7.1-7.2.1定积分的微元法与平面图形的面积
- 格式:pdf
- 大小:1.41 MB
- 文档页数:29
利用定积分求平面图形面积的一些讨论在数学中,定积分是一个非常重要的概念。
它可以用来求曲线下面的面积、体积等。
在这篇文章中,我们将探讨如何利用定积分来求解平面图形的面积,并对其中的一些需要注意的问题进行讨论。
一、定积分求平面图形的面积通常情况下,我们使用定积分求解平面图形的面积主要分为以下两种情况:1. 若平面图形位于第一象限内,我们可以通过将其关于x轴或y轴进行对称,得到其关于某条轴的镜像图形。
然后,我们可以通过积分的方法求得该镜像图形的面积,再将其乘以2即可得到原图形的面积。
2. 若平面图形位于第三象限内,我们可以采用类似的方法,将其关于x轴和y轴进行对称,再将其平移至第一象限内,最后采用积分的方法求解面积。
二、需要注意的问题在使用定积分求解平面图形的面积时,我们还需要注意以下几个问题:1. 积分区间的确定在求解平面图形面积时,我们需要确定积分的区间。
通常情况下,这个区间并不是在平面直角坐标系中所表示的图形区域,而应该是其在积分方程中的区间。
因此,在进行计算之前,我们需要先画出该图形和其在积分方程中的区间,并根据图形和区间的特点确定积分的上下限。
2. 导数、微积分的运用在计算过程中,我们经常需要使用导数和微积分知识。
对于不熟悉这些知识的人来说,可能会产生一定的困难。
因此,在进行平面图形面积的计算时,我们需要对相关的导数和微积分知识有一定的了解,才能更好地进行计算。
3. 曲线積分的處理如果题目本身是一个曲线的方程或者是一个参数方程问题,我们还需要先将其转化为参数方程或者直接采用曲线积分的方法来求解。
另外,对于一些复杂的曲线问题,我们可能需要结合掌握一定的计算技巧和方法来进行计算。
三、总结定积分是求解平面图形面积的一个非常好的工具。
在进行计算时,我们需要注意导数、微积分等方面的知识,并结合所求图形的特点来确定积分区间、上下限等参数。
只有在掌握了这些知识和技巧之后,我们才能更好地求解平面图形的面积问题。
高等数学理工类第三版上册(吴赣昌著)课后答案下载高等数学理工类第三版上册(吴赣昌著)内容提要绪言第1章函数、极限与连续1.1 函数1.2 初等函数1.3 数列的极限1.4 函数的极限1.5 无穷小与无穷大1.6 极限运算法则1.7 极限存在准则两个重要极限1.8 无穷小的比较1.9 函数的连续与间断1.10 连续函数的运算与性质总习题数学家简介第2章导数与微分2.1 导数概念2.2 函数的求导法则2.3 高阶导数2.4 隐函数的导数2.5 函数的微分总习题二数学家简介第3章中值定理与导数的应用3.1 中值定理3.2 洛必达法则3.3 泰勒公式3.4 函数的单调性、凹凸性与极值 3.5 数学建模——最优化3.6 函数图形的描绘3.7 曲率总习题三数学家简介第4章不定积分4.1 不定积分的概念与性质4.2 换元积分法4.3 分部积分法4.4 有理函数的积分总习题四数学家简介第5章定积分5.1 定积分概念5.2 定积分的性质5.3 微积分基本公式5.4 定积分的换元积分法和分部积分法 5.5 广义积分总习题五数学家简介第6章定积分的应用6.1 定积分的微元法6.2 平面图形的面积6.3 体积6.4 平面曲线的弧长6.5 功、水压力和引力总习题六第7章微分方程7.1 微分方程的基本概念7.2 可分离变量的微分方程7.3 一阶线性微分方程7.4 可降阶的二阶微分方程7.5 二阶线性微分方程解的结构7.6 二阶常系数齐次线性微分方程7.7 二阶常系数非齐次线性微分方程7.8 欧拉方程7.9 常系数线性微分方程组7.10 数学建模——微分方程的应用举例总习题七附录Ⅰ预备知识附录Ⅱ常用曲线附录Ⅲ利用Excel软件做线性回归习题答案第1章答案第2章答案第3章答案第4章答案第5章答案第6章答案第7章答案高等数学理工类第三版上册(吴赣昌著)目录本书根据高等院校理工类本科专业高等数学课程的教学大纲编写而成,并在第二版的基础上进行了修订和完善。
