安徽省舒城县联考2019-2020学年中考数学模拟试卷
- 格式:doc
- 大小:281.50 KB
- 文档页数:10
2019-2020学年八上数学期中模拟试卷含答案一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线 B.高线 C.中线 D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对B.3对C.4对D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150°D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC ≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE 交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线 B.高线 C.中线 D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对B.3对C.4对D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEF为正方形,∴EF=F=BE=B,∵AB=BC,∴C=F=EF=AE,在△AEF和△CF中∴△AEF≌△CF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150°D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92°.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC ≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC ≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC ≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65°.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE 交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为10.【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE=S△ABC,再由BD:CD=2:3可知,S△ABD=S,进而可得出结论.△ABC【解答】解:∵点E为AC的中点,∴S△ABE=S△ABC.∵BD:CD=2:3,∴S△ABD=S△ABC,∵S△AOE﹣S△BOD=1,∴S△ABE=S△ABD=S△ABC﹣S△ABC=1,解得S△ABC=10.故答案为:10.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.【考点】三角形内角和定理.【分析】然后根据三角形的内角和等于180°列式计算求出∠B,然后求解即可.【解答】解:∵∠A=∠B﹣10°,∠C=∠B﹣5°,∴∠B﹣10°+∠B+∠B﹣5°=180°,∴∠B=65°,∴∠A=65°﹣10°=55°,∠C=65°﹣5°=60°,∴△ABC的内角的度数为55°,60°,65°.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF ⇒∠A=∠D.【解答】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的性质得到AB=AC,AD=AE,BE=CD,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质和三角形的内角和得到∠ACB=∠ABC=65°,根据垂直的定义得到∠BEC=∠AEB=90°,于是得到结论.【解答】(1)证明:∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=CD,∴BD=CE,在△BEC与△CDB中,,∴△BEC≌△CDB;(2)解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=65°,∵BE⊥AC,∴∠BEC=∠AEB=90°,∴∠ABE=∠ACD=40°,∴∠BCD=15°.21.如图,△ABC的三个顶点在边长为1的正方形格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是(1,﹣1),点B的对应点B1的坐标是(﹣4,﹣1),点C的对应点C1的坐标是(﹣3,1);(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标(0,﹣3)或(0,1)或(3,﹣3).【考点】作图﹣轴对称变换;坐标确定位置.【分析】(1)根据各点坐标画出三角形即可,再根据轴对称的性质,画出三角形即可;(2)根据△△A1B1C1各顶点的位置写出其坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【解答】解:(1)画图如图所示:(2)由图可得,点A1的坐标是(1,﹣1),点B1的坐标是(﹣4,﹣1),点C1的坐标是(﹣3,1);(3)∵AB为公共边,∴与△ABC全等的三角形的第三个顶点的坐标为(0,﹣3),(0,1)或(3,﹣3).22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.【考点】翻折变换(折叠问题);三角形三边关系.【分析】根据翻折变换的性质可得CE=CD,BE=BC,然后求出AE,再求出AD+DE=AC,最后根据三角形的周长公式列式计算即可得解.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,∴AE<AD+DE,∴在△ABE中,AE>AB+BE,∴AE<5,AE>2,即2<AE<5,∴7<△AED的周长<1.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.【解答】解:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=2HE=2.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.【考点】三角形综合题.【分析】(1)如图1中,设CD与y轴交于点E.根据四边形内角和定理,只要证明∠BCD+∠BAD=180°即可解决问题.(2)如图1中,求出直线AB、BC的解析式,再求出直线AD、CD的解析式,利用方程组求交点D坐标.(3)分四种情形,利用全等三角形的性质,列出方程分别求解即可.【解答】解:(1)如图1中,设CD与y轴交于点E.∵AD⊥AB,∴∠BAD=90°,∵∠1+∠BCO=90°,∠1=∠2,∴∠BCO+∠2=90°,∴∠BCD=90°,∴∠BCD+∠BAD=180°,∴∠ABC+∠D=360°﹣(∠BCD+∠BAD)=180°.(2)如图1中,∵A(7a,﹣7a),B(0,﹣7a),∴直线AB的解析式为y=x﹣7a,∵AD⊥AB,∴直线AD的解析式为y=﹣x+7a,∵C(﹣3a,0),B(0,﹣7a),∴直线BC的解析式为y=﹣x﹣7a,∵CD⊥BC,∴直线CD的解析式为y=x+a,由解得,∴点D的坐标为(4a,3a).(3)①如图2中,作NG⊥OE于G,GN的延长线交DF于H.∵△NEM是等腰直角三角形,∴EN=MN,∠ENM=90°,由△ENG≌△NMH,得EG=NH,∵N(n,2n﹣3),D(4,3),∴HN=EG=3﹣(2n﹣3)=6﹣2n∵GH=4,∴n+6﹣2n=4,∴n=2,∴N(2,1).②如图3中,作NG⊥OE于G,MH⊥OE于H.由△ENG≌△MEH,得GE=HM=4,∴OG=7=2n﹣3,∴n=5,∴N(5,7).③如图4中,作NG⊥OE于G,GN的延长线交DF于H.由△ENG≌△NMH得EG=NH=4﹣n,∴3+4﹣n=2n﹣3,∴n=,∴N(,).④如图5中,作MG⊥OE于G,NH⊥GM于H.由△EMG≌△MNH得EG=MH=n﹣4,MG=NH=4∴GH=n,∴3﹣(n﹣4)+4=2n﹣3,∴n=,∴N(,).综上所述,满足条件的点N的坐标为(2,1)或(5,7)或(,)或(,).2019-2020学年八上数学期中模拟试卷含答案一、选择题(本大题共10小题,每小题4分,共40分)1.下列说法正确的是()A.1的立方根是±1 B.=±4C.=4 D.0没有平方根2.在实数﹣,0,,﹣3.14,无理数有()A.1个B.2个C.3个D.4个3.下列计算结果正确的是()A.a3•a3=a9B.(﹣y)5÷(﹣y)3=y2C.(a3)2=a5 D.(a+b)2=a2+b24.若3m=2,3n=5,则3m+n的值是()A.7 B.90 C.10 D.a2b5.估计的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.如图所示,长方形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为()A.(2﹣)B.(2﹣)2C.2 D.2(2﹣)7.若(x+t)(x+6)的结果中不含有x的一次项,则t的值是()A.6 B.﹣6 C.0 D.6或﹣68.下列命题中是假命题的是()A.过已知直线上一点及该直线外一点的直线与已知直线必是相交线B.直角的补角是直角C.同旁内角互补D.从直线外一点向直线作线段,垂线段最短9.若8x3y m÷4x n y2=2y2,则m,n的值为()A.m=1,n=3 B.m=4,n=3 C.m=4,n=2 D.m=3,n=410.已知a+b=2,求代数式a2﹣b2+4b的值为()A.8 B.4 C.﹣4 D.﹣8二、填空题(本大题共8小题,每小题4分,共32分)11.的平方根是.12.把命题“对顶角相等”改写成“如果…那么…”的形式:.13.若+|2y+1|=0,则x的值是.14.观察下列等式:12﹣02=1;22﹣12=3;32﹣22=5;42﹣32=7;…用含自然数n的等式表示你发现的规律为.21世纪教育15.因式分解:x2﹣6x+9=,x2﹣4=.16.如果x2﹣Mx+9是一个完全平方式,则M的值是.17.若a2+2a=1,则3a2+6a+1=.18.计算:82011×(﹣)2011=.三、解答题19.(10分)计算:(1)(2y+x)2﹣4(x﹣y)(x+2y)(2)[(ab+1)(ab﹣2)﹣2a2b2+2]÷(﹣ab).20.(8分)因式分解.(1)3x3﹣12xy2(2)n2(m﹣2)+4(2﹣m).21.(10分)先化简,再求值.(1)2(x+1)(x﹣1)﹣x(2x﹣1),其中x=﹣2.(2)[(x+y)(x﹣y)+2y(x﹣y)﹣(x﹣y)2]÷(2y),其中x=1,y=2.22.(10分)已知a+b=3,ab=﹣1,求下列代数式的值.(1)a2+b2;(2)(a﹣b)2.23.(8分)已知一个正数的平方根为2a﹣1和﹣a+2,求这个正数.24.(10分)已知5x=36,5y=2,求5x﹣2y的值.25.(10分)若(x2+nx+3)(x2﹣3x+m)的乘积中不含x2项和x3项,求m,n的值.26.如图,为杨辉三角的一部分,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下列等式中的规律,利用杨辉三角解决下列问题.(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(1)填出(a+b)4展开式中第二项是;(2)求(2a﹣1)5的展开式.参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.C;2.A;3.B;4.C;5.C;6.A;7.B;8.C;9.B;10.B;二、填空题(本大题共8小题,每小题4分,共32分)11.±2;12.如果两个角是对顶角,那么它们相等;13.;14.(n+1)2﹣n2=2n+1;15.(x﹣3)2;(x+2)(x﹣2);16.±6;17.4;18.﹣1;2019-2020学年八上数学期中模拟试卷含答案4.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是( )A.∠M=∠NB. AM∥CNC. AM=CND. AB=CD5.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ).A 、90°B 、 75°C 、70°D 、 60°6.如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B 62C .65D .68第4题图 第5题图 第6题图7.等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为 ( )A.30° B.30°或150° C.60°或150°D.60°或120° FE D C B A8.等腰但不等边的三角形的角平分线、高线、的总条数是( )A .3B .5C .7D .99.如图,AD 是△ABC 的中线,E 、F 分别在AB 、AC 上,且DE ⊥DF , 则( )A .BE+CF >EF B.BE+CF=EF C.BE+CF <EF D.BE+CF 与EF 的大小关系不能确定.10.如图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm 时,这个六边形的周长为( )cm .A .30B .40C .50D .60第9题一、 填空题(每小题3分,共24分)11._________12.___ _______ 13.____________ 14.____________ 15.________ _ 16.______ __ 17.__________ 18.____________11.已知4x 2+mx +9是完全平方式,则m =_________..12.当7-=x 时,代数式()()()()13152+--++x x x x 的值为 .13.如图,在△ABC 中,AB =AC ,△ABC 的外角∠DAC=130°,则∠B= .14.如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10 cm ,CB 1⊥AB ,B 1C 1⊥AC 1,垂足分别是B 1、C 1,那么B 1C 1= cm .15.如图,已知△ABC 中,∠B=60°,AB=AC=4,过BC 上一点D 作PD ⊥BC ,交BA 的延长线于点P ,交AC 于点Q ,若CD=1,则PA= . 9960 216如图,在直角三角形ABC 中,∠ACB=90°,AC=AE,BC=BF,则∠ECF = ____ 度。
2020年安徽省中考数学模拟试卷(三)一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)6-的绝对值的相反数是()A.6-B.6C.16D.16-2.(4分)计算3a a÷,结果是()A.a B.2a C.3a D.4a3.(4分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )A.B.C.D.4.(4分)设a为正整数,且371a a<<+,则a的值为()A.5B.6C.7D.85.(4分)已知:如图,////AB CD EF,50ABC∠=︒,150CEF∠=︒,则BCE∠的值为( )A.50︒B.30︒C.20︒D.60︒6.(4分)计算222211111a a a aa a a-+-÷-+-+的正确结果为()A.11a+B.1C.2D.1a-7.(4分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是()A.(12)864x x+=B.(12)864x x-=C.212864x x+=D.2128640x x+-=8.(4分)如图,ABCD 中,AC BC ⊥,3BC =,4AC =,则B ,D 两点间的距离是()A .213B .62C .10D .559.(4分)二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数y bx =在同一坐标系中的大致图象可能是( )A .B .C .D .10.(4分)如图1,已知平行四边形ABCD 中,点E 是AB 边上的一动点(与点A 不重合),设AE x =,DE 的延长线交CB 的延长线于点F ,设BF y =,且y 与x 之间的函数关系图象如图2所示,则下面的结论中不正确的是( )A .2AD =B .当1x =时,6y =C .若AD DE =,则1BF EF ==D .若2BF BC =,则43AE =二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为 元.12.(5分)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是 .13.(5分)如图,已知四边形ABCD 内接于O ,AD 是直径,120ABC ∠=︒,3CD =,则弦AC = .14.(5分)如图,抛物线2286y x x =-+-与x 轴交于点A ,B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,则m 的取值范围是 .三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:201()|22|2cos45(3)2π-----︒+-16.(8分)定义一种新运算:观察下列式: 131437=⨯+=3(1)34111-=⨯-= 5454424=⨯+=4(3)44313-=⨯-=(1)请你想一想:a b = ; (2)若a b ≠,那么a b ba (填入“=”或“≠” )(3)若(2)3ab -=,请计算()(2)a b a b -+的值.