催化剂在工艺中的作用
- 格式:doc
- 大小:32.50 KB
- 文档页数:5
催化裂化原理催化裂化是一种重要的炼油工艺,通过催化剂的作用将重质烃分子裂解成轻质烃的过程。
其原理是在催化剂的作用下,长链烷烃分子发生裂解,生成短链烷烃和烯烃。
这种工艺可以将原油中的重质烃转化为汽油和柴油等轻质烃,是炼油过程中不可或缺的一环。
催化裂化的原理主要包括以下几个方面:1. 催化剂的作用。
催化裂化过程中,催化剂起着至关重要的作用。
催化剂可以降低裂解反应的活化能,加速反应速率,提高产物选择性,延长催化剂寿命等。
常用的催化剂包括硅铝比较高的沸石类催化剂和钼、镍等金属氧化物催化剂。
2. 裂化反应。
在催化裂化反应中,长链烷烃分子在催化剂的作用下发生裂解,生成短链烷烃和烯烃。
裂化反应是一个烷烃分子内部发生的裂解反应,主要包括碳-碳键的断裂和碳-碳键的重排。
裂化反应的产物主要是烷烃、烯烃和芳烃。
3. 反应条件。
催化裂化的反应条件包括温度、压力、催化剂种类和用量等。
通常情况下,催化裂化反应需要在较高的温度下进行,以提高反应速率和产物选择性。
此外,适当的压力和催化剂的选择也对裂化反应的效果有重要影响。
4. 产物分离。
催化裂化反应产生的混合气体需要进行分离和纯化,以得到所需的轻质烃产品。
通常采用的分离技术包括精馏、萃取、吸附等,以获得高纯度的汽油和柴油产品。
5. 催化剂再生。
在催化裂化过程中,催化剂会因受到焦炭和烃类物质的污染而失活,需要进行再生。
催化剂再生是通过热氧化或化学氧化等方法将焦炭烧除,恢复催化剂的活性和选择性,延长催化剂的使用寿命。
总的来说,催化裂化是一种重要的炼油工艺,通过催化剂的作用将重质烃分子裂解成轻质烃,可以提高原油的利用率,生产出更多的汽油和柴油产品。
催化裂化的原理涉及催化剂的作用、裂化反应、反应条件、产物分离和催化剂再生等多个方面,需要综合考虑和控制,以实现高效、稳定的生产过程。
催化剂在食品加工中的应用食品加工是指将农产品或食品原料经过一系列工艺加工制造成具有特定外形、口感和营养成分的食品产品的过程。
催化剂是一种能够加速化学反应速率但不参与反应本身的物质,具有在食品加工中广泛应用的优势。
本文将探讨催化剂在食品加工领域的应用以及其带来的益处。
一、酶催化反应中的应用酶催化反应是指通过酶作为催化剂,促使食品中的化学反应发生。
酶是一类具有高度专一性的生物催化剂,在食品加工中有着广泛的应用。
例如,面包的发酵过程中,酵母菌中的酶能够将淀粉分解为葡萄糖,从而产生二氧化碳,使面团膨胀发酵;牛奶中的乳酶能够将乳糖转化为乳酸,使牛奶变酸。
利用酶催化反应,食品加工过程中的特定化学反应可以高效进行,而且酶本身不会被消耗,可以循环利用。
二、催化剂在油脂加氢反应中的应用油脂加氢反应是指通过催化剂催化下的氢化反应,将不饱和脂肪酸转化为饱和脂肪酸。
在食品加工中,油脂加氢反应可以用于食用油的加工和改良。
例如,在植物油的加工过程中,通过催化剂的作用,可以将不饱和脂肪酸转化为饱和脂肪酸,降低其不饱和度。
这一过程不仅可以提高油脂的稳定性和抗氧化性能,延长其使用寿命,还可以改善油脂的风味和质感。
三、催化剂在食品色素合成中的应用食品色素是赋予食品鲜艳色彩的物质,其中许多色素的合成需要借助催化剂。
例如,食品中常见的染料类色素,如日落黄、透明质酸铁等,其合成过程中都需要催化剂的参与。
催化剂可以提供一个适宜的反应环境,加速色素的合成反应速率,提高色素合成的效率和产率。
此外,催化剂还可以帮助调整反应条件,控制色素的品质和纯度,确保合成的食品色素符合卫生标准和安全要求。
四、催化剂在食品防腐剂制备中的应用食品防腐剂是为了延长食品的保鲜期和防止食品腐败而添加的物质。
一些食品防腐剂的制备,如苯甲酸钠、山梨醇酯等,需要使用催化剂进行合成。