定积分求平面图形面积====================定积分是一种数学方法,用于计算曲线下的面积或曲面上的体积。
它可以用来求解平面图形的面积。
本文将讨论定积分求平面图形面积的原理,并通过实例说明它的应用。
一、定积分求平面图形面积的原理----------------------------------------------------------定积分求平面图形面积的原理是:将平面图形分解为若干矩形,利用每个矩形的面积来求得平面图形的面积。
具体来说,首先需要将平面图形的边界抽象为一个函数,然后将这个函数从横坐标的最小值到最大值分割成若干等份,每份称为一个矩形,每个矩形的面积可以用函数的值来计算,最后将所有矩形的面积加起来就可以得到平面图形的面积。
二、实例说明----------------------------------------------------------下面我们用一个实例来说明定积分求平面图形面积的方法。
假设我们要求解的平面图形是一个三角形,其边界可以用函数y=x-1来描述,且横坐标的最小值为0,最大值为2。
首先,我们将横坐标从0到2分割成4份,即0,0.5,1,1.5,2,每份称为一个矩形,然后计算每个矩形的面积。
由于横坐标的最小值为0,所以第一个矩形的面积为0;第二个矩形的面积为0.5*(1-1)=0;第三个矩形的面积为1*(2-1)=1;第四个矩形的面积为1.5*(2-1)=1.5;最后,将4个矩形的面积加起来,即可得到三角形的面积为2.5。
结论----------------------------------------------------------以上就是定积分求平面图形面积的原理及其应用,它可以用来计算各种平面图形的面积,是一种有效的数学方法。
高数增长速度口诀一天晚上,我碰到一个学生在散步,感觉时间过得真快。
学生们说,如果舒高有一个公式,他们应该已经去了研究生院,并成为成功的学徒。
互笑两声。
经过一些时间的整理,赶在开学前夕,助力挺过疫情的千万学子,莫挂在那棵数(树)上。
1.1 函数有理稠密且有序,全体实数连续性,邻域概念用的多,各种表示需谨记,函数概念已扩充,三种表示均等价,若有界、不唯一,单调性、分区间,奇偶注意定义域,函数周期不唯一。
1.2 初等函数反解莫忘定义域,单调区间方可反,基本初等有五类,幂指对和两三角,一层一层又一层,复合注意定义域,定义了双曲函数,三角函数也差不多。
1.3 数列的极限大学数列无穷项,任意存在来定义,结论倒推反解 n,中间插入以放缩,收敛数列必有界,反之不一定成立,极限存在则唯一,同时具有保号性,原收敛、子列同,子列散、原发散。
1.4 函数的极限无穷极限分正负,倒推反解再梳理,左右等、极限有,唯一有界且保号,子序列,收敛,往往被证明没有极限。
1.5 无穷大与无穷小动态理解无穷小,条件状语莫忽视,相乘相加需有限,有界乘之等于零,无穷大、则无界,无界未必无穷大,两个量相互纠缠,相互转化有神奇的效果。
1.6 极限运算法则若有意义直接代,加减乘除有定理,遇到分式最麻烦,上下同除巧转化,分子有理经常用,高中公式常看看。
1.7 极限存在准则,两个重要极限夹逼准则靠放缩,具体尺度需拿捏,单调有界有极限,转化方程求极限,重要极限凑结构,一步一步慢慢来。
1.8 无穷小的比较高低阶数各不同,只因速度有差异,齐头并进等价量,代换计算效率高,若要两者来相减,十有八九两泪流。
1.9 函数的连续与间断定义连续用极限,左右连续与连续,左右均连第一类,不等跳跃等可去,至少一侧不存在,无穷震荡第二类。
1.10 连续函数的运算与性质加减乘除仍连续,反函数、需单调,复合注意定义域,作用仍是求极限,函数闭区间连续,有最值、且有界,端点异号有零点,天地之间皆可取,一致连续必连续,反之不一定成立。
