力r 所以积分得d U = - G m ′2πa μd r / R Gm ′2πa μ R +a Gm ′mR ∫- a d r = -( 1 )U = -RR如果 P 点在球内 , 则式 ( 1 ) 中积分应为 a - RG m ′d m / r. [ 1 ] 势能为 d U = - a + R , 得= -Gm ′2πa μ G m ′m·2R = -U ( 2 )Ra式 ( 1 ) 、( 2 ) 表示 :在球外 , 此球壳在 P 点的场 等价于质量全部集中在球心时的场 ; 在球内 , 引力势能为一常值 , m ′不受力作用.由势能求保守力情况 , 得d U G m ′m R ≥ aF = -= - 2 Rd R F = 0R < a式 [ 3 ].假设我们尚不知牛顿万有引力定律 , 由式 ( 3 ) 去得出万有引力定律.2 定义引力场强度为了定量地讨论引力场在空间的分布和传播 , 这里引入引力场强度的概念. 定义引力场强度 为单位质元 m ′在引力场中某点所受的引力F g以质点 M 所在点为圆心 , 作一半径为 (图 2 ) , 对于球面的引力通量为r 的球面E g<g = λE g ·ds = 4πG ME g= as对于多个质点产生的引力场 , 其引力场强度满足叠 加原理 [ 2 ]. 定义了引力场强度后 , 就可以仿照电场中定义电场强度通量 Фe , 来定义引力通量 <g , 则d <g = E g ·ds = E g d s co s e式中 e 为引力场强度 E g 与面元 ds 外法向之间的夹 角.3 高斯定理在引力场中的类比应用上面有了通量的概念后 , 就可以讨论穿过闭合 面的引力通量问题. 对球壳问题应用高斯定理 ( K为比例常数 ) :取半径为 R 的球面为高斯面 , 考虑到 对称性 , 则由图 2F i g . 2考虑对称性 , 高斯面上任一点的引力场强度的大小E g 相同 , E g 的方向与球面径向相反 , 由式 ( 3 ) 应有M2- E g ·4πr = 4πG M , 可得出 E g = - G 2 , 在高斯面λsE g·ds = K ∑mir上若有一质量为 m 的质点 , M 对 m 引力的大小则为得M m2R > a - E g ·4πR = KmF = - G, 过球心 O 向 m 引一矢径 r , 即可写出万 r2 有引力的矢量式.这一结果说明引力场的高斯定理与万有引力 定律等价.参考文献 :[ 1 ] F . S 梅里特. 工程中的现代数学方法 [ M ]. 北京 : 科学出版社 ,1981 . 8 ~11.[ 2 ] 李兴鳌. 高斯定理在力学中的推广及应用 [ J ]. 湖北民族学院学报 , 1998 , ( 6 ) : 12 ~14.[ 3 ] 刘大为. 关于 引力场 的高 斯定理 [ J ]. 甘 肃 教 育 学 院 学 报 ,1998 , ( 1 ) : 5 ~7.F gKm m m ′ GmE g = -= = - G = - 4πR 22 R m ′2R∴K = 4πG 则 λs= 4πG ∑miE g = 0E g·dsR < a此结果与牛顿力学计算一致. 由此得出λsE g ·ds = 4πG ∑mi( 3 )i ( s 内 )这就是万有引力场中的高斯定理 , 与电场中的 1高斯定理 Фe = λE g ·d s =∑q i 具有相同的形ε0 i ( s 内 )sGa u s s ′Theorem of Gra v ita t iona l F ie ldGAO Y an( X inzhou Teachers U n i versity, X inzhou 034000, S h anx i , Ch ina )A b s tra c t : I t is founded on the con s e r va t i o n law of e l ec t r o s ta t ic fie l d .B a sed on the sam e con s e r va t ion law of gravita t iona l fie l d, th i s the s is d i