催化剂可以调控反应的速率和产物的选择性,提高防腐剂的合成效率和纯度。
此外,催化剂还可以降低合成过程中的温度和压力要求,减少能源消耗,降低生产成本,对环境友好。
简述催化剂的组成和作用催化剂是一种能够促进化学反应速率、提高反应选择性和降低反应温度的物质。
它能够通过提供适当的反应表面或引入更有利的反应路径,使反应能够更加有效地进行。
催化剂的组成通常由底物、反应物和催化剂组成三个部分。
催化剂可以是固体、液体或气体,并且可以是单一物质或混合物,常见的催化剂包括金属、金属氧化物、酸、碱、酶等。
催化剂的作用是通过提供一个表面或者界面用以吸附反应物,从而减小反应物之间的反应活化能,使反应更容易发生。
催化剂与反应物发生吸附后,通过改变反应物的化学键或构象,引发反应物的位置或电子的重排,促使反应物在催化剂表面上发生化学变化,生成中间体或者产物。
这些中间体或产物凭借较低的能垒或者更有利的反应路径,再次进入到催化剂的表面,并释放出来。
催化剂通过提供吸附表面,增大反应的效率和速率。
当反应物吸附到催化剂表面上,反应物之间可以更容易发生碰撞和互相作用,提高反应速率。
此外,催化剂还可以改变反应物的反应途径,降低反应的能垒,使反应的起始能量更低,从而降低反应的活化能,使反应可以在更低的温度下进行。
催化剂还可以提高反应的选择性。
它通过引入更有利的反应路径,促使原本不同的反应物选择性地发生特定的反应,从而产生特定的产物。
例如,催化剂可以选择性地催化异构化、氧化还原、加成、裂解等反应,提高反应的选择性。
催化剂还可以降低反应的温度要求。
在常规的化学反应中,很多反应都需要较高的温度才能进行。
而催化剂可以降低反应的温度需求,使反应可以在较低的温度下进行,这对于降低能源消耗、减少环境污染十分有益。
催化剂在化学工业中具有广泛的应用。
它们在制备化学品、炼油、污水处理、脱硫、催化裂化、催化加氢、制氢和合成氨等过程中起着关键的作用。
催化剂的研究和发展也成为了现代化学领域的重要课题。
总之,催化剂的作用主要是通过提供一个适当的表面或界面,降低反应活化能,促进化学反应的进行。
它们具有提高反应速率、增加反应选择性、降低反应温度等优势,对于实现高效、低能耗、环保的化学反应具有重要的意义。
石油炼制工艺及相关催化剂简介石油炼制工艺简介石油炼制是将原油中的各种组分分离、转化、聚合和结构调整,以获得所需产品的一系列工艺过程。
石油炼制工艺的发展使得人类能够从原油中提取出石油产品(如汽油、柴油、航空煤油等)以满足日益增长的能源需求。
石油炼制的主要工艺石油炼制的主要工艺包括原油初步处理、分离、转化和精制。
其中,原油初步处理主要是为了除去原油中的杂质和硫化物,以及调整原油的性质,为后续工艺准备好原料。
分离工艺则是将原油按不同的沸点范围进行分馏,将原油分成不同的馏分油。
转化工艺是将一些油品进行结构调整和重整,以获得更高价值的产品。
而精制工艺则是为了进一步提高产品的纯度。
石油炼制的设备石油炼制工艺需要大量的设备来进行操作和控制。
常见的设备包括蒸馏塔、加热炉、换热器、反应器等。
这些设备的设计和选型对石油炼制工艺的效率和产品品质有着重要的影响。
相关催化剂简介催化剂在石油炼制工艺中起着至关重要的作用。
催化剂可以提高化学反应速率,降低反应温度和压力,减少副产物生成,提高产品纯度,同时还可以延长设备的使用寿命,降低能耗和环境污染。
催化剂的种类在石油炼制工艺中常见的催化剂种类包括酸性催化剂、碱性催化剂和过渡金属催化剂等。
酸性催化剂酸性催化剂在石油炼制工艺中用于催化裂化、异构化、重整等反应。
常见的酸性催化剂有矽铝酸、磷酸和氯化铝等。
这些酸性催化剂能够提供活性酸位,促进分子间的反应。
碱性催化剂碱性催化剂主要用于加氢、脱硫和脱氮等反应。