四、(本大题共2小题,每小题8分,满分16分)17.(8分)2019年2月24日,华为发布旗下最新款折叠屏手机MateX ,如图是这款手机的示意图,当两块折叠屏的夹角为30︒时(即30)ABC ∠=︒,测得AC 之间的距离为40mm ,此时45CAB ∠=︒.求这款手机完全折叠后的宽度AB 长是多少?(结果保留整数,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈18.(8分)已知:在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC ∆关于原点成中心对称的△111A B C ,并写出点1C 的坐标; (2)画出将111A B C 绕点1C 按顺时针旋转90︒所得的△221A B C .五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在圆O中,弦8AB=,点C在圆O上(C与A,B不重合),连接CA、⊥,垂足分别是点D、E.CB,过点O分别作OD AC⊥,OE BC(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.20.(10分)为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数;(3)估计该校1200名学生中有多少人喜爱跑步项目.六、(本题满分12分)21.(12分)如图,一次函数的图象与y 轴交于(0,8)C ,且与反比例函数(0)k y x x=>的图象在第一象限内交于(3,)A a ,(1,)B b 两点. (1)求AOC ∆的面积;(2)若2224a ab b -+=,求反比例函数和一次函数的解析式.七、(本题满分12分)22.(12分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系. 销售量y (千克) ⋯32.5 35 35.5 38⋯售价x (元/千克)⋯27.5 25 24.5 22⋯(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量.(2)设某天销售这种芒果获利m 元,写出m 与售价x 之间的函数关系式,如果水果店该天获利400元,那么这天芒果的售价为多少元? 八、(本题满分14分)23.(14分)如图1,在锐角ABC ∆中,D 、E 分别是AB 、BC 的中点,点F 在AC 上,且满足AFE A ∠=∠,//DM EF 交AC 于点M . (1)证明:DM DA =;(2)如图2,点G 在BE 上,且BDG C ∠=∠,求证:DEG ECF ∆∆∽; (3)在图2中,取CE 上一点H ,使得CFH B ∠=∠,若3BG =,求EH 的长.2020年安徽省中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)6-的绝对值的相反数是()A.6-B.6C.16D.16-【解答】解:6-的绝对值为6,6的相反数为6-,6∴-的绝对值的相反数是6-.故选:A.2.(4分)计算3a a÷,结果是()A.a B.2a C.3a D.4a【解答】解:32a a a÷=.故选:B.3.(4分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )A.B.C.D.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(4分)设a为正整数,且371a a<+,则a的值为()A.5B.6C.7D.8【解答】解:363749∴6377<<,a 为正整数,且371a a <<+,6a ∴=.故选:B .5.(4分)已知:如图,////AB CD EF ,50ABC ∠=︒,150CEF ∠=︒,则BCE ∠的值为()A .50︒B .30︒C .20︒D .60︒【解答】解:////AB CD EF ,50ABC BCD ∴∠=∠=︒,180CEF ECD ∠+∠=︒; 18030ECD CEF ∴∠=︒-∠=︒, 20BCE BCD ECD ∴∠=∠-∠=︒.故选:C .6.(4分)计算222211111a a a a a a a-+-÷-+-+的正确结果为( )A .11a + B .1 C .2D .1a-【解答】解:原式2(1)(1)111111(1)(1)(1)a a a a a a a a a-+=⨯-+=-+=+--.故选:B .7.(4分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x 步,那么同学们列出的下列方程中正确的是( ) A .(12)864x x +=B .(12)864x x -=C .212864x x +=D .2128640x x +-=【解答】解:设矩形田地的长为x 步,那么宽就应该是(12)x -步. 根据矩形面积=长⨯宽,得:(12)864x x -=. 故选:B .8.(4分)如图,ABCD 中,AC BC ⊥,3BC =,4AC =,则B ,D 两点间的距离是()A .213B .62C .10D .55【解答】解:过D 作DE BC ⊥,ABCD 中,AC BC ⊥, //AD CE ∴, DE BC ⊥, //AC DE ∴,∴四边形ACED 是平行四边形,3CE AD BC ∴===,连接BD ,在Rt BDE ∆中,222264213BD BE DE =+=+=, 故选:A .9.(4分)二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数y bx =在同一坐标系中的大致图象可能是( )A .B .C .D .【解答】解:二次函数2y ax bx c =++的图象开口方向向下, 0a ∴<,对称轴在y 轴的右边, a ∴、b 异号,即0b >.∴反比例函数ay x=的图象位于第二、四象限, 正比例函数y bx =的图象位于第一、三象限. 观察选项,C 选项符合题意. 故选:C .10.(4分)如图1,已知平行四边形ABCD 中,点E 是AB 边上的一动点(与点A 不重合),设AE x =,DE 的延长线交CB 的延长线于点F ,设BF y =,且y 与x 之间的函数关系图象如图2所示,则下面的结论中不正确的是( )A .2AD =B .当1x =时,6y =C .若AD DE =,则1BF EF == D .若2BF BC =,则43AE =【解答】解:ABCD 为平行四边形//AD BC ∴,//AB DCF ADF ∴∠=∠,FBE A ∠=∠ BFE ADE ∴∆∆∽∴BF BEAD AE=设AB a =,AD b = 则BE AB AE a x =-=-∴y a xb x -=aby b x∴=- 图象过点(2,2),(4,0) 4a ∴=,2b =故A 正确; 4a =,2b =82y x∴=- ∴当1x =时,6y =,故B 正确;若AD DE =,则A AED ∠=∠A FBE ∠=∠,AED FEB ∠=∠ FBE FEB ∴∠=∠ BF EF ∴=∴若AD DE =,则总有BF EF =,它们并不总等于1,故C 不正确;若2BF BC =, BF BEAD AE=∴24BC AEBC AE-=解得43AE =故D 正确. 故选:C .二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为 107.210⨯ 元. 【解答】解:720亿10720000000007.210==⨯. 故答案为:107.210⨯.12.(5分)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是18.【解答】解:如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,∴指针落在惊蛰、春分、清明的概率是:31248=. 故答案为:1813.(5分)如图,已知四边形ABCD 内接于O ,AD 是直径,120ABC ∠=︒,3CD =,则弦AC = 33 .【解答】解:四边形ABCD 内接于O , 18060D B ∴∠=︒-∠=︒,AD 是直径,90ACD ∴∠=︒, tan 33AC CD D ∴==故答案为:3314.(5分)如图,抛物线2286y x x =-+-与x 轴交于点A ,B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,则m 的取值范围是1538m -<<-.【解答】解:令22860y x x =-+-=, 即2430x x -+=, 解得1x =或3, 则点(1,0)A ,(3,0)B ,由于将1C 向右平移2个长度单位得2C , 则2C 解析式为22(4)2(35)y x x =--+, 当1y x m =+与2C 相切时, 令212(4)2y x m y x =+==--+, 即21215300x x m -++=, △18150m =--=, 解得1158m =-, 当2y x m =+过点B 时, 即203m =+,23m =-,当1538m -<<-时直线y x m =+与1C 、2C 共有3个不同的交点, 故答案是:1538m -<<-.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:201()22|2cos45(3)2π----︒+-【解答】解:原式422213=-+=.16.(8分)定义一种新运算:观察下列式: 131437=⨯+=3(1)34111-=⨯-= 5454424=⨯+=4(3)44313-=⨯-=(1)请你想一想:a b = 4a b + ; (2)若a b ≠,那么a b ba (填入“=”或“≠” )(3)若(2)3ab -=,请计算()(2)a b a b -+的值. 【解答】解:(1)根据定义可知:4a b a b =+;(2)4a b a b =+,4b a b a =+,a b ≠,ab ba ∴≠;(3)(2)3a b -=,423a b ∴-=, 2 1.5a b ∴-=,()(2)a b a b ∴-+4()(2)a b a b =-++ 63a b =-3(2)a b =- 4.5=.故答案为:4a b +;≠.四、(本大题共2小题,每小题8分,满分16分)17.(8分)2019年2月24日,华为发布旗下最新款折叠屏手机MateX ,如图是这款手机的示意图,当两块折叠屏的夹角为30︒时(即30)ABC ∠=︒,测得AC 之间的距离为40mm ,此时45CAB ∠=︒.求这款手机完全折叠后的宽度AB 长是多少?(结果保留整数,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈【解答】解:过点C 作CD AB ⊥于点D , 40AC mm =,45A ∠=︒,40202()2CD AD mm ∴===,30B ∠=︒,2402()BC CD mm ∴==,∴由勾股定理可知:206()BD mm =,AB AD BD ∴=+202206=+77()mm ≈,18.(8分)已知:在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC ∆关于原点成中心对称的△111A B C ,并写出点1C 的坐标; (2)画出将111A B C 绕点1C 按顺时针旋转90︒所得的△221A B C .【解答】解:(1)如图所示,△111A B C 即为所求,其中点1C 的坐标为(2,1)--.(2)如图所示,△221A B C 即为所求.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在圆O 中,弦8AB =,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD AC ⊥,OE BC ⊥,垂足分别是点D 、E .(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.【解答】解:(1)OD 经过圆心O ,OD AC ⊥, AD DC ∴=,同理:CE EB =,DE ∴是ABC ∆的中位线,12DE AB ∴=, 8AB =,4DE ∴=.(2)过点O 作OH AB ⊥,垂足为点H ,3OH =,连接OA ,OH 经过圆心O ,12AH BH AB ∴==, 8AB =,4AH ∴=,在Rt AHO ∆中,222AH OH AO +=, 5AO ∴=,即圆O 的半径为5.20.(10分)为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数; (3)估计该校1200名学生中有多少人喜爱跑步项目. 【解答】解:(1)45%80÷=,即在这次问卷调查中,一共抽查了80名学生; (2)喜爱游泳的学生有:8025%20⨯=(人), 补全的频数分布直方图如右图所示,扇形统计图中“体操”所对应的圆心角度数是:103604580︒⨯=︒;(3)10120015080⨯=(人), 答:该校1200名学生中有150人喜爱跑步项目.六、(本题满分12分)21.(12分)如图,一次函数的图象与y 轴交于(0,8)C ,且与反比例函数(0)k y x x=>的图象在第一象限内交于(3,)A a ,(1,)B b 两点. (1)求AOC ∆的面积;(2)若2224a ab b -+=,求反比例函数和一次函数的解析式.【解答】解:(1)作AD y ⊥轴于D ,(3,)A a , 3AD ∴=,一次函数的图象与y 轴交于(0,8)C , 8OC ∴=,11831222AOC S OC AD ∆∴==⨯⨯=;(2)(3,)A a ,(1,)B b 两点在反比例函数(0)ky x x=>的图象上,3a b ∴=,4, 22216a ab b ∴-+=,2223(3)16a a a a ∴-+=, 整理得,24a =, 0a >, 2a ∴=,(3,2)A ∴, 326k ∴=⨯=,设直线的解析式为y mx n =+,∴832n m n =⎧⎨+=⎩,解得:28m n =-⎧⎨=⎩,∴一次函数的解析式为28y x =-+, ∴反比例函数和一次函数的解析式分别为6y x=和28y x =-+. 七、(本题满分12分)22.(12分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系.(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量.(2)设某天销售这种芒果获利m 元,写出m 与售价x 之间的函数关系式,如果水果店该天第21页(共23页)获利400元,那么这天芒果的售价为多少元?【解答】解:(1)设该一次函数解析式为(0)y kx b k =+≠,则 25352238k b k b +=⎧⎨+=⎩, 解得160k b =-⎧⎨=⎩, 60(1540)y x x ∴=-+,∴当28x =时,32y =,答:芒果售价为28元/千克时,当天该芒果的销售量为32千克;(2)由题易知2(10)(60)(10)70600m y x x x x x =-=-+-=-+-, 当400m =时,则270600400x x -+-=,解得,120x =,250x =,1540x ,20x ∴=,答:这天芒果的售价为20元.八、(本题满分14分)23.(14分)如图1,在锐角ABC ∆中,D 、E 分别是AB 、BC 的中点,点F 在AC 上,且满足AFE A ∠=∠,//DM EF 交AC 于点M .(1)证明:DM DA =;(2)如图2,点G 在BE 上,且BDG C ∠=∠,求证:DEG ECF ∆∆∽;(3)在图2中,取CE 上一点H ,使得CFH B ∠=∠,若3BG =,求EH 的长.【解答】(1)证明:如图1所示,//DM EF,∴∠=∠,AMD AFE∠=∠,AFE AAMD A∴∠=∠,∴=.DM DA(其他解法酌情给分)(2)证明:如图2所示,D、E分别是AB、BC的中点,∴,//DE AC∴∠=∠,DEG CBDE A∠=∠,∠=∠,AFE A∴∠=∠,BDE AFEBDG GDE C FEC∴∠+∠=∠+∠,∠=∠,BDG CGDE FEC∴∠=∠,∽.∴∆∆DEG ECF(3)如图3所示,第22页(共23页)BDG C DEB∠=∠=∠,B B∠=∠,BDG BED∴∆∆∽,∴BD BGBE BD=,2BD BG BE∴=,AFE A∠=∠,CFH B∠=∠,180180C A B AFE CFH EFH∴∠=︒-∠-∠=︒-∠-∠=∠,又FEH CEF∠=∠,EFH ECF∴∆∆∽,∴EH EFEF EC=,2EF EH EC∴=,//DE AC,//DM EF,∴四边形DEFM是平行四边形,EF DM DA BD∴===,BG BE EH EC∴=,BE EC=,3EH BG∴==.第23页(共23页)。