scu sse s the app lica t i o n of G au s s ′theo r em in the theo r y of non - re l a t ive gravita t i o na l fie l d, and e s tab l ishe s the G au s s ′theo r em of gravita t iona l fie l d . U sin g the theo r e m to ana l yze s p e c i fic m e chan i c s p r ob l em s, we can si m p lify the comp u t a t i o n fo r the gravita t iona l fie l d w i th s p a t ia l sy mm e t ry .Key word s : G au s s ′theo r em ; con s e r va t i o n law; sy mm e t ry sp a ce in t en s ity of gravita t i o na l fie l d。
万有引力场的高斯定理
容晓晖
物理工程学院2010级物理学类二班 邮箱:****************
一 问题的提出
在大一上学期学习力学,在学到简谐运动那一章时,胡老师曾举个一个例子,是摘自老版本大学物理学的一道书上例题,题目是这样的:
将地球看做一个半径为R 的均匀球体,密度为ρ,假定沿直径开一条通道,若有质量为m 的质点沿通道做无摩擦运动,证明此运动为简写运动。
(题目示意图如下)
例题图
当时做这道题时不知道如何列出质点的受力方程,后来老师直接讲到质点的受力大小仅与质点所在圆面内包围的质量有关,而与外部的质量无关。
列出受力大小公式,经过化简发现受到的万有引力大小是一个和质点所在面的半径r 成正比的○1,即质点在地球内部受到了一个线性回复力的作用,方向和质点相对于平衡位置(地心)的位移方向相反,即质点做的是简谐运动。
具体的解题公式和过程不再写出,这些不是本文章的重点。
场景转换到大一下学期(现在),在老师讲到电磁学中静电场的高斯定理时,惊奇的发现:
∑⎰⎰=
=Φ)
(01
cos 内S i
E q dS E εθ
这个公式告诉我们:通过一个任意闭合曲面S 的电通量E Φ等于该面所包围的所有电荷的代数和Σq 除以ε0,与闭合面外的电荷无关。
这就是著名的电场中的高斯定理的表述。
其他有关高斯定理的证明请见《电磁学》(赵凯华、陈熙谋版)第54页至59页,这里不再抄写证明。
高斯提出了电通量的概念,并根据库仑定律推导出来,使很多电场问题步骤和思路大大简化,并提炼出了这个公式。
学到这里时我就突然想到了本文最开始的那道有关万有引力的题目,并且想到牛顿的万有
引力定律公式——2
21r m m G
F =万
和库仑定律公式——2
21c
r q q k
=F 有着十分相似的形
式,既然库仑定律能够推导出电场的高斯定理,那么高斯定理应该在万有引力场中同样适用。
在这里先给几个定义和公式:
万有引力强度,用g 表示,定义式为2r
m 中万
G m F g == ,但正方向为从内到外,与g
实际方向相反。
对于球状质点系,通过单位表面积的引力通量是:
-g r
4r 4*g -S 2
2
==Φ=Φππ万d 1, 万有引力通量,
⎰⎰∆-=ΦS
S gcos θ万(注意负号)
2, 仿照0
41πε=
k ,令0
41
g G π=
,这里的0g 姑且命名为真空介万常数,呵呵,根
据真空介电常数改的,大小约为1.193*10^9。
下面进行公式推导,目的是证明:
0)(S
i 00
S g m g 1g 1
S gcos 中
内万m m S i ===
∆-=Φ∑⎰⎰⎰⎰θ成立。
推导证明公式成立:
同样仿照课本上的证明过程(《电磁学》(赵凯华、陈熙谋版)第54页至59页),从球面开始证明:
⎰⎰⎰⎰⎰⎰⎰⎰=
=====∆-=ΦS
i
002202222S
m
g 1g r
m 441
4r m r m r m S gcos 中中中中