常见的碱性催化剂有氧化铜、氧化铅和氢氧化钠等。
碱性催化剂能够吸附和中和酸性物质,促进反应的进行。
过渡金属催化剂过渡金属催化剂主要用于氢化、氧化和加氢裂化等反应。
常见的过渡金属催化剂有钯、铂和铑等。
过渡金属催化剂能够提供活性金属位,参与反应的催化过程。
催化剂的应用案例催化剂在石油炼制工艺中有着广泛的应用。
例如,在催化裂化工艺中,酸性催化剂被用于将重质油转化为轻质油。
在脱硫工艺中,碱性催化剂能够去除原油中的硫化物。
催化氧化工艺
催化氧化工艺是一种利用催化剂加速氧化反应,从而将原始有机废水转化为对环境友好的水和二氧化碳的处理方法。
在这个过程中,催化剂扮演了关键角色,通过降低反应能量,使得反应更加容易和高效。
催化氧化工艺的工作原理是将待处理有机废水的氧化还原电位(ORP)增加到正值,借此激活有机物分子发生氧化反应,最终将废水中的有机物质完全氧化成水和二氧化碳。
催化剂的作用在于将反应速率提高,因为它们能够提供表面吸附和分子匹配的机制,使反应分子结合在一起,从而增加氧化反应的速度。
催化氧化工艺的优点在于它是一种可持续、高效、环保的处理方法。
在催化氧化过程中,只需要使用氧气或氧化剂,无需考虑副产物或残留物。
此外,催化氧化过程还能够减少处理过程中耗费的能量和时间,达到同等水平的水质处理效果所需的时间和能量是其他处理方法的几倍。
催化氧化工艺的应用领域广泛,包括饮用水和废水处理、化学品制造、医药制造、食品加工等。
例如,在农业和食品加工行业中,催化氧化工艺处理排放废水和食品加工废水是非常普遍的应用。
同时,在水和废水处理领域,催化氧化工艺是一种高效替代物,可以用来取代常规氯化物消毒方法以及其它高度依赖特定化学品的处理方法。
总之,催化氧化工艺是一个具有巨大应用前景的高效、环保的处理方法。
随着环
境保护法规越来越严格,催化氧化工艺将继续被广泛应用,成为各种工业废水处理过程中的主要技术之一。
化学反应中的催化剂和催化作用化学反应是物质的转化过程,而催化剂在化学反应中扮演着至关重要的角色。
催化剂可以显著加速反应速率,降低所需的能量,并且在反应结束时可以被回收再利用。
本文将介绍催化剂的作用机理、分类以及在实际应用中的重要性。
一、催化剂的作用机理催化剂通过提供适宜的反应路径来改变化学反应的速率。
在反应中,催化剂与反应物发生物理或化学相互作用,形成活化复合物,从而降低了反应所需的活化能。
具体来说,催化剂可以通过以下几种方式发挥作用:1. 提供活化官能团:催化剂能够与反应物中的官能团相互作用,使其更容易发生反应。
例如,金属催化剂可以提供活性位点,促使气体分子吸附,并改变分子间相互作用从而促进反应。
2. 降低反应的活化能:催化剂能够降低反应物转化为中间体的活化能,使反应更容易发生。
催化剂通过与反应物形成键合,改变键的极性和键长,从而降低活化能。
例如,酶作为生物催化剂,在生物体内可以加速许多反应。
3. 提供新的反应机制:催化剂能够介导新的反应机制,从而改变反应路径。
有些催化剂能够提供反应的新的活化途径,从而产生具有不同化学性质的产物。
二、常见的催化剂分类根据催化剂的组成和性质,我们可以将其分为以下几类:1. 酸催化剂:酸性催化剂通过向反应体系中提供质子(H+),可以促进酸碱反应、羰基化反应等。
典型的酸催化剂包括硫酸、HCl等。
2. 碱催化剂:碱性催化剂以提供氢氧根离子(OH-)为主,可以促进酸碱反应、酯化反应等。
氢氧化钠和氢氧化钾是常见的碱催化剂。
3. 金属催化剂:金属催化剂通常以过渡金属为主,如铂、铁、钯等。
金属催化剂在许多有机反应中具有广泛应用,如氢化反应、烯烃的加成反应等。
4. 酶催化剂:酶是一类高度特异性的生物催化剂,通过空间结构和活性位点的调节来加速反应速率。