安徽省六安市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB 的大小为()A.30°B.45°C.60°D.75°2.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B.16的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等3.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB 的长等于()A.2cm B.3cm C.6cm D.7cm4.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为()元.(精确到百亿位)A.2×1011B.2×1012C.2.0×1011D.2.0×10105.已知x a=2,x b=3,则x3a﹣2b等于()A.89B.﹣1 C.17 D.726.如图,在矩形ABCD中,AB=2,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()A.221π--B.221π-C.222π-D.221π-180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .128.如图,△ABC 中,D 、E 分别为AB 、AC 的中点,已知△ADE 的面积为1,那么△ABC 的面积是( )A .2B .3C .4D .59.△ABC 在正方形网格中的位置如图所示,则cosB 的值为( )A .5B .25C .12D .210.如图,在,//ABC DE BC ∆中,,D E 分别在边,AB AC 边上,已知13AD DB =,则DEBC 的值为( )A .13B .14C .15D .2511.若30m n +-=,则222426m mn n ++-的值为( ) A .12B .2C .3D .012.下列计算正确的是() A .2x 2-3x 2=x 2B .x +x =x 2C .-(x -1)=-x +1D .3+x =3x二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:5-=____. 14.8的算术平方根是_____.度.16.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=1x的图象上,则y l,y2,y3的大小关系是_____.(用“<”号填空)17.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.18.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知△ABC 中,AD 是∠BAC 的平分线,且AD=AB,过点C 作AD 的垂线,交AD 的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B 和∠ACB 的度数;②若AB=2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB+AC 之间的数量关系,并证明.20.(6分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚21.(6分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.22.(8分)如图,反比例函数y=kx(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.23.(8分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE的长度为xcm,线段DE的长度为ycm.(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 1 2 3 4 5 6 7 8y/cm 0 1.6 2.5 3.3 4.0 4.7 5.8 5.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为cm.发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:(1)小芳和爸爸上山时的速度各是多少?(2)求出爸爸下山时CD段的函数解析式;(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?25.(10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且»»»==,连接AC,AF,过AF FC CB点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=23,求⊙O的半径.26.(12分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.27.(12分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:2EF=4BP•QP.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=12∠AOB=30°故选A.2.D【解析】【分析】【详解】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B16的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.4.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2000亿元=2.0×1.故选:C.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.A【解析】∵x a=2,x b=3,∴x3a−2b=(x a)3÷(x b)2=8÷9= 89,故选A.6.B【解析】【分析】先利用三角函数求出∠BAE=45°,则,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.【详解】∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×2﹣1 2×2×2﹣2452360π⋅⋅=22﹣1﹣2π.故选B.【点睛】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.7.A【解析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=1.∴2222534BH AB AH-=-=,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.8.C【分析】根据三角形的中位线定理可得DE ∥BC ,DE BC =12,即可证得△ADE ∽△ABC ,根据相似三角形面积的比等于相似比的平方可得ADE ABCS S ∆∆=14,已知△ADE 的面积为1,即可求得S △ABC =1.【详解】∵D 、E 分别是AB 、AC 的中点, ∴DE 是△ABC 的中位线, ∴DE ∥BC ,DE BC =12, ∴△ADE ∽△ABC , ∴ADE ABC S S ∆∆=(12)2=14, ∵△ADE 的面积为1, ∴S △ABC =1. 故选C . 【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得△ADE ∽△ABC ,根据相似三角形面积的比等于相似比的平方得到ADE ABC S S ∆∆=14是解决问题的关键.9.A 【解析】 【详解】解:在直角△ABD 中,BD=2,AD=4,则AB=22222425BD AD +=+=, 则cosB=525BD AB ==. 故选A .10.B 【解析】根据DE ∥BC 得到△ADE ∽△ABC ,根据相似三角形的性质解答. 【详解】解:∵13AD DB =, ∴14AD AB =, ∵DE ∥BC , ∴△ADE ∽△ABC , ∴14DE AD BC AB ==, 故选:B . 【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键. 11.A 【解析】 【分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2222()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【详解】 ∵30m n +-=, ∴3m n +=,∴222224262()623612m mn n m n ++-=+-=⨯-=. 故选:A . 【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键. 12.C 【解析】 【分析】根据合并同类项法则和去括号法则逐一判断即可得. 【详解】解:A .2x 2-3x 2=-x 2,故此选项错误; B .x+x=2x ,故此选项错误; C .-(x-1)=-x+1,故此选项正确;。
精品模拟2020年安徽省中考数学模拟试卷五一.选择题(共10小题,满分40分,每小题4分)1.﹣(﹣2019)的相反数是()A.﹣2019B.2019C.D.2.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2C.a6÷a2=a3D.(﹣2a)2=4a23.如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.4.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣15.不等式3x+4≥x的解集是()A.x≥﹣2B.x≥1C.x≤﹣2D.x≤16.小明家承包了一个鱼塘,快到年底了,爸爸想知道这个鱼塘大约有多少条鱼.小明采用“捉放法”先随机抓1000条鱼做上标记,再放回鱼塘过一段时间后再随机抓1000条鱼发现有5条鱼是做标记的,再以此来估算整个池塘的鱼大约有()A.10000条B.100000C.200000条D.2000000条7.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2108.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1B.2C.4D.不能确定9.如图,A,B是半径为1的⊙O上两点,且∠AOB=60°,点P从A出发,在⊙O上以每秒个单位长度的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是()A.①或②B.②或③C.③或④D.①或④10.如图,Rt△ABC中,∠ACB=90°,AC=BC=,以AB为斜边另作Rt△APB,连接PC,当点P在AC左侧时,下列结论正确的是()A.∠APC的度数不确定B.PB=PC+PAC.当PA=1时,PC=D.当PA=PC时,PB2=2+二.填空题(共4小题,满分20分,每小题5分)11.若=0.694,=1.442,则=12.因式分解:a2b2﹣a2﹣b2+1=.13.如图,两弦AB 、CD 相交于点E ,且AB ⊥CD ,若∠B =60°,则∠A 等于 度.14.在平面直角坐标系中,二次函数y =x 2+bx +c 的图象如图所示,关于x 的方程x 2+3bx +3c =m 有实数根,则m 的取值范围是 .三.解答题(共2小题,满分16分,每小题8分) 15.(8分)计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣116.(8分)购买甲、乙、丙三种不同品种的练习本各四次,其中,有一次购买时,三种练习本同时打折,四次购买的数量和费用如表:(1)第 次购物时打折;练习本甲的标价是 元/本,练习本乙的标价是 元/本,练习本丙的标价是 元/本;(2)如果三种练习本的折扣相同,请问折扣是打几折?(3)现有资金100.5元,全部用于购买练习本,计划以标价购进练习本36本,如果购买其中两种练习本,请你直接写出一种购买方案,不需说明理由. 四.解答题(共2小题,满分16分,每小题8分)17.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,2),B(﹣4,0),C(﹣4,﹣4).(1)在y轴右侧,以O为位似中心,画出△A′B′C′,使它与△ABC的相似比为1:2;(2)根据(1)的作图,sin∠A′C′B′=.18.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)五.解答题(共2小题,满分20分,每小题10分)19.(10分)阅读下面材料:勾股定理的逆定理:如果是直角三角形的三条边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.能够成为直角三角形三条边长的正整数,称为勾股数.例如:32+42=52,3、4、5是一组勾股数.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么a,b,c为勾股数,你认为正确吗?如果正确,请说明理由,并利用这个结论得出一组勾股数.20.(10分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,(1)求⊙O的半径;(2)求O到弦BC的距离.六.解答题(共1小题,满分12分,每小题12分)21.(12分)张老师把QQ运动里“好友计步榜”排名前20名好友一天行走的步数做了整理,绘制了如下尚不完整的统计图表:根据信息解答下列问题(1)填空:m=,n=,请补全条形统计图.(2)这20名朋友一天行走的步数的中位数落在组.(3)张老师准备随机给排名前4名的甲、乙、丙、丁中两人点赞,求乙、丙被同时点赞的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)现计划把一批货物用一列火车运往某地.已知这列火车可挂A,B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y元,这列火车挂A型车厢x节,写出y关于x的函数表达式,并求出自变量x的取值范围;(2)已知A型车厢数不少于B型车厢数,运输总费用不低于276000元,问有哪些不同运送方案?八.解答题(共1小题,满分14分,每小题14分)23.(14分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.(1)如图1,求证:∠ANE=∠DCE;(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据相反数的意义,直接可得结论.【解答】解:﹣(﹣2019)=2019,所以﹣(﹣2019)的相反数是﹣2019,故选:A.【点评】本题考查了相反数的意义.理解a的相反数是﹣a,是解决本题的关键.2.【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别判断得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a2﹣a2=2a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(﹣2a)2=4a2,正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.3.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.056用科学记数法表示为5.6×10﹣2,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】不等式移项合并,把x系数化为1,即可求出解集.【解答】解:移项,得:3x﹣x≥﹣4,合并同类项,得:2x≥﹣4,系数化为1,得:x≥﹣2,故选:A.【点评】此题考查了解一元一次不等式,注意不等式两边除以负数时,不等号要改变方向.6.【分析】第二次捕上的1000条,发现其中带标记的鱼有5条,说明有标记的占到,而有标记的共有1000条,从而根据所占比例求出总数.【解答】解:1000÷=20000条.故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.7.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.8.【分析】可以设出M的坐标是(m,n),△MNP的面积即可利用A的坐标表示,据此即可求解.【解答】解:设M的坐标是(m,n),则mn=2.∵MN=m,△MNP的MN边上的高等于n.∴△MNP的面积=mn=1.故选:A.【点评】本题主要考查了反比例函数的系数k的几何意义,在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.【分析】分析图象中P到B的时间,可排除其它选项;分两种情形讨论:当点P顺时针旋转时,图象是②,当点P逆时针旋转时,图象是③,由此即可解决问题.【解答】解:分两种情形讨论:①当点P顺时针旋转时,∵⊙O的半径为1,点P从A出发,在⊙O上以每秒个单位长度的速度匀速运动,∠AOB=60°,点P从A到达B点的时间==5,∴图象是②;②当点P逆时针旋转时,点P从A到达B点的时间==1,∴图象是③;故选:B.【点评】本题考查了动点问题的函数图象、圆周长公式,解答时注意数形结合和关注动点到达临界点前后的图象变化趋势.10.【分析】因为∠ACB=∠APB=90°,可得A,P,C,B四点共圆,即∠CPB=∠CAB=45°,可得∠APC=∠APB+∠CPB=90°+45°=135°,故选项A错误;过点C作CP的垂线交PB于点K,证明△BCK≌△ACP,得AP=BK,所以PB=PC+PA,故选项B错误;当PA=1时和PA=PC时,结合PB=PC+PA的关系式,即可对选项C,D作出判断.【解答】解:∵∠ACB=∠APB=90°,∴A,P,C,B四点共圆,∵AC=BC,∴∠CAB=45°,∴∠CPB=∠CAB=45°,∴∠APC=∠APB+∠CPB=90°+45°=135°,∴选项A错误;如图,过点C作CP的垂线交PB于点K,∵∠CPK=45°,∴∠CKP=∠CPK=45°,∴PC=KC,∠CKB=∠CPA=135°,∵∠PCK=∠ACB=90°,∴∠BCK=∠ACP,∴△BCK≌△ACP((ASA),∴AP=BK,∵PK=PC,∴PB=PC+PA,∴选项B错误;当PA=1时,∵AC=BC=,∴AB=2,∴PB=,∵PB=PC+PA,∴=PC+1,解得PC=,∴选项C错误;当PA=PC时,PB=(+1)PA,∵PA2+PB2=AB2,∴(﹣1)2PB2+PB2=4,解得PB2=2+∴选项D正确.