中万m r g r G dS G dS G
S
S
πππθ即
0)(S
i 00
S g m g 1g 1
S gcos 中
内万m m S i ===
∆-=Φ∑⎰⎰⎰⎰θ
上为第一种情况:通过包围质点的同心球体的万有引力通量都为m 中/g 0
另外两种情况:通过包围质点的任意闭合面的万有引力通量都等于m 中/g 0,和通过不包围点电荷的任意闭合面的万有引力通量恒为0.因为过程和课本上的极为相似,均不再这里证明,有兴趣的可以参考课本。
在这里,
等于该面所包围的所有质量(的代数)和Σm 除以g 0,与闭合面外的质量无关。
应用一 求万有引力场场强 对于像本文开头提到的例题,那种十分对称的物体可以得某处的万有引力场强大小和重力势能位相对大小。
比如应用于球、无限长的棍、无限大的平面等等。
具体由此得出的结论(这里只给出大小,方向均指向质点系): 1. 单个质点:2
041r m
g g π=
2.均匀质量球壳:当r<R 时,0=g
当r>R 时,2
041r m
g g π=
(相当于质量集中在球壳中心)
3.均匀质量的实心球体:当r<R 时,r R
m
g g 3
041π=
(这里验证了第一部分的句○1) 当r>R 时,2
041r m
g g π=
(相当于质量集中在球体中心)
4.无限长的棒:r
g g λ
π021=
(λ表示质量的线密度)
5.无限大的平面(一个):0
2g g σ
=
6.两个无限大的平行平面:两板之间0=g 两板之外0
g g σ
=
(σ表示质量的面密度)
应用二 求万有引力场中的引力位,或引力位差(万有引力的位,或称为重力势能位) 1. 单个质点:r
m
g 041πϕ-
=(无限远为零势能点)
2.均匀质量球壳:当r<R 时, R
m
g 041πϕ-
=(无限远为零势能点)
当r>R 时, r
m
g 041πϕ-
=(无限远为零势能点)
3. 均匀质量的实心球体:当r<R 时,R
m g R r R m g 02
23041)(81ππϕ--=
当r>R 时,r m
g 041πϕ-=(无限远为零势能点)
4.无限长的棒:2
1012r r ln 2g πλ
ϕ=
(λ表示质量的线密度) 5.无限大的平面(一个):)(2210
12r r g -=
σ
ϕ
6.两个无限大的平行平面:两板之间20
2r g σ
ϕ=
内(两板之间为零势能点)
两板两(外)边)(210
12r r g -=
σ
ϕ(σ表示质量的面密度)
应用三 寻找反物质(目前只是一种猜想)
如果在已知正质量和一个高斯面的总的通量的前提下,或与能够证明具有-m 的物质(反物质)的存在,甚至能够借此发现这种反物质,因为公式中的质量和是代数和。
(或许还有好多)
这是我第一次将自己的想法以此种形式写出来,很多地方还不能够写得很严谨甚至有的地方还需要改正,希望大家能够多多指正。
这个想法我想我肯定不是第一个提出的,根据开篇时胡振刚老师的讲解就能知道我提出的这个东西早已经前人研究过的东西,但是由于我查阅资料的能力不足,至今不能找到较为权威或详细的有关万有引力场中的高斯定理的论著,无奈只好自己推出其中比较浅薄的东西,可能在推断过程中还出现了一些物理词典里根本没有的名词。
另外万有引力场中环路定理也是成立的,不过在这里我就不再证明了,也是比较容易证明的。
写这篇小文章的目的有以下几个:
1, 将自己在学习中的发现和想法总结出来,并和大家分享,希望这个东西能对以后解题
有所帮助。
2, 能给和我一样在物理学习中产生想法的同学以激励,希望他们能够大胆的分享自己的
想法,另外也在这个过程中提高自己的学术能力,为写论文积累一些经验和方法。
3, 还想说的是有关这篇文章知识的,高斯定理其实有好多,数学中、电场、磁场都有,
形式和内涵都不大相同,希望同学在今后的学习中能够理解清楚。
4, 最后不得不提的是,是有关学习方法的事,这里我有一点想法:平时学习是要注意知
识之间的联系并及时总结汇总,找到一些物理现象的相似之处,有利于一些方法的相互应用,例如中学时代匀强电场中的类平抛运动,这里的万有引力场的高斯定理,艺术是互通的,很多知识和方法也是可以通用的,及时找到相似点做到触类旁通。