例如,酶催化剂可以促进葡萄糖转化为乳酸的反应。
三、催化剂在实际应用中的重要性催化剂在各个领域的应用都非常广泛,从化学合成到环境保护都离不开催化剂的存在。
化学工程与工艺专业优秀毕业论文范本催化剂在化学合成中的应用研究随着工业的发展和社会的进步,化学工程与工艺专业的毕业生们需要在毕业论文中展现出自己的专业知识和研究成果。
本篇文章将以"化学工程与工艺专业优秀毕业论文范本:催化剂在化学合成中的应用研究"为题,来探讨催化剂在化学合成中的应用研究。
引言:化学工程与工艺专业作为一门综合性的学科,涉及到许多化学反应和工艺过程的研究。
而催化剂作为化学合成中的重要组成部分,可以显著提高反应速率、改善产物选择性、降低反应温度等。
因此,催化剂在化学工程与工艺中的应用研究显得尤为重要和迫切。
一、催化剂的定义和分类催化剂是指能够参与化学反应但在反应结束时仍能恢复原状的物质。
根据其在化学反应中的状态,催化剂可分为固体催化剂、液体催化剂和气体催化剂。
二、催化剂在有机合成中的应用研究1. 催化剂在醇醛合成中的应用研究醇醛合成是有机合成中常见的一种反应。
通过引入催化剂,可以大大提高醇醛合成的速率和选择性,从而提高产品的质量和产率。
2. 催化剂在烯烃合成中的应用研究烯烃合成是工业生产中常用的一类反应。
催化剂在烯烃合成中的应用研究,可以有效提高反应的转化率和选择性,并降低能耗和环境污染。
三、催化剂在无机材料合成中的应用研究1. 催化剂在纳米材料合成中的应用研究催化剂在纳米材料合成中起到重要作用。
通过合适的催化剂选择和反应条件优化,可以在无机材料合成过程中控制其尺寸、形貌和晶态结构,从而获得具有特定功能的纳米材料。
2. 催化剂在陶瓷材料合成中的应用研究陶瓷材料是一种重要的无机材料,广泛应用于建筑、电子和能源等领域。
催化剂在陶瓷材料合成中的应用研究,可以优化反应条件,提高材料的烧结性能和物理化学性质。
结论:催化剂在化学合成中具有广泛的应用前景,通过合适的催化剂选择、反应条件优化和催化机理研究,可以实现高效、绿色和可持续的化学合成过程。
化学工程与工艺专业的毕业生们应该加强对催化剂在化学合成中的应用研究,努力将其理论研究与工程实践相结合,为化学工程和工艺的发展做出更大的贡献。
各类催化剂及催化作用催化剂是一种物质,它能够加速化学反应的速率而不被消耗。
催化剂能够通过改变反应的反应机理、降低反应的激活能、提供新的反应途径等方式来促进反应的进行。
催化剂在许多化学工业生产中起到了重要的作用,它们广泛应用于石化、有机与无机化学、电化学、高分子材料、生物化学等领域。
根据催化剂的性质和使用方式的不同,催化剂可以分为以下几类:1.酸催化剂:酸催化剂是指具有良好的酸性的催化剂。
它们能够提供H+离子来参与化学反应。
酸催化剂广泛应用于有机合成反应中,常见的酸催化剂有硫酸、磺酸、磷酸等。
酸催化剂可以加速酯的酯化反应,醇的缩醛反应等。
酸催化剂在聚合物化学中也有重要的应用。
2.碱催化剂:碱催化剂是指具有良好碱性的催化剂。
它们能够提供OH-离子来参与化学反应。
碱催化剂广泛应用于酯的水解反应、醛的缩醛反应等中。
常见的碱催化剂有氢氧化钠、氢氧化钾等。
3.金属催化剂:金属催化剂是指以金属或金属的化合物为催化剂的一类。
金属催化剂主要应用于氢化反应、氧化反应、加氢、脱氢等。
例如,铂和钯常用作氢化反应的催化剂,铁催化剂常用于醚的制备等。
4.酶催化剂:酶是一种生物催化剂,酶催化剂是指以酶作为催化剂的一类。
酶具有高效率、高选择性、条件温和等特点,因此在生物化学反应中广泛应用。
例如,酶可以催化食物的消化、蛋白质的合成等。
5.触媒催化剂:触媒催化剂是指以触媒作为催化剂的一类。
触媒常用于高分子材料合成和有机合成反应中。