故选:D.【点评】本题考查了图形的旋转,三角形全等判定和性质,勾股定理.解题的关键是构造全等三角形得出关系式:PB=PC+PA.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据立方根的性质即可求解.【解答】解:∵=0.694,∴=6.94.故答案为:6.94.【点评】考查了立方根,解决本题的关键是熟练掌握立方根的性质.12.【分析】分成两组:(a2b2﹣b2)和(1﹣a2),利用平方差公式和提取公因式法进行因式分解.【解答】解:原式=(a2b2﹣b2)+(1﹣a2)=b2(a2﹣1)﹣(a2﹣1)=(a+1)(a﹣1)(b+1)(b﹣1).故答案是:(a+1)(a﹣1)(b+1)(b﹣1).【点评】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.13.【分析】由同弧所对圆周角相等得出∠C=∠B=60°,再根据垂直知∠AEC=90°,利用直角三角形两锐角相等得出答案.【解答】解:∵∠B=60°,∴∠C=∠B=60°,∵AB⊥CD,∴∠AEC=90°,∴∠A=30°,故答案为:30.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.【分析】二次函数y=x2+bx+c=(x﹣6)2﹣3=x2﹣4x+9,求出b、c,然后用△≥0,即可求解.【解答】解:由图象知,抛物线的顶点坐标为(6,﹣3),∴二次函数y=x2+bx+c=(x﹣6)2﹣3=x2﹣4x+9,则方程x2+3bx+3c=m有实数根,∴方程x2﹣12x+(27﹣m)=0有实数根,∴△=122﹣4(27﹣m)≥0,解得:m≥﹣9.故:答案是m≥﹣9.【点评】本题考查的是一元二次方程根的情况,涉及到函数表达式的求解、根判别式的运用,题目难度不大.三.解答题(共2小题,满分16分,每小题8分)15.【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.【点评】本题主要考查实数的运算,解题的关键是熟练掌握特殊锐角三角函数值、绝对值性质及零指数幂和负整数指数幂的运算法则.16.【分析】(1)观察表格中总价与购买数量可得出第四次购物时打折,设练习本甲的标价是a元/本,练习本乙的标价是b元/本,练习本丙的标价是c元/本,根据总价=单价×数量结合前三次购物的数量及总价,即可得出关于a、b、c的三元一次方程组,解之即可得出结论;(2)设打m折,根据总价=单价×折扣率×数量,即可得出关于m的一元一次方程,解之即可得出结论;(3)设购进甲种练习本x本,乙种y本,丙种z本,分只购进甲、乙两种练习本、只购进甲、丙两种练习本、只购进乙、丙两种练习本三种情况列出二元一次方程组,解之即可得出结论.【解答】解:(1)观察表格中的总费用与购买数量,可知:第四次购物时打折.设练习本甲的标价是a元/本,练习本乙的标价是b元/本,练习本丙的标价是c元/本,根据题意得:,解得:.故答案为:四;6;4;2.5.(2)设打m折,根据题意得:10××6+10××4+4××2.5=88,解得:m=8.答:折扣是打8折.(3)设购进甲种练习本x本,乙种y本,丙种z本,分以下三种情况考虑:①当只购进甲、乙两种练习本时,,解得:(不合题意,舍去);②当只购进甲、丙两种练习本时,,解得:;③当只购进乙、丙两种练习本时,,解得:.综上所述,有两种方案可供选择:第一种方案是购进甲种练习本3本,丙种33本;第二种方案是购进乙种练习本7本,丙种29本.【点评】本题考查了一元一次方程的应用、二元一次方程组的应用以及三元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出三元一次方程组;(2)找准等量关系,正确列出一元一次方程;(3)分只购进甲、乙两种练习本、只购进甲、丙两种练习本、只购进乙、丙两种练习本三种情况考虑.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)连接AO,并延长使OA=2OA′,同理作出点B和点C的对应点,再顺次连接即可得;(2)利用正弦函数的定义求解可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)∵A′C′==,∴sin∠A′C′B′==,故答案为:.【点评】本题主要考查作图﹣位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点及正弦函数的定义.18.【分析】(1)由cos∠FHE==可得答案;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,据此知GM=AB,HN=EG,Rt△ABC中,求得AB=BC tan60°=;Rt△ANH中,求得HN=AH sin45°=;根据EM=EG+GM可得答案.【解答】解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC tan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AH sin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:正确.理由:∵m表示大于1的整数,∴a,b,c都是正整数,且c是最大边,∵(2m)2+(m2﹣1)2=(m2+1)2,∴a2+b2=c2,即a、b、c为勾股数.当m=2时,可得一组勾股数3,4,5.【点评】本题考查了勾股数.解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a2+b2=c2,则△ABC是直角三角形.20.【分析】(1)连结OB,设半径为r,则OE=r﹣2,构建方程即可解决问题.=BC⋅OF=OC⋅BE,求解即可.(2)根据S△BCO【解答】解:(1)连结OB,设半径为r,则OE=r﹣2,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,∴BE=DE=4,在Rt△OBE中,∵OE2+BE2=OB2 ,∴(r﹣2)2+42=r2∴r=5.(2)∵r=5,∴AC=10,EC=8,BE=DE=4cm,∴BC==4(cm)∵OF⊥BC,=BC⋅OF=OC⋅BE∴S△BCO∴4⋅OF=5×4,∴OF=.【点评】本题考查圆周角定理,垂径定理,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.六.解答题(共1小题,满分12分,每小题12分)21.【分析】(1)依据统计图表中的数据,即可得到m,n的值,进而得出C组频数为20×0.05=1,E组频数为20×0.2=4;(2)依据中位数是第10和第11个数据的平均数,A,B两组的人数之和为12,即可得到中位数的位置;(3)画树状图展示所有12种等可能的结果数,再找出2名学生恰好是乙和丙的结果数,然后根据概率公式求解.【解答】解:(1)n=3÷20=0.15,则m=1﹣(0.1+0.5+0.15+0.2)=0.05,∴C组频数为20×0.05=1,E组频数为20×0.2=4,补全图形如下:故答案为:0.05、0.15;(2)由题可得,中位数是第10和第11个数据的平均数,A,B两组的人数之和为12,∴这20名朋友一天行走的步数的中位数落在B组,故答案为:B;(3)画树状图为:共有12种等可能的结果数,其中2名学生恰好是乙和丙的结果数为2,所以乙、丙被同时点赞的概率==.【点评】本题考查了列表法与树状图法以及中位数的计算;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)总费用=6000×A型车厢节数+8000×B型车厢节数.(2)根据题意列出不等式组,进而解答即可.【解答】解:(1)设用A型车厢x节,则用B型车厢(40﹣x)节,总运费为y元,依题意,得y=6000x+8000(40﹣x)=﹣2000x+320000;∵,∴x的取值范围是0≤x≤40且x为整数,∴函数关系式为y=﹣2000x+320000(0≤x≤40且x为整数)(2)由题意得:,解得:20≤x≤22,∵x为整数,∴运送方案有:A型车厢20节,B型车厢20节;A型车厢21节,B型车厢19节;A型车厢22节,B型车厢18节.【点评】此题考查了一次函数的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)由比例中项知=,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知=,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知=,求得AM=,由=求得MN=;(3)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.【解答】解:(1)∵AE是AM和AN的比例中项∴=,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan ∠DCE =tan ∠DAC ,∴=,∵DC =AB =6,AD =8,∴DE =,∴AE =8﹣=, 由(1)得∠AEM =∠DCE , ∴tan ∠AEM =tan ∠DCE ,∴=, ∴AM =,∵=,∴AN =, ∴MN =;(3)∵∠NME =∠MAE +∠AEM ,∠AEC =∠D +∠DCE , 又∠MAE =∠D =90°,由(1)得∠AEM =∠DCE , ∴∠AEC =∠NME ,当△AEC 与以点E 、M 、N 为顶点所组成的三角形相似时 ①∠ENM =∠EAC ,如图2,∴∠ANE =∠EAC , 由(2)得:DE =; ②∠ENM =∠ECA , 如图3,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE===,设DE=3x,则HE=3x,AH=4x,AE=5x,又AE+DE=AD,∴5x+3x=8,解得x=1,∴DE=3x=3,综上所述,DE的长分别为或3.【点评】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.。
精品模拟2020年安徽省中考数学模拟试卷6一.选择题(共10小题,满分40分,每小题4分)1.2019的相反数是()A.2019B.﹣2019C.D.﹣2.下列运算中,正确的是()A.3a2﹣a2=2B.(2a2)2=2a4C.a6÷a3=a2D.a3•a2=a53.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.4.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为()A.35×10﹣6B.3.5×10﹣6C.3.5×10﹣5D.0.35×10﹣45.不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥26.由于各地雾霾天气越来越严重,2018年春节前夕,安庆市政府号召市民,禁放烟花炮竹.学校向3000名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“A类:不放烟花爆竹;B 类:少放烟花爆竹;C类:使用电子鞭炮;D类:不会减少烟花爆竹数量”四个选项进行问卷调查(单选),并将对100名学生的调查结果绘制成统计图(如图所示).根据抽样结果,请估计全校“使用电子鞭炮”的学生有()A.900名B.1050名C.600名D.450名7.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30B.x(x+1)=30C.=30D.=308.如图,点A是反比例函数y=图象上一点,过点A作x轴的平行线交反比例函数y=﹣的图=,则k=()象于点B,点C在x轴上,且S△ABCA.6B.﹣6C.D.﹣9.如图,在菱形ABCD中,点P从B点出发,沿B→D→C方向匀速运动,设点P运动时间为x,△APC的面积为y,则y与x之间的函数图象可能为()A.B.C.D.10.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,△DCE绕点O旋转,DE交OC于点P.则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE.其中正确的结论有()A.①④B.②③C.①②③D.①②③④二.填空题(共4小题,满分20分,每小题5分)11.若=2.938,=6.329,则=.12.分解因式:﹣3ab+2a﹣4+6b=.13.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=14.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是.三.解答题(共2小题,满分16分,每小题8分)15.(8分)计算:+()﹣1﹣(π﹣3.14)0﹣tan60°.16.(8分)重庆某化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价连续两次上涨10%,而乙种产品下降10%后又上涨a%,计划甲种产品比乙种产品多生产5件,A原料比B原料要多剩下8吨留为它用,结果销售完后的总产值是1485630元,求a值是多少?四.解答题(共2小题,满分16分,每小题8分)17.(8分)如图,在边长为1个单位长度的小正方形组成的8×10网格中,点A,B,C均为网格线的交点.(1)用无刻度的直尺作BC边上的中线AD(不写作法,保留作图痕迹);(2)①在给定的网格中,以A为位似中心将△ABC缩小为原来的,得到△AB'C',请画出△AB'C'.②填空:tan∠AB'C'=.18.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B 两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=100千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)五.解答题(共2小题,满分20分,每小题10分)19.(10分)若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5);(5,12,13);(7,24,25);…第二类(a是偶数):(6,8,10);(8,15,17);(10,24,26);…(1)请再写出两组勾股数,每类各写一组;(2)分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.20.(10分)如图,已知AB是⊙O的直径,弦CD⊥AB于点E,F是上的一点,AF,CD的延长线相交于点G.(1)若⊙O的半径为,且∠DFC=45°,求弦CD的长.(2)求证:∠AFC=∠DFG.六.解答题(共1小题,满分12分,每小题12分)21.(12分)张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:根据信息解答下列问题:(1)填空:m=,n=;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)大熊山某农家乐为了抓住“五一”小长假的商机,决定购进A、B两种纪念品,若购进A种纪念品4件,B种纪念品3件,需要550元:若购进A种纪念品8件,B种纪念品5件,需要1050元.(1)求购进A、B两种纪念品每件各需多少元.(2)若该农家乐决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该农家乐共有几种进货方案.(3)若销售每件A种纪念品可获利润30元,每件B种纪念品可获利润20元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元.八.解答题(共1小题,满分14分,每小题14分)23.(14分)如图,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,点E、F分别在线段BD、CD上,DE=DF=5.AE的延长线交边BC于点G,AF交BD于点N、其延长线交BC的延长线于点H.(1)求证:BG=CH;(2)设AD=x,△ADN的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)联结FG,当△HFG与△ADN相似时,求AD的长.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】直接利用相反数的定义分析得出答案.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.2.【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别判断得出答案.【解答】解:A、3a2﹣a2=2a2,故此选项错误;B、(2a2)2=4a4,故此选项错误;C、a6÷a3=a3,故此选项错误;D、a3•a2=a5,正确.故选:D.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【分析】根据圆柱从正面看的平面图形是矩形进行解答即可.【解答】解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.【点评】本题考查了简单几何体的三视图,关键是掌握所看的位置,以及注意所有的看到的棱都应表现在三视图中.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000035=3.5×10﹣5,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x ≥2,故选:D .