例谈利用定积分求解平面图形的面积定积分是一种强大的数学工具,可以用于计算曲线、曲面和复杂图形的面积,但也可以用于计算平面图形的面积,这里以计算平面图形面积为例,探讨利用定积分来求解平面图形的面积。
先来阐述定积分的概念,定积分指的是求解某一函数的积分,它的计算方法要求曲线的一侧被划分为多个区域,而该函数的值则是这些小区域的函数值之和,并最终求解函数的定积分。
定积分可以用于计算曲线及曲面的面积,也可以应用于计算复杂图形的面积,但它同样可以用于求解平面图形的面积。
回到本文的要点:如何使用定积分来求解平面图形的面积。
首先需要将平面图形划分为若干小区域,并计算每个小区域的定积分,然后求这些小区域的定积分之和,从而得到图形的总面积。
以三角形为例,令其由点${mathbf{P_1}}(x_1,y_1)$, ${mathbf{P_2}}(x_2,y_2)$,${ mathbf{P_3}}(x_3,y_3)$确定。
根据三角不等式:$S=frac{1}{2}|x_2y_3-x_3y_2+x_3y_1-x_1y_3+x_1y_2-x_2y_1| $可求出简单三角形的面积,但是,如果三角形有更复杂的形状,则可以将它划分为多个小三角形,然后使用定积分技术,将每个小三角形的面积乘以其定积分值,最终求出该图形的总面积。
同样,多边形也可以采用上述方法求解。
首先,多边形要被划分为多边形,然后将每个小三角形的面积乘以其定积分值,最终求出该图形的总面积。
除了三角形和多边形,定积分还可以用于计算椭圆的面积。
椭圆的面积计算公式为:$S=pi ab$其中,a和b分别是椭圆的长轴和短轴。
而定积分求椭圆的面积则采用分段法,即将椭圆划分成半径为r的多个小园,然后将每个小园的面积乘以它们的定积分,最终求出椭圆的总面积。
本文探讨了用定积分求解平面图形的面积的方法,定积分主要应用于将复杂的图形划分为若干小区域,然后求这些小区域的定积分之和来计算图形的总面积。
《数学分析(中)》课程标准1.课程说明《数学分析(中)》课程标准课程编码〔36733 〕承担单位〔师范学院〕制定〔〕制定日期〔2022年11月26日〕审核〔〕审核日期〔〕批准〔〕批准日期〔〕(1)课程性质:《数学分析(中)》是数学教育专业三年制专科生最重要的专业基础课之一,是数学教育专业的专业必修课,也是数学教育专业的专业核心课程。
(2)课程任务:本课程针对中小学数学教师开设,为深入理解中小学数学打下必要的基础,为从事中小学数学教师职业打下扎实的知识基础。
通过本课程的学习,能够使学生掌握数学分析的基本概念、基本理论和基本方法,为学习后继的所有专业课程奠定必要的数学基础。
(3)课程衔接:在课程设置上,本课程前置课程是《数学分析(上)》,后续课程有数学分析(下)。
2.学习目标课程的目标是通过系统的学习与严格的训练,全面掌握数学分析中一元函数微积分学及级数的基本概念、基本理论和基本方法;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微分和积分这一工具解决实际应用问题的能力。
通过该课程的学习,使学生能够理解数学分析的概念、性质;理解并掌握一元函数的微积分及级数的概念和运算法则,并熟练运用法则进行相应计算,能够判断级数的敛散性。
3.课程设计本课程以课堂为载体,根据中小学数学教师工作任务要求,确定学习目标及学习任务内容;本课程采取讲解教学模式,以学生为主体、以闭卷笔试为导向组织教学考核。
表3-1教学内容与学时分配表表2课程总体设计4.教学设计表3学习情境设计5.课程考核(1)考核方式:考试成绩由平时考核和期末考试组成。
平时考核:听课出勤、平时作业、课堂练习、小测验、课堂提问题等,占30%;期末考试:卷面成绩占70%,试卷可包括填空题、选择题、判断题、计算题、证明题及证明题。
(2)考核标准:学生能够理解并掌握数学.符合中小学数学教师的知识理论基础要求和职业资格要求。
6.课程资源(1)硬件要求:多媒体课件(2)师资队伍:数学教育专业团队师资力量雄厚,现有教授2人,副教授9人,讲师5人,其中具有硕士以上学历4人。