触媒能够通过吸附反应物、改变反应物的电子结构、改变反应物的碰撞效率等方式来促进反应的进行。
常用的触媒催化剂有铂、钯、钌、钌等。
以上仅是催化剂的一些常见分类,催化剂的种类和催化作用不止以上所述。
催化剂在化学反应中起到了重要的作用,通过催化剂能够提高反应速率,降低工艺条件,改善产品品质等。
在现代化学的发展中,研究和开发新型催化剂以及改进已有催化剂的催化性能是一项重要的研究课题。
催化剂的研究和应用对于推动科学技术的发展和提高化工生产的效率具有重要的意义。
催化剂的作用催化剂是指能够增强某种化学反应速率的物质,而在反应结束时自身并不发生永久的变化。
催化剂对于化学工业以及许多工业领域具有重要的作用。
其作用主要可归纳为以下几方面:1. 降低活化能:催化剂可以降低化学反应的活化能,使得反应速率大大提高。
这是因为催化剂能够提供一个不同于反应物的反应途径,使得反应的中间产物与催化剂发生物理或化学相互作用,从而降低了反应的能量要求。
2. 提高选择性:催化剂还可以提高化学反应的选择性。
在反应发生之前,催化剂或其表面提供了一个特殊的反应环境,这使得一些特定的反应途径具有更高的速率。
这样,催化剂可以选择性地提供某种或某几种反应途径,从而使得反应产物更加纯净。
3. 提高反应均匀性:催化剂能够提高化学反应的均匀性,使得反应物在催化剂表面发生反应。
催化剂通常具有较高的表面积,因为它的微观结构有许多小孔或活性位点。
这些位点可以吸附和激活反应物,从而增加反应物之间的接触,加快反应速度。
此外,催化剂还可以提高反应物的溶解度,改变反应的动力学条件等等。
4. 节约能源和原料:催化剂的使用不仅可以加速化学反应速率,在进行某些反应时,还可以降低反应的工艺条件,从而减少能源消耗和原料浪费。
比如,催化剂可以使得高温或高压反应在较温和的条件下进行;催化剂还可以促使一些要求使用昂贵的原料或试剂的反应,转向使用更廉价、常见的原料和试剂,从而节约原料成本。
总的来说,催化剂在化学反应中起到了加速反应速率、提高选择性、提高反应均匀性以及节约能源和原料等方面的重要作用。
通过催化剂的应用,化学工业能够更高效地进行生产,降低生产成本,从而推动工业的发展。
同时,在环境保护领域,催化剂的使用也可以促使一些环境友好的反应路径得到实现,减少对环境的污染,实现可持续发展。
催化剂分类催化剂是一种能够增加化学反应速率的物质,而不会发生永久性的变化。
催化剂广泛应用于化学工业和生物工艺中,以提高反应效率和降低能量消耗。
根据其化学性质和应用领域的不同,催化剂可以被分类为不同的类型。
1. 酸催化剂:酸催化剂是指能够提供质子(H+)的催化剂。
它们能够在反应中捕获并转移质子,从而加速反应速率。
例如,硫酸、磷酸和氯化亚砜等强酸催化剂在酯化反应和加成反应中起着重要的作用。
2. 碱催化剂:碱催化剂是指能够提供氢氧根离子(OH-)或其他碱性物质的催化剂。
它们能够中和酸性物质,从而促进反应的进行。
碱催化剂常用于酯水解、酰胺合成等反应中。
例如,氢氧化钠和氢氧化钾是常见的碱催化剂。
3. 金属催化剂:金属催化剂是指由金属或金属化合物组成的催化剂。
金属催化剂能够通过吸附和解离反应物,从而促进反应的进行。
它们广泛用于氧化反应、加氢反应和氢解反应等。
常见的金属催化剂包括铂、钯、铑等。
4. 酶催化剂:酶是一类特殊的生物催化剂,它们由蛋白质组成,并具有高度的催化活性和特异性。
酶催化剂能够在生物体内加速化学反应的进行,例如消化食物、合成新的分子等。
酶催化剂具有高效、选择性和可控性等特点,因此在生物工艺领域具有广泛的应用。
5. 氧化剂和还原剂:氧化剂和还原剂是一种特殊类型的催化剂,它们能够在氧化还原反应中起到催化作用。
氧化剂能够接受电子,而还原剂能够提供电子,从而促进氧化还原反应的进行。