【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.6.【分析】用全校的学生数乘以“使用电子鞭炮”所占的百分比即可得出答案.【解答】解:被调查的学生中“使用电子鞭炮”的学生由100﹣(30+35+15)=20全校“使用电子鞭炮”的学生有:20÷100×3000=600.故选:C .【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:球队的个数×(球队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x 个球队参加比赛,根据题意可列方程为:x (x ﹣1)=30.故选:A .【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8.【分析】延长AB ,与y 轴交于点D ,由AB 与x 轴平行,得到AD 垂直于y 轴,利用反比例函数k 的几何意义表示出三角形AOD 与三角形BOD 面积,由三角形AOD 面积减去三角形BOD 面积表示出三角形AOB 面积,由于S △AOB =S △ABC ,将已知三角形ABC 面积代入求出k 的值即可.【解答】解:延长AB ,与y 轴交于点D ,∵AB ∥x 轴,∴AD ⊥y 轴,∵点A 是反比例函数y =图象上一点,B 反比例函数y =﹣的图象上的点,∴S △AOD =﹣k ,S △BOD =,∵S △AOB =S △ABC =,即﹣k ﹣=,解得:k =﹣6,故选:B .【点评】此题考查了反比例函数k的几何意义,熟练掌握反比例函数k的几何意义是解本题的关键.9.【分析】本题是动点函数图象问题,可由菱形的对角线互相平分,选取特殊位置﹣﹣两对角线交点来考虑,问题不难解答.【解答】解:y随x的增大,先是由大变小,当点P位于AC与BD交点处时,y=0;由于菱形的对角线互相平分,所以点P在从AC与BD的交点处向点D的运动过程中,函数图象应该与之前的对称,故排除掉选项B,C,D.只有A正确.故选:A.【点评】考查了菱形对角线互相平分的性质.动点函数图象问题,可以着重考虑起始位置,中间某个特殊位置,采用排除法来解题比较简单.10.【分析】由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B =45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.【解答】解:∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO∵∠DOE=90°,∴∠COD+∠COE=90°,且∠AOD+∠COD=90°∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,∴△ADO≌△CEO(ASA)∴AD=CE,OD=OE,同理可得:△CDO≌△BEO∴CD=BE,∴AC=AD+CD=AD+BE在Rt△CDE中,CD2+CE2=DE2,∴AD 2+BE 2=DE 2,∵△ADO ≌△CEO ,△CDO ≌△BEO∴S △ADO =S △CEO ,S △CDO =S △BEO ,∴△ABC 的面积等于四边形CDOE 面积的2倍;故选:D .【点评】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】将变形为=×100,再代入计算即可求解.【解答】解:==×100 =2.938×100=293.8.故答案为:293.8.【点评】考查了立方根,关键是将变形为×10012.【分析】利用分组分解法进行因式分解即可.【解答】解:﹣3ab +2a ﹣4+6b =(3b ﹣2)(2﹣a ),故答案为:(3b ﹣2)(2﹣a ),【点评】本题考查的是因式分解,掌握分组分解法因式分解是解题的关键.13.【分析】根据同弧所对的圆周角相等,求出∠DCB =∠A =32°,再根据直径所对的圆周角为90°,求出∠ABD 的度数.【解答】解:∵∠DCB =32°,∴∠A =32°,∵AB 为⊙O 直径,∴∠ADB =90°,在Rt △ABD 中,∠ABD =90°﹣32°=58°.故答案为:58°【点评】本题考查了圆周角定理,知道同弧所对的圆周角相等和直径所对的圆周角是90°是解题的关键.14.【分析】有2个不相等的实数根,其含义是当y=m时,对应的x值有两个不同的数值,根据图象可以看出与x轴有两个交点,所以此时m=0;当y取的值比抛物线顶点处值大时,对应的x 值有两个,所以m值应该大于抛物线顶点的纵坐标.综合表述即可.【解答】解:从图象可以看出当y=0时,y=|x2﹣2x﹣3|的x值对应两个不等实数根,即m=0时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根;从图象可出y的值取其抛物线部分的顶点处纵坐标值时,在整个函数图象上对应的x的值有三个,当y的值比抛物线顶点处纵坐标的值大时,对于整个函数图象上对应的x值有两个不相等的实数根.|x2﹣2x﹣3|=|(x﹣1)2﹣4|,其最大值为4,所以当m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,综上所述当m=0或m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根.故答案为m=0或m>4.【点评】本题主要考查抛物线与x轴交点问题,解题的关键是根据图象分析判断函数值与自变量之间的关系.三.解答题(共2小题,满分16分,每小题8分)15.【分析】先化简二次根式、计算负整数指数幂、零指数幂、代入三角函数值,再计算加减可得.【解答】解:原式=2+3﹣1﹣=+2.【点评】此题主要考查了实数运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及其运算律.16.【分析】(1)设生产甲种产品x件,生产乙种产品y件,根据“生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设生产乙种产品m件,则生产甲种产品(m+5)件,根据A原料比B原料要多剩下8吨留为它用,即可得出关于m的一元一次方程,解之即可得出m的值,再根据总产值=甲种产品的售价×数量+乙种产品的售价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设生产甲种产品x件,生产乙种产品y件,依题意,得:,解得:,∴15×50+30×20=1350(千元)=135(万元).答:生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元.(2)设生产乙种产品m件,则生产甲种产品(m+5)件,依题意,得:120﹣4(m+5)﹣3m﹣[50﹣2(m+5)﹣m]=8,解得:m=13,50(1+10%)×(1+10%)×(13+5)+30(1﹣10%)(1+a%)×13=1485.63,解得:a=13.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)利用网格作出BC的中点,再连接AD即可得;(2)①根据位似变换的定义作图可得;②先利用勾股定理逆定理证△ABC是直角三角形,且∠ACB=90°,再利用tan∠AB′C′=tan∠ABC=可得答案.【解答】解:(1)如图所示,AD即为所求;(2)①如图所示,△AB'C'即为所求;②∵BC2=32+32=18,AC2=62+62=72,AB2=32+92=90,∴BC2+AC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵△ABC∽△AB′C′,∴tan∠AB′C′=tan∠ABC===2,故答案为:2.【点评】本题主要考查作图﹣位似变换,解题的关键是掌握位似变换的定义和性质及勾股定理逆定理.18.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出答案.【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=100千米,∴CD=BC•sin30°=100×=50(千米),AC==50(千米),AC+BC=(100+50)千米,答:开通隧道前,汽车从A地到B地要走(100+50)千米;(2)∵cos30°=,BC=100(千米),∴BD=BC•cos30°=100×=50(千米),CD=BC=50(千米),∵tan45°=,∴AD==50(千米),∴AB=AD+BD=(50+50)千米,∴AC+BC﹣AB=100+50﹣(50+50)=(50+50﹣50)千米答:开通隧道后,汽车从A地到B地可以少走(50+50﹣50)千米.【点评】本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)根据勾股数的定义即可得到结论;(2)当a为奇数时,当a为偶数时,根据勾股数的定义即可得到结论.【解答】解:(1)第一组(a是奇数):9,40,41(答案不唯一);第二组(a是偶数):12,35,37(答案不唯一);(2)当a为奇数时,,;当a为偶数时,,;证明:当a为奇数时,a2+b2=,∴(a,b,c)是“勾股数”.当a为偶数时,a2+b2=∴(a,b,c)是“勾股数“.”【点评】本题考查了勾股数,数字的变化类﹣规律型,读懂表格,从表格中获取有用信息进而发现规律是解题的关键.20.【分析】(1)连接OD,OC,先证明△DOE是等腰直角三角形,再由垂径定理和勾股定理可得DE=CE=3,从而得CD的长;(2)先由垂径定理可得:=,则∠ACD=∠AFC,根据圆内接四边形的性质得:∠DFG=∠ACD,从而得结论.【解答】解:(1)如图1,连接OD,OC,∵直径AB⊥CD,∴,DE=CE,∴,又∵在Rt△DEO中,,∴DE=3,∴CD=6;(2)证明:如图2,连接AC,∵直径AB⊥CD,∴=,∴∠ACD=∠AFC,∵四边形ACDF内接于⊙O,∴∠DFG=∠ACD,∴∠DFG=∠AFC.【点评】本题考查垂径定理,圆周角等知识,中等题,根据题意作出辅助线,构造出圆内接四边形是解答此题的关键.六.解答题(共1小题,满分12分,每小题12分)21.【分析】(1)用A组的频数除以它的频率得到调查的总人数,再分别用C组、D组的频数除以总人数得到m、n的值,然后画条形统计图;(2)利用中位数的定义进行判断;(3)画树状图展示12种等可能的结果数,找出甲、乙被同时点赞的结果数,然后根据概率公式求解.【解答】解:(1)2÷0.1=20,m==0.3,n==0.1;故答案为0.3;0.1;条形统计图如图(2)这20名朋友一天行走步数的中位数落在B组;故答案为B;(3)画树状图如下:共有12种等可能的结果数,其中甲、乙被同时点赞的结果数为2,∴P(甲、乙被同时点赞)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)根据题意可以列出相应的二元一次方程组,即可求得购进A、B两种纪念品每件各需多少元;(2)根据题意可以列出相应的不等式组,从而可以求得有几种进货方案;(3)根据题意可以求得利润和购进A种纪念品的关系式,然后根据一次函数的性质即可解答本题.【解答】解:(1)设购进A、B两种纪念品每件各需x元、y元,,解得,,答:购进A、B两种纪念品每件各需100元、50元;(2)设购进A种纪念品a件,则购进B种纪念品(100﹣a)件,,解得,50≤a≤53,∵a是整数,∴a=50,51,52,53,∴有四种购买方案,即该农家乐共有四种进货方案;(3)设利润为w元,购进A种纪念品a件,w=30a+20(100﹣a)=10a+2000,∵a=50,51,52,53,∴当a=53时,w取得最大值,此时w=10×53+2000=2530,即当购进A种纪念品53件,B种纪念品47件时,可以获得最大利润,最大利润是2530元.【点评】本题考查一次函数的应用、一元一次不等式组的应用,解答本题的关键是明确题意,利用一次函数的性质和一元一次不等式的性质解答.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)由AD∥BC知,,结合DB=DC=15,DE=DF=5知,从而得,据此可得答案;(2)作DP⊥BC,NQ⊥AD,求得BP=CP=9,DP=12,由知BG=CH=2x,BH=18+2x,根据得,即,再根据知,由三角形的面积公式可得答案;(3)分∠ADN=∠FGH和∠ADN=∠GFH两种情况分别求解可得.【解答】解:(1)∵AD∥BC,∴,.∵DB=DC=15,DE=DF=5,∴,∴.∴BG=CH.(2)过点D作DP⊥BC,过点N作NQ⊥AD,垂足分别为点P、Q.∵DB=DC=15,BC=18,∴BP=CP=9,DP=12.∵,∴BG=CH=2x,∴BH=18+2x.∵AD∥BC,∴,∴,∴,∴.∵AD∥BC,∴∠ADN=∠DBC,∴sin∠ADN=sin∠DBC,∴,∴.∴.(3)∵AD∥BC,∴∠DAN=∠FHG.(i)当∠ADN=∠FGH时,∵∠ADN=∠DBC,∴∠DBC=∠FGH,∴BD∥FG,∴,∴,∴BG=6,∴AD=3.(ii)当∠ADN=∠GFH时,∵∠ADN=∠DBC=∠DCB,又∵∠AND=∠FGH,∴△ADN∽△FCG.∴,∴,整理得x2﹣3x﹣29=0,解得,或(舍去).综上所述,当△HFG与△ADN相似时,AD的长为3或.【点评】本题是相似三角形的综合问题,解题的关键是掌握平行线分线段成比例定理及相似三角形的判定与性质、分类讨论思想的运用等知识点.。
安徽省六安市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1)B.(1,2)C.(1,3)D.(3,1)2.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为()A.2.536×104人B.2.536×105人C.2.536×106人D.2.536×107人3.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°4.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为()A.3122×10 8元B.3.122×10 3元C.3122×10 11元D.3.122×10 11元5.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣36.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π7.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A.204030650x yx y+=⎧⎨+=⎩B.204020650x yx y+=⎧⎨+=⎩C.203040650x yx y+=⎧⎨+=⎩D.704030650x yx y+=⎧⎨+=⎩8.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3 B.0.4 C.0.5 D.0.69.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含10.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)11.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是412.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是().A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD 沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.14.关于x 的方程ax=x+2(a≠1) 的解是________.15.点C 在射线AB上,若AB=3,BC=2,则AC为_____.16.如图,在等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A旋转后得到△ACE,连接DE交AC于点F,则△AEF的面积为_______.17.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).18.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67ABBC,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.20.(6分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.综合运用:在你所作的图中,AB与⊙O的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.21.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.(8分)如图,一次函数y 1=﹣x ﹣1的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数2ky x=图象的一个交点为M (﹣2,m ). (1)求反比例函数的解析式; (2)求点B 到直线OM 的距离.23.(8分)菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.24.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.25.(10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移5个单位长度得到点B,判断四边形OABC的形状并证明你的结论.26.(12分)先化简再求值:a ba-÷(a﹣22ab ba-),其中a=2cos30°+1,b=tan45°.27.(12分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO =∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。
