定积分的应用之微元法共26页
- 格式:ppt
- 大小:813.50 KB
- 文档页数:26
定积分微元法及其应用摘要:积分学中的定积分在几何、物理、经济管理等方面有着极其广泛的应用。
由于定积分的微元法通常往往能使一些实际问题简单化,因此,定积分的微元法在定积分的应用方面至关重要。
本文首先简介定积分的微元法适用的所求量以及定积分微元法在应用中的步骤,重点介绍积分微元法在几何、物理、经济管理及日常生活等方面的应用。
关键词:定积分:微元法:应用一、定积分的微元法适用的所求量定积分的微元法是将实际问题设法转化为定积分问题的一种方法,通常,如果所求量满足三条:1.关于某一个区间有关;2.在区间上具有可加性,即当把区间分成任意n个小区间时,相应的所求量也分成n个小部分,且所求量等于n个小部分之和,即;3.在上任取一个小区间,所求量的部分量能够近似表示成(即所求量的微分元素),那么所求量就可以用定积分的微元法来求,即。
二.定积分微元法在应用中的步骤定积分微元法就是将所研究的所求量进行无限细分,从中抽取某一微小部分进行探探讨,通过分析,研究找出所求量的整体变化规律的方法。
通常利用定积分微元法解决一些具体问题时,采用将所研究的所求量细分成很多微小的“元素”,而这些微小的“元素”具有相同的几何形态或物理规律,因此,我们仅需要分析和研究其中的一个微小部分,利用所学的数学或物理的理论知识进行处理,以期达到用一个定积分表达式来求所求量的效果。
用定积分微元法将实际问题中的所求量抽象为定积分的步骤也基本相同,分为3步,1.根据题意,建立适当坐标系,画出草图(使得后面的选积分变量、确定积分区间、寻找所求量的微分元素比较直观);由于函数关系的建立是由所建立的坐标系来决定的,坐标系的建立是否恰当,往往直接影响到寻找微分元素的难易以及定积分计算的繁简程度。
因此,建立坐标系时,既要考虑到较易寻找所求量的微分元素,还要考虑到后面的定积分的计算要相对较简单。
2.选取积分变量,并确定其变化区间。
积分变量选择的是否恰当,往往直接决定着定积分的计算是简单还是繁琐。