常见的氧化剂包括过氧化氢和高锰酸钾等,而常见的还原剂包括亚硫酸氢钠和硫酸亚铁等。
催化剂的分类根据其化学性质和应用领域的不同而异。
酸催化剂、碱催化剂、金属催化剂、酶催化剂以及氧化剂和还原剂都是常见的催化剂类型。
它们在化学工业和生物工艺中发挥着重要的作用,能够提高反应效率、降低能量消耗,并广泛应用于各种化学合成、能源转化和环境保护等领域。
催化剂的研究和应用将继续推动科学技术的发展,为人类社会的进步做出贡献。
催化剂在化学工艺中的作用化学化工学院09级5班杨兴平学号:200910240535摘要:20世纪特别是下半叶以来,由于催化科学和技术的飞速发展,使得数以百计的工业催化剂开发成功,而数量更多的催化剂,在深刻认识的基础上,得以更新换代。
新型催化剂正日益广泛和深入地渗透于石油炼制工业、化学工业、高分子材料工业、生物化学工业、食品工业、医药工业以及环境保护工业的绝大部分工艺过程中,起着举足轻重的作用。
本文对催化剂在化学工艺中的作用进行一下简单介绍。
关键词:催化剂的用途;化学工业;分类;制作方法;纳米催化剂;展望一、催化剂概述:(一) 定义在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。
(二) 基本特性①催化剂能够加快化学反应速率,但本身并不进入化学反应的计量。
②催化剂对反应具有选择性,即催化剂对反应类型、反应方向和产物的结构具有选择性。
③催化剂只能加速热力学上可能进行的反应,而不能加速热力学上不能进行的反应。
④催化剂只能改变化学反应的速率,而不能改变化学平衡的位置。
⑤催化剂不改变化学平衡,意味着对正方向有效的催化剂,对反方向的反应也有效。
(三) 用途在化工生产、科学家实验和生命活动中,催化剂都大显身手。
例如,硫酸生产中要用五氧化二钒作催化剂。
由氮气跟氢气合成氨气,要用以铁为主的多分组催化剂,提高反应速率。
在炼油厂,催化剂更是少不了,选用不同的催化剂,就可以得到不同品质的汽油、煤油。
汽车尾气中含有害的一氧化碳和一氧化氮,利用铂等金属作催化剂可以迅速将二者转化为无害的二氧化碳和氮气。
酶是植物、动物和微生物产生的具有催化能力的蛋白质,生物体的化学反应几乎都在酶的催化作用下进行,酿造业、制药业等都要用催化剂催作。
1、催化剂在无机化工中的作用在生产基本无机化工原料的领域中,主要以三酸两碱为核心,它们的产量巨大,是重要的化工原料。
其中的硫酸和硝酸分别被称为“化学工业之母和炸药工业之母”,它们在工业和国防部门,都具有重要的价值。
生产硫酸过程中,SO2转化为SO3所用的催化剂,最初是NO2,但设备庞大,硫酸浓度低;1918年开发成功活性高、抗毒性好、价格低廉的钒催化剂,硫酸生产的产量、质量大幅度地提高,成本下降。
氨由氮和氢来合成。
氮从空气中获取,而氢则来自含氢化合物,如水或烃类。
不用催化剂来制备氢的方法有水电解法或重油部分氧化法等。
由于这些方法的成本大,所以,自从天然气或石脑油水蒸气转化催化剂开发成功后,世界上现代大型氨厂,多采用技术先进、经济合理的烃类水蒸气转化法。
若以天然气或石脑油为原料合成氨,整个过程由加氢、脱硫、转化、变换、甲烷化及氨合成等8个工序构成。
每个工序都要使用催化剂总之,合成氨工业能有今日,与催化剂领域的科学与技术进步密切相关。
今后合成氨工业的革新也将有待于新的催化剂的发明和老催化剂的更新。
如氨合成工业存在节能降耗的技术难题,希望能开发出低水碳比新型蒸汽转化催化剂;要实现“等压合成”新流程,多半要依赖于低温、低压、高活性的新型合成氨催化剂的研制成功等等。
2、在有机化工中的作用有机化工的生产基本上是从三大起始原料(煤、石油和天然气)开始的,先由它们生产基础原料(三烯—乙烯、丙烯和丁二烯、三苯—苯、甲苯和二甲苯萘等),然后进一步合成有用化学品、精细化学品和三大合成材料(合成树脂与塑料、合成橡胶及合成纤维)等。