安徽省六安市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x 的方程3x+2a=x ﹣5的解是负数,则a 的取值范围是( )A .a <52B .a >52C .a <﹣52D .a >﹣522.如图,点O′在第一象限,⊙O′与x 轴相切于H 点,与y 轴相交于A (0,2),B (0,8),则点O′的坐标是( )A .(6,4)B .(4,6)C .(5,4)D .(4,5) 3.把a•1a-的根号外的a 移到根号内得( ) A .aB .﹣aC .﹣a -D .a - 4.已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作PE ⊥AB 于点E ,作PF ⊥BC 于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( )A .B .C .D .5.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s 和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y 与x 的函数关系如图2所示.有以下结论:①图1中a 的值为500;②乙车的速度为35 m/s ;③图1中线段EF 应表示为5005x +;④图2中函数图象与x轴交点的横坐标为1.其中所有的正确结论是()A.①④B.②③C.①②④D.①③④6.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.53cm B.25cm C.48cm5D.24cm57.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°8.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A.40°B.110°C.70°D.140°9.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.中位数是9 C.众数是5 D.极差是510.单项式2a3b的次数是()A.2 B.3 C.4 D.511.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是()A.1<m<32B.1≤m<32C.1<m≤32D.1≤m≤3212.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为()A.2 B.3 C.4 D.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.太阳半径约为696000千米,数字696000用科学记数法表示为千米.14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.15.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m)16.若关于x的方程x22x+sinα=0有两个相等的实数根,则锐角α的度数为___.17.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.18.钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.20.(6分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=12 OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.21.(6分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.22.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.23.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分∠DAB;(2)若BE=3,CE=33,求图中阴影部分的面积.24.(10分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.25.(10分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数26.(12分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1.(2)先化简,再求值:(x﹣1)÷(21x+﹣1),其中x为方程x2+3x+2=0的根.27.(12分)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.()1求每辆A,B两种自行车的进价分别是多少?()2现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.【详解】解方程3x+2a=x﹣5得x=522a --,因为方程的解为负数,所以522a--<0,解得:a>﹣5 2 .【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.2.D【解析】【分析】过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.【详解】如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,∵O′为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8−2=6,∴AC=BC=3,∴OC=8−3=5,∵⊙O′与x轴相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得22-BCO B'225-3=4,∴P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.3.C【解析】【分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)1 a -【详解】解:∵﹣1a>0,∴a<0,∴原式=﹣(﹣a)=.故选C.【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.4.A【解析】由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选A.5.A【解析】分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得:50075125bk b=⎧⎨+=⎩,解得5500kb=-⎧⎨=⎩,∴y=-5x+500,当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解6.D【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度. 【详解】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO ⊥BO ,∴BC 5==. ∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形. 又∵ABCD S BC AE =⋅菱形,∴BC·AE=24, 即()24AE cm 5=. 故选D .点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.7.D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE ∥AB ,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C ﹣∠A=180°﹣90°﹣15°=75°,故选D .【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.8.B【解析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.【详解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=12∠BAC=12×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故选B.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.9.D【解析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12+5+9+5+14)÷5=9,故选项A正确;重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;5出现了2次,最多,∴众数是5,故选项C正确;极差为:14﹣5=9,故选项D错误.故选D10.C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.11.B【解析】【分析】根据一次函数的性质,根据不等式组即可解决问题;【详解】。
安徽省卓越县中联盟(舒城中学、无为中学等)2019-2020学年高二数学12月素质检测试题 理考试时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={x |x 2﹣x ﹣6<0},集合B ={x |x ﹣1>0},则()R C A B I =( ) A .(1,3)B .(1,3]C .[3,+∞)D .(3,+∞)2.“﹣3<m <4”是“方程22143x y m m +=-+表示椭圆”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要3.函数f (x )=2x ﹣3+log 3x 的零点所在区间是( ) A .(0,1)B .(1,2)C .(2,3)D .(3,+∞)4.已知平面向量(2,1)AB =u u u r ,(3,3)AC t =-u u u r,若//AB AC u u u r u u u r,则||BC =u u u r( ) A .25B .20C .5D .25.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S 表示( ) A .0123a a a a +++的值B .233201000a a x a x a x +++的值 C .230102030a a x a x a x +++的值D .以上都不对6.若直线1:60l x ay ++=与023)2(:2=++-a y x a l 平行,则1l 与2l 间的距离为( ) A. 2B.328 C.3D.338 7.将函数()cos(3)6f x x π=+图象上所有的点向右平移6π个单位长度,得到函数()y g x =的图象,则()3g π= ( )A .2π B .3-C .12D .12-8.如图,平面直角坐标系中,曲线(实线部分)的方程可以是( ) A .()()22110x y x y ----=B .()()2211+0x y x y ---=C .()()2211+0x y x y ---= D .()()2211+0x y x y ---=9.在△ABC 中,AB =4,BC =3,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ) A .36πB .28πC .20πD .12π10.若直线:10l ax by ++=始终平分圆22:4210M x y x y ++++=的周长,则22(2)(2)a b -+-的最小值为( )A .5B .5C .25D .1011.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是( ) A .15B .3C .23D .212.已知正四面体的中心与球心O 重合,正四面体的棱长为26,球的半径为5,则正四面体表面与球面的交线的总长度为( ) A .4π B .82π C .122πD .12π二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.已知点A (﹣2,﹣1),B (2,2),C (0,4),则点C 到直线AB 的距离为 .14.已知圆C 的圆心在直线x ﹣y =0上,过点(2,2)且与直线x +y =0相切,则圆C的方程是 .15.已知正方体1111ABCD A B C D -的棱长为2,点,M N 分别是棱11A D ,CD 的中点,点P 在平面 ABCD 内,点Q 在线段BN 上,若5PM =,则PQ 长度的最小值为 .16.已知椭圆22:14x C y +=上的三点C B A ,,,斜率为负数的直线CC 1D 1B 1A 1ABD PM N QBC 与y 轴交于M ,若原点O 是ABC ∆的重心,且ABM ∆与CMO ∆的面积之比为23,则直线BC 的斜率为 .三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求cos B 的值; (Ⅱ)若1cos 7A =,a =8,求b 以及S △ABC 的值.18.已知m ∈R ,命题p :对任意x ∈[0,1],不等式()22log 123x m m +-≥-恒成立;命题q :存在x ∈[﹣1,1],使得112xm ⎛⎫≤- ⎪⎝⎭成立. (Ⅰ)若p 为真命题,求m 的取值范围;(Ⅱ)若p ∧q 为假,p ∨q 为真,求m 的取值范围.19.在正项等比数列{a n }中,a 1=1且2a 3,a 5,3a 4成等差数列.(Ⅰ)求数列的通项公式; (Ⅱ)若数列{b n }满足n nnb a =,求数列{b n }的前n 项和S n .20.我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了节约用水,市民用水拟实行阶梯水价.每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:用水量(立方米)(Ⅰ)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元高二数学(理) 第3页 (共4页)/立方米,w 至少定为多少?(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替.当w =3时,试完成该10000位居民该月水费的频率分布表,并估计该市居民该月的人均水费.21.如图,已知梯形ABCD 中,AD ∥BC,AB AD ⊥,矩形EDCF ⊥平面ABCD ,且2,1AB BC DE AD ====.(Ⅰ)求证:AB AE ⊥; (Ⅱ)求证:DF ∥平面ABE ; (Ⅲ) 求二面角B EF D --的正切值.22.已知曲线C 上的任意一点到两定点()11,0F -、()21,0F 距离之和为4,直线l 交曲线C 于,A B 两点,O 为坐标原点. (Ⅰ)求曲线C 的方程;(Ⅱ)若l 不过点O 且不平行于坐标轴,记线段AB 的中点为M ,求证:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅲ)若直线l 过点(0,2)Q ,求OAB ∆面积的最大值,以及取最大值时直线l 的方程.AC安徽卓越县中联盟高二年级素质检测数学试题卷(理)参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B B A C B D C D B A A二、填空题13.145;14.()()22112x y-+-=;15.355-;16.3-.三、解答题17.解:(1)由余弦定理及已知得:cos B==;.….….….…5分(2)因为A,B为三角形内角,所以sin A==,sin B==,由正弦定理得:b===7,又∵cos A==.∴c2﹣2c﹣15=0,解得c=5 (c=﹣3舍).∴S△ABC=bc•sin A=..….….….…10分18.解:(1)对任意x∈[0,1],不等式恒成立,当x∈[0,1],由对数函数的性质可知当x=0时,y=log2(x+1)﹣2的最小值为﹣2,∴﹣2≥m2﹣3m,解得1≤m≤2.因此,若p为真命题时,m的取值范围是[1,2]..….….….…6分(2)存在x∈[﹣1,1],使得成立,∴.命题q为真时,m≤1.∵p且q为假,p或q为真,∴p,q中一个是真命题,一个是假命题.当p真q假时,则解得1<m≤2;当p 假q 真时,,即m <1.综上所述,m 的取值范围为(﹣∞,1)∪(1,2]..….….….…12分 19.解: (1)∵∴∴q =2,∵a n >0,∴q =2;.….….….…6分(2)∵,∴,①,②①﹣②得=,∴..….….….…12分20.解:【解析】(I )由用水量的频率分布直方图知,该市居民该月用水量在区间[]0.5,1,(]1,1.5,(]1.5,2,(]2,2.5,(]2.5,3内的频率依次为0.1,0.15,0.2,0.25,0.15.-------4分所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%. 依题意,w 至少定为3.--------6分(II )由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表: 组号 1 2345678分组[]2,4 (]4,6 (]6,8 (]8,10 (]10,12 (]12,17 (]17,22 (]22,27频率 0.1 0.150.20.25 0.15 0.05 0.05 0.05---------9分根据题意,该市居民该月的人均水费估计为:40.160.1580.2100.25120.15170.05220.05270.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 10.5=(元).--------12分21. 解:(Ⅰ)矩形平面,且平面平面= ,又,平面.平面. 又平面,且.平面.平面,………4分(Ⅱ)取中点,连接,由已知条件易得及为平行四边形,于是//// ,由于== ,故为平行四边形.//面//平面.又//面//平面平面//平面. 又平面∥平面………8分(III)过点B作,作,连接.由矩形平面,得平面,又所以就是所求二面角的平面角.在中,易知.故二面角的正切值为. ………12分22.(1)由题意知曲线Γ是以原点为中心,长轴在x 轴上的椭圆,设其标准方程为,则有2,1a c ==,所以2223b a c =-=,………4分 (2)证明:设直线l 的方程为()0,0y kx b k b =+≠≠, 设()()()112200,,,,,A x y B x y M x y .可得()223412x kx b ++=,即()2223484120kx kbx b +++-=∴直线OM 的斜率与l 的斜率的乘积. ………8分 (3)点()()1122,,,A x y B x y ,由可得()22341640k x kx +++=, >0∆,解得设()241,0,k t t -=∈+∞,当4t =时,AOB S ∆取得最大值此时2414k -=,即………12分。