首先,基础原料的生产----石油。
最早的石油炼制,采用的是蒸馏等物理方法,将较轻的液态烃(如汽油、煤油和柴油)和气态烃从原油中分离。
近代普遍发展了催化裂化、烷基化、加氢精制、加氢脱硫等新工艺,从而扩大轻油馏分的收率,并且提高了油产品的质量。
特别是流化床催化裂化的开发,被称为是20世纪的一大工业革命,裂化催化剂在世界上应用最多、产量最高。
从石油烃经过催化裂解可以制得上述的三烯。
从支链或直链烃石油馏分,经催化重整,得到三苯等芳烃。
它们都是重要的基础原料。
其次,基本有机合成以三烯、三苯等基础原料合成低分子有机化合物,它们是生产高分子化学品和精细化学品的重要原料。
这类有机反应的共同特点是:反应速度慢和副产品多。
所以要实现工业化,就必须成功开发出高活性、高选择性的催化剂。
事实上,在基本有机化学品的生产过程中,无一不用到催化剂最后,三大合成材料生产。
三大合成材料指合成树脂与塑料、合成橡胶及合成纤维,它们有着广泛的用途和巨大的经济价值。
在这些聚合物材料的生产发展过程中,经历了两次质的飞跃:第一次是1953年,由于Ziegler-Natta型催化剂的问世,使乙烯的聚合反应压力从100~300MPa降至接近常压,继而又发展到丙烯的聚合。
于是,一个以聚乙烯为主的合成材料新时代开始了;第二次是在20世纪90年代前后,由于出现了活性和选择性更高的全新一代的茂金属等新型聚烯烃催化剂,使聚合物产品的质量更高、品种更多。
如高透明度、高纯度的间规聚丙烯、分子量分布极均的聚烯烃等,由此,人类被带到一个聚烯烃及其它塑料的新时代。
3、催化剂在精细化学中的作用精细化学品是技术密集、品种多、产量小而附加值高的化工产品。
近20年来,精细化学品工业的发展很快,目前已经有数百种产品,如各种助剂、表面活性剂、胶粘剂、药品、染料及催化剂等。
几乎遍及国民经济和国防建设的各个部门,用途极为广泛。
精细品生产的特点是:反应种类多,如加氢、氧化、酯化、环化、重排等;一种产品的生产包括的反应步骤多;产品结构复杂,纯度要求高,使得生产流程长,等等。
因此,精细化学品的生产,需要采用新的催化技术来克服上述缺点。
据统计,日本在1975~1984年,向国外发表的催化剂专利中,用于精细品生产的催化剂所占的比例从7.8%上升到24.8%,增加了2.4倍。
二、催化剂的分类:催化剂[1]种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂;均相催化剂有酸、碱、可溶性过渡金属化合物和过氧化物催化剂。
多相催化剂有固体酸催化剂、有机碱催化剂、金属催化剂、金属氧化物催化剂、络合物催化剂、稀土催化剂、分子筛催化剂、生物催化剂、纳米催化剂等;按照反应类型又分为聚合、缩聚、接枝、酯化、缩醛化、加氢、脱氢、氧化、还原、烷基化、异构化等催化剂;按照作用大小还分为主催化剂和助催化剂。
三、催化剂的制作方法:1.沉淀法沉淀法的一般操作是在搅拌的情况下把碱性的物质加入金属盐类的水溶液中,再将生成的沉淀物洗涤、过滤、干燥和焙烧,制造出所需要的催化剂粉状前驱物。
在特殊情况下,也可以用非水溶液,例如酸、碱或有机溶剂的溶液。
2.浸渍法浸渍法是将载体放进含有活性物质(或连同助催化剂)的液体(或气体)中浸渍,达到浸渍平衡后,将剩余的液体除去,再进行干燥、焙烧、活化等与沉淀法相近的后处理。
该法拥有以下有点。
第一,可以用既成外形与尺寸的载体,省去催化剂成型的步骤。
第二,可选择合适的载体,提供催化剂所需要的物理结构特征,比如表面积、孔半径、机械强度等。
3.热熔融法热熔融法是制备某些催化剂的特殊方法,适用于少数不得不经过熔炼过程的催化剂,为的是借助高温条件将各个组分熔炼称为均匀分布的混合物,配合必要的后续加工,可制得性能优异的催化剂。
这类催化剂常有高的强度、活性、热稳定性和很长的使用寿命。
4.离子交换法离子交换反应发生在交换剂表面固定而有限的交换基团上,是化学计量的、可逆的、温和的过程。
离子交换法借用离子交换剂作为载体,以阳离子的形式引入活性组分,制备高分散、大比表面积、均匀分布的附载型金属或金属离子催化剂。
5.混合法根据被混合物料的物相不同,混合法可以分为干混和湿混两种类型。
两者虽同属于多组分的机械混合,但设备有所区别。
多种固体物料之间的干式混合,常用搅拌机、球磨机等设备,而液固相的湿式混合,多用捏合机、槽式混合器、轮碾机等,有时也用球磨机或胶体磨。
也还有使用沉淀法浆料与载体粉料想混,称为混沉法的,在槽式沉淀反应器中进行。
四、纳米催化剂1.纳米材料纳米材料是指在三维空间中至少有一维处于纳米尺寸范围、或由它们为基本单元构成的材料。
在纳米材料所处的介观领域,由于三维尺寸很细小,出现了许多奇异的、崭新的物理性能:①小尺寸效应②表面效应③量子尺寸效应④宏观量子隧道效应⑤介电限域效应。
2.纳米催化剂纳米催化材料之所以具有特异的催化性能,主要是基于“小尺寸效应”和“表面效应”。
实验证明,构成固体材料的微粒,如果在充分细化,由微米级细化到纳米级之后,将可能产生很大的“小尺寸效应”和“表面效应”,其相关性能会发生飞跃性突变,并由此带来其物理的、化学的以及物理化学的诸多性能的突变,因而赋予材料一些非常或特异的性能,包括光、电、化学活性等各个方面。
例如:如果氧化硅等粒径达到纳米级,其反应的选择性可以提高5倍;日本科学家用附载于氧化钛载体上的纳米铂为催化剂,加入甲醇的水溶液中,用普通光照射,成功的制取出氢气,产出率比用普通催化剂提高10倍。
3.制备①化学气相淀积法:是指利用气态物质在固体表面进行化学反应后,在其上生成固态淀积物的过程。
如利用气相法制造超细炭黑,作橡胶填料。
②溶胶凝胶法:该法的基本步骤是,现将醇盐溶解于有机溶剂中,通过加入蒸馏水,使醇盐水解形成溶胶,溶胶凝化处理后得到凝胶,再经干燥、焙烧和粉碎,即得到粉体。
五、催化剂展望在21世纪,环保要求日益严格,在这种情况下,仅靠传统的、单一的化学催化方式往往难以达到环保的要求,这就迫使人们不得不另外想办法来解决这一问题。
在这一过程中,生物催化、光催化、电催化等一系列新颖的催化技术相继问世。
1.生物催化生物催化剂俗称酶,和一般化学催化剂一样,本质上可以定义为是一种能加速特殊反应的生物分子。
酶催化工艺中往往采用无毒害作用的生物材料为原料,取代了了原先那些有毒的化工原料。
这样就减少了社会上对有毒原料的需求量,排除了这些物质在贮运过程中对周围环境的污染和对操作员工的毒害。
2.光催化光催化反应是光化学反应与催化反应的融合,它是在光和催化剂同时存在时才进行的反应。
由于该反应吸收光子能量的关系,其反应速度比单纯的催化反应更快了。
近来,多相光催化在环保领域内如在净化气相和水中的有机污染物方面广泛应用,已称为多相光催化的一个重要的应用领域。
3.电催化电催化是使电极、电解质界面上的电荷转移加速反应的一种催化作用。
电催化反应速度不仅仅有催化剂的活性所决定,而且还与电场及电解质的本性有关。
由于电场强度很高,对参加电化学反应的分子或离子具有明显的活性作用,使反应所需的活化能大大降低。
所以大部分电化学反应可以在远比通常化学反应低的多的温度下进行。
在电催化反应中,由于电极催化剂的作用发生了电极反应,使化学能直接转变成电能,最终输出电流。
参考文献:[1]《催化剂工程导论》王尚弟孙俊全化学工业出版社2007[2]《环保催化材料与应用》孙锦宜林西平化学工业出版社2002[3] 百度百科。