安徽省舒城县联考2019-2020学年中考数学模拟试卷一、选择题1.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x(x+1)=1035B .x(x-1)=1035C .12x(x+1)=1035D .12x(x-1)=1035 2.如图所示,抛物线2732y x ⎛⎫=- ⎪⎝⎭2-256与x 、y 轴分别交于A 、B 、C 三点,连结AC 和BC ,将△ABC 沿与坐标轴平行的方向平移,若边BC 的中点M 落在抛物线上时,则符合条件的平移距离的值有( )A.1个B.2个C.3个D.4个3.将如图所示的图形绕中心按逆时针方向旋转120°后可得到的图形是( )A. B. C . D .4.方程组21230x y x y -=⎧⎨++=⎩①②的解是( ) A .12x y =-⎧⎨=⎩ B .12x y =-⎧⎨=-⎩ C .10x y =⎧⎨=⎩ D .21x y =⎧⎨=-⎩5.下列命题中,真命题的是( )A .对角线互相垂直的四边形是菱形B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形6.如图,是由5个小正方体组成的几何体,它的俯视图是( )A. B. C . D .7.下列各式计算正确的是( )A .a 2×a 3=a 6B 2=C .21111x x x -=-+D .(x+y )2=x 2+y 28.下列运算正确的是( )=﹣5B.(x 3)2=x 5C.x 6÷x 3=x 2D.(﹣14)-2=16 9.如图所示,90,,E F B C AE AF ∠=∠=∠=∠=,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ∆≅∆,其中正确的是有( )A .1个B .2个C .3个D .4个10.如图,在平面直角坐标系中,直线l :y =与y 轴交于点B 1,以OB 1为一边在OB 1右侧作等边三角形A 1OB 1,过点A 1作A 1B 2平行于y 轴,交直线l 于点B 2,以A 1B 2为一边在A 1B 2右侧作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于y 轴,交直线l 于点B 3,以A 2B 3为一边在A 2B 3右侧作等边三角形A 3A 2B 3,……则点A 2019的纵坐标是( )A. B. C. D.11.由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是( )A .主视图的面积最小B .左视图的面积最小C .俯视图的面积最小D .三个视图的面积相等12.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a+b 的值为( )A .B .4CD 二、填空题 13.直角三角形纸片的两直角边BC ,AC 的长分别为6,8,现将△ABC 如下图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为_____.14.若一个正数的两个平方根是x-5和x+1,则x=________。
2024年安徽中考数学模拟试题及答案2024年安徽中考数学模拟试题及答案(一)一、选择题:(每小题3分,共30分)1.|2|--的倒数是()A.2B.12C.12-D.2-2.2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A.43.8410⨯千米B.53.8410⨯千米C.63.8410⨯千米D.438.410⨯千米3.右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个4.下列运算正确的是()A.2224(2)2a a a -=B.236()a a a-= C.236(2)8x x-=-D.2()x x x-÷=-5.下列事件中,不可能事件是()A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,向上一面的点数是“5”B.任意选择某个电视频道,正在播放动画片C.肥皂泡会破碎D.在平面内,度量一个三角形的内角度数,其和为3606.已知代数式1312a x y -与23b a b x y -+-是同类项,那么a b ,的值分别是()A.21a b =⎧⎨=-⎩,B.21a b =⎧⎨=⎩,C.21a b =-⎧⎨=-⎩,D.21a b =-⎧⎨=⎩,7.把一张长方形的纸片按如图所示的方式折叠,EM FM ,为折痕,折叠后的C 点落在B M '或B M '的延长线上,那么EMF ∠的度数是()A.85B.90C.95D.100主(正)视图左视图俯视图AEBMCDFD 'B 'C '8.如图,在Rt ABC △中,90ACB CD AB =⊥,∠于点D .已知5AC =,2BC =,那么sin ACD ∠=()A.53B.23C.255D.529.为了了解汽车司机遵守交通法规的意识,小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图所示.根据统计图分析,这组车速数据的众数和中位数分别是()A.60千米/小时,60千米/小时B.58千米/小时,60千米/小时C.60千米/小时,58千米/小时D.58千米/小时,58千米/小时10.如图,小丽要制作一个圆锥模型,要求圆锥的母线长为9cm,底面圆的直径为10cm,那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是()A.150B.200C.180D.240第II 卷(非选择题,共70分)注意事项:1.A 卷的第II 卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:(每小题4分,共20分)将答案直接写在该题目中的横线上.11.把3222a ab a b +-分解因式的结果是.12.函数1xy x =-的自变量x 的取值范围是.13.如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.14.如图,在等腰梯形ABCD 中,AD BC AB AD ≠,∥,对角线AC BD ,相交于点O .如下四个结论:①梯形ABCD 是轴对称图形;②DAC DCA =∠∠;③AOB DOC △≌△;④AOD BOC △∽△.请把其中正确结论的序号填在横线上:.15.右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶ABCD391252555860626584车速车辆数09cm 10cmADCBOy (千米)甲乙4545千米,由A 地到B 地时,行驶的路程y (千米)与经过的时间x (小时)之间的函数关系.请根据这个行驶过程中的图象填空:汽车出发小时与电动自行车相遇;电动自行车的速度为千米/小时;汽车的速度为千米/小时;汽车比电动自行车早小时到达B 地.三、(共18分)16.解答下列各题:(每小题6分)(1)计算:12012tan 60(2)(1)|3-⎛⎫-+-⨯-- ⎪⎝⎭.(2)先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.(3)解方程:11262213x x=---.答案一、选择题:(每小题3分,共30分)1.C2.B3.D4.C5.D6.A7.B8.A9.C10.BA卷第Ⅱ卷(共70分)二、填空题:(每小题4分,共20分)11.()2aa b -;12.0x ≥且1x ≠;13.48;14.①,③,④;15.0.5,9,45,2.三、(共18分)16.(1)解:原式341=+⨯--··································4分34=+-1=.·································································2分(2)解:原式()()2229455441x x x x x =-----+2229455441x x x x x =--+-+-95x =-.······························································4分当13x =-时,原式195953x ⎛⎫=-=⨯-- ⎪⎝⎭35=--8=-.·················································································2分(3)解:去分母,得1314x =-+.···············································3分32x =-,解这个方程,得23x =-.······························································2分经检验,23x =-是原方程的解.····················································1分2024年安徽中考数学模拟试题及答案(二)一、选择题(共60分,每小题3分)以下每小题给出的四个选项中,只有一个是符合题目要求的,请选出并把答题卡上对应题目的正确答案标号涂黑.1.在-2,0,2,1,43,-0.4中,正确的个数为A.2个B.3个C.4个D.5个2.3的倒数为A.-3B.3C.31-D.313.计算()023≠÷x x x 的结果为A.5x B.6x C.52x D.x4.现在我市人口约有4580000人,用科学记数法表示为A.458×104B.45.8×105C.4.58×106D.0.458×1075.函数11-=x y 中,自变量x 的取值范围为A.1-≠x B.1≠x C.1>x D.1-<x 6.不等式2x ≥x +2的解集为A.x >2B.x <2C.x ≥2D.x ≤27.把12-x 分解因式为A.()21-x B.()21+x C.()()11-+-x x D.()()11-+x x 8.下列图形中,是中心对称图形的是A.等边三角形B.平行四边形C.梯形D.正五边形9.某装修公司到科维商场买同样一种多边形的地砖平铺地面,在以下四种地砖中,你认为该公司不能买A.正三角形地砖B.正方形地砖C.正五边形地砖D.正六边形地砖10.在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水(如图1),看不清所印的字,请问被墨迹遮盖了的文字应是A.等边三角形B.四边形C.等腰梯形D.菱形11.已知P (-1,2),则点P 所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限12.用换元法解方程()()0122222=-+++x x x x ,若设x x y +=2,则原方程可变形为A.0122=++y y B.0122=+-y y C.0122=-+y y D.0122=--y y 13.两圆的半径分别是4cm 和5cm ,圆心矩为9cm ,则两圆的位置关系是A.外切B.内切C.外离D.内含14.一位卖“运动鞋”的经销商到一所学校对9位学生的鞋号进行了抽样调查.其号码为:24、22、21、24、23、20、24、23、24.经销商最感兴趣的是这组数据中的A.中位数B.众数C.平均数D.方差15.下列方程中,没有实数根的是A.012=++x x B.0122=++x x C.0122=--x x D.022=--x x 16.如图2,为了测量一池塘的宽DE ,在岸边找到一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC =5m ,过点A 作AB ∥DE 交EC 的延长线于B ,测出AB =6m ,则池塘的宽DE 为A.25m B.30m C.36m D.40m17.如图3,四边形ABCD 为⊙O 的内接四边形,∠BOD =120°,则∠BCD 为A.120°B.90°C.60°D.30°18.如图4,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在A.在AC 、BC 两边高线的交点处B.在AC 、BC 两边中线的交点处C.在AC 、BC 两边垂直平分线的交点处D.在∠A 、∠B 两内角平分线的交点处19.已知一个矩形的面积为24cm 2,其长为ycm ,宽为xcm ,则y 与x 之间的函数关系的图象大致是平行四边形矩形正方形图1A B CD E图2AB CD图3O ·y y yy A B C 图4A B C D20.如图5,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为A.600m 2B.551m2C.550m 2D.500m2二、(本题共15分,每小题5分)21.计算:2251220+⎪⎭⎫⎝⎛--.22.如图6,在⊙O 中,弦AB 与DC 相交于E ,且AE =EC ,求证:AD =BC .23.解方程组⎩⎨⎧=-=+.82,7y x y x 答案一、选择题(本题共60分,每小题3分)图5A BC图6D O E·题号1234567891011121314151617181920答案BDDCBCDBCDBCABACACDB二、(本题共15分,每小题5分)21.解:原式=2122+-………………(每化简正确一项给一分)3分=123-……………………………………………………5分22.证明:在△AED 和△CEB 中⎪⎩⎪⎨⎧∠=∠=∠=∠CEB AED ECAE C A …………………………………………………………3分∴△AED ≌△CEB ………………………………………………………4分∴AD =BC …………………………………………………………………5分23.解:①+②,得3x =15…………………………………………………………………2分∴x =15………………………………………………………………3分把x =5代入①,得y =2…………………………………………………4分∴⎩⎨⎧==25y x 是原方程组的解…………………………………………………5分2024年安徽中考数学模拟试题及答案(三)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.我市峨眉山上某天的最高气温为12℃,最低气温为4-℃,那么这天的最高气温比最低气温高()A.4℃B.8℃C.12℃D.16℃2.在平面直角坐标系中,点(34)P -,到x 轴的距离为()A.3B.3-C.4D.4-3.如图(1),在平面四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则BCE =∠()A.55B.35C.25D.304.下列各式中正确的是()A E BCD图(1)A.0(2)0-=B.236-=-C.43(0)m m m m ÷=≠D.=5.如图(2),数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为()A.7B.3C.3-D.2-6.图(3)为一个多面体的表面展开图,每个面内都标注了数字.若数字为3的面是底面,则朝上一面所标注的数字为()A.2B.4C.5D.67.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是()A.14016615x y x y +=⎧⎨+=⎩B.14061615x y x y +=⎧⎨+=⎩C.15166140x y x y +=⎧⎨+=⎩D.15616140x y x y +=⎧⎨+=⎩8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图(4)所示的统计图,则这组数据的众数和中位数分别是()A.77,B.87.5,C.77.5,D.86.5,9.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y+元的价格卖完后,结果发现自己赔了钱,其原因是()A.x y<B.x y>C.x y≤D.x y≥10.如图(5),把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处,若90FPH =∠,8PF =,6PH =,则矩形ABCD 的边BC 长为()A.20B.22C.24D.3010A2B5C图(2)342156图(3)人数环数763215678910图(4)AEPDG HFBA CD11.已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是()A.20y -<<B.40y -<<C.2y <-D.4y <-12.如图(7),MN 是O 的直径,2MN =,点A 在O 上,30AMN =∠,B 为 AN的中点,P 是直径MN 上一动点,则PA PB +的最小值为()A.C.1D.2第Ⅱ卷(非选择题共114分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上)13.4的算术平方根是_______.14.分解因式:216x -=_______.15.已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______.16.用图(8)所示的正方形和长方形卡片若干张,拼成一个长为2a b +,宽为a b +的矩形,需要A 类卡片_______张,B 类卡片_______张,C 类卡片_______张.a aabb bA 类B 类C 类图(8)17.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全等人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因______________.18.如图(9),半圆的直径10AB =,P 为AB 上一点,点C D ,为半圆的三等分点,则阴影部分的面积等于_______.三、(本大题共3小题,每小题9分,共27分)图(6)2-4xy MO PNB A图(7)CD APOB图(9)19.计算:22(2)2sin 60--+ .20.当13x =-时,求23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭的值.21.解不等式组3(1)5412123x x x x +>+⎧⎪⎨--⎪⎩ ①≤ ②,并将解集在数轴上表示出来.答案一、选择题(每小题3分,共12小题,共计36分)1.D2.C3.B4.C5.D6.C7.D8.C9.B10.C11.C12.B二、填空题(每小题3分,6小题,共计18分)13.214.(4)(4)x x -+15.2-或116.2,3,117.样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;(只要答对其中一项均可得分)18.25π6三、本大题共3小题,每小题9分,共27分.19.解:原式32422=-+⨯ (6)分24=+7分2=-······································································································9分20.解:原式3(1)(1)(1)(1)(1)(1)x x x x x x x x x+--+-=-+··········································4分2233(1)(1)(1)(1)x x x x x x x x x+-++-=⨯+-24x =+··································································································6分当13x =-时,原式1243⎛⎫=⨯-+ ⎪⎝⎭···················································································8分103=······································································································9分11/1121.解:解不等式①得12x <-····································································2分解不等式②得1x -≥·················································································4分∴不等式组的解集为112x -<-≤·······························································7分其解集在数轴上表示为:·····························································9分。
安徽省舒城县联考2019-2020学年中考数学模拟试卷一、选择题1.定义符号min{a ,b}的含义为:当a≥b 时min{a ,b}=b ;当a <b 时min{a ,b}=a .如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x 2+1,﹣x}的最大值是( )A.12B.12C.1D.02.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:小聪观察上表,得出下面结论:①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6;③抛物线的对称轴是12x =;④在对称轴左侧,y 随x 增大而增大.其中正确有( ) A .①② B .①③ C .①②③ D .①③④3.已知点M(1﹣2m ,m ﹣1)在第一象限,则m 的取值范围在数轴上表示正确的是( )A. B .C. D .4.从正面看下列的几何体,得到的图形为三角形的是( )A. B .C. D .5.某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x 人,则( )A .x+(x ﹣5)=25B .x+(x+5)+12=25C .x+(x+5)﹣12=25D .x+(x+5)﹣24=256.若关于x 的不等式组27412x x x k ++⎧⎨-⎩<<的解集为x <3,则k 的取值范围为( ) A.k >1 B.k <1 C.k≥1 D.k≤17.已知关于的一元二次方程有两个不相等的实数根,则的取值范围为( )A. B. C. D.8.如图,在△ABC 中,D 、F 分别是AB 、BC 上的点,且DF ∥AC ,若S △BDF :S △DFC =1:4,则S △BDF :S △DCA =( )A .1:16B .1:18C .1:20D .1:24 9.用简便方法计算,将98×102变形正确的是( ) A .98×102=1002+22 B .98×102=(100﹣2)2C .98×102=1002﹣22D .98×102=(100+2)2 10.某企业2018年初获利润300万元,到2020年初计划利润达到507万元,求这两年的年利润的平均增长率,设企业这两年的年利润平均增长率为x ,则可列方程为( )A .300(1+x )2=507B .300(1﹣x )2=507 C .300(1+2x )=507 D .300(1+x 2)=507 11.如图,下列条件中,不能判定//AD BC 的是( )A.12∠=∠B.180BAD ADC ︒∠+∠=C.34∠=∠D.180ADC DCB ︒∠+∠=12.如图,矩形ABCD 中,AB =5,BC =12,点E 在边AD 上,点G 在边BC 上,点F 、H 在对角线BD 上,若四边形EFGH 是正方形,则AE 的长是( )A .5B .11924C .13024D .16924二、填空题 13.圆内一条弦与直径相交成30°的角,且分直径1cm 和5cm 两段,则这条弦的长为_____.14.已知正方形ABCD 的对角线AC ,则正方形ABCD 的面积为_____.15.因式分解:222x x -+=______________。
16.如图,线段1AC n =+(其中n 为正整数),点B 在线段AC 上,在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到AME ∆.当1AB =时,AME ∆的面积记为1S ;当2AB =时,AME ∆的面积记为2S ;当3AB =时,AME ∆的面积记为3S ;…当AB n =时,AME ∆的面积记为n S .当2n ≥时,1n n S S --=______.17.(3分)在ABCD 中,AB <BC ,已知∠B=30°,AB=2,将△ABC 沿AC 翻折至△AB′C,使点B′落在ABCD 所在的平面内,连接B′D.若△AB′D 是直角三角形,则BC 的长为 .18.化简:222x x x ---=_____. 三、解答题19.如图,点A (﹣1,m )是双曲线y 1=k x与直线y 2=﹣x ﹣(k+1)在第二象限的交点,另一个交点C在第四象限,AB ⊥x 轴于B ,且cos ∠AOB (1)求m 的值;(2)求△AOC 的面积;(3)直接写出使y 1>y 2成立的x 的取值范围.20.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(2)若每天盈利达1200元,那么每件衬衫应降价多少元?21.在△ABC 和△ADE 中,BA =BC ,DA =DE ,且∠ABC =∠ADE ,点E 在△ABC 的内部,连接EC ,EB 和ED ,设EC =k•BD(k≠0).(1)当∠ABC =∠ADE =60°时,如图1,请求出k 值,并给予证明;(2)当∠ABC =∠ADE =90°时:①如图2,(1)中的k 值是否发生变化,如无变化,请给予证明;如有变化,请求出k 值并说明理由; ②如图3,当D ,E ,C 三点共线,且E 为DC 中点时,请求出tan ∠EAC 的值.22.如图,一次函数与反比例函数的图象交于A (1,4),B (4,n )两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x >0时,的解集.(3)点P 是x 轴上的一动点,试确定点P 并求出它的坐标,使PA+PB 最小.23.(1)计算:1013tan30(12-︒⎛⎫--+-+ ⎪⎝⎭(2)先化简,再求值221122121x x x x x x x x ---⎛⎫-÷ ⎪+++⎝⎭,其中,x 满足x 2﹣x =1. 24.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由.(2)若⊙O 半径为2,∠B =60°,求图中阴影部分的面积.25.解不等式组:273(1)423133x x x x -<-⎧⎪⎨+<-⎪⎩,并将解集表示在数轴上.【参考答案】***一、选择题1314.115.2(1)x x --16.212n - 17.4或6.18.1三、解答题19.(1)m =3;(2)4;(3)x <﹣1或0<x <3.【解析】【分析】(1)根据已知条件得到OB=1,由cos ∠,根据勾股定理即可得到结论; (2)先把两函数的解析式联立组成方程组,求出x 、y 的值,得出A 、C 两点的坐标,根据三角形的面积公式即可得到结论;(3)观察图象,根据一次函数与反比例函数的交点坐标即可求出一次函数的值大于反比例函数的值x 的取值范围.【详解】解:(1)∵A (﹣1,m ),AB ⊥x 轴于B ,∴OB =1,∵cos ∠AOB=10, ∴OA,∴AB3,∴A (﹣1,3),∴m =3;(2)∵A (﹣1,3)是双曲线1k y x =与直线y 2=﹣x ﹣(k+1)在第二象限的交点, ∴k =﹣3, ∴反比例函数的解析式为:13y x=-,一次函数的解析式为:y 2=﹣x+2, 23y x y x =-+⎧⎪⎨=⎪⎩解得13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩, ∴C (3,﹣1), ∴△AOC 的面积=12×2×1+12×2×3=4; (3)由图象知,y 1>y 2成立的x 的取值范围为:x <﹣1或0<x <3.【点睛】此题考查了反比例函数比例系数k 的几何意义,反比例函数的性质,求两函数的交点坐标,比较函数值的大小,三角形的面积等知识,能根据△ABO 的面积求出k 的值是解答此题的关键.20.(1)﹣2x 2+60x+800;(2) 20元.【解析】【分析】(1)一件衬衫每降价1元,每天可多售出2件,则设每件降价x 元时,销售量为:20+2x ,每件盈利:40-x 元,所以每天盈利为:(40-x )(20+2x );(2)此题首先根据盈利1200元,列出一元二次方程,然后解出.要注意x=10应舍去,要考虑符合实际的要求.【详解】解(1)设每件降低x 元,获得的总利润为y 元则y =(40﹣x )(20+2x )=﹣2x 2+60x+800;(2)∵当y =1200元时,即﹣2x 2+60x+800=1200,∴x 1=10,x 2=20,∵需尽快减少库存,∴每件应降低20元时,商场每天盈利1200元.【点睛】此题是二次函数的和一元二次方程的实际应用题,正确理解题意,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此外要注意判断所求的解是否符合题意,舍去不合题意的解.21.(1)k =1,理由见解析;(2)①k 值发生变化,ktan ∠EAC =13. 【解析】【分析】(1)根据题意得到△ABC 和△ADE 都是等边三角形,证明△DAB ≌△EAC ,根据全等三角形的性质解答;(2)①根据等腰直角三角形的性质、相似三角形的性质计算;②作EF ⊥AC 于F ,设AD =DE =a ,证明△CFE ∽△CAD ,根据相似三角形的性质求出EF ,根据勾股定理求出AF ,根据正切的定义计算即可.【详解】(1)k =1,理由如下:如图1,∵∠ABC =∠ADE =60°,BA =BC ,DA =DE ,∴△ABC 和△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAB =∠EAC ,在△DAB 和△EAC 中, AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△DAB ≌△EAC (SAS )∴EC =DB ,即k =1;(2)①k 值发生变化,k,∵∠ABC =∠ADE =90°,BA =BC ,DA =DE ,∴△ABC 和△ADE 都是等腰直角三角形,∴AE AD =,AC AB=,∠DAE =∠BAC =45°, ∴AE AC AD AB =,∠DAB =∠EAC , ∴△EAC ∽△DAB ,∴EC AE BD AD==ECBD ,∴k②作EF⊥AC于F,设AD=DE=a,则AE,∵点E为DC中点,∴CD=2a,由勾股定理得,AC=,∵∠CFE=∠CDA=90°,∠FCE=∠DCA,∴△CFE∽△CAD,∴EF CEAD CA=,即EFa=,解得,EF a,∴AF5=,则tan∠EAC=13 EFAF=.【点睛】本题考查的是等边三角形的性质、等腰直角三角形的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.22.(1),y=﹣x+5;(2)0<x<1或x>4;(3)P的坐标为(,0),见解析.【解析】【分析】(1)把A(1,4)代入y=,求出m=4,把B(4,n)代入y=,求出n=1,然后把把A(1,4)、(4,1)代入y=kx+b,即可求出一次函数解析式;(2)根据图像解答即可;(3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,然后用待定系数法求出直线AB′的解析式即可.【详解】解:(1)把A(1,4)代入y=,得:m=4,∴反比例函数的解析式为y=;把B(4,n)代入y=,得:n=1,∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y =的下方;∴当x>0时,kx+b <的解集为0<x<1或x>4;(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴,解得,∴直线AB′的解析式为,令y=0,得,解得x =,∴点P 的坐标为(,0).【点睛】本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.23.(1)1-+2)12.【解析】【分析】(1)按顺序先分别进行负整数指数幂的运算、代入特殊角的三角函数值、零指数幂的运算、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后由x2﹣x=1,得x2=x+1,代入化简后的式子即可解答本题.【详解】(1)10 13tan30(12-︒⎛⎫--+-+ ⎪⎝⎭=(﹣2)﹣3×3=(﹣2=﹣(2)221122121x x x x xx x x ---⎛⎫-÷ ⎪+++⎝⎭ =()()()()()()21111121x x x x x x x x x -+--++- =()()()211121x x x x x x +-+- =212x x+, ∵x 2﹣x =1, ∴x 2=x+1,∴原式=12. 【点睛】本题考查分式的化简求值、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.24.(1)直线DE 与⊙O 相切,理由见解析(2)-43π 【解析】【分析】(1)连接0E 、OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE ≌△DOE 得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE 为⊙0的切线(2)先计算出四边形AEDO 的面积,利用四边形的面积减去扇形的面积计算图中阴影部分的面积【详解】(1)直线DE 与⊙O 相切。