第4章 催化剂制备与使用(简化)
- 格式:ppt
- 大小:2.14 MB
- 文档页数:69
催化剂制备
催化剂是一种特殊的物质,能够改变物质的化学反应速率,在化学催化的加工工艺中,它们扮演着重要的角色。
催化剂的制备一般需要一个彻底的步骤,一般可以分为准备,加工,测试三个步骤。
在准备阶段,首先需要准备原始原料,然后按照配方将原料混合煅烧,进行桥氰化、氧化和其它必要的反应。
在加工阶段,首先需要制备合格的原料,包括金属氧化物粉体,这种原料可以由微粉磨机研磨成标准粒径,并且粒径分布要满足相关的技术要求。
然后,将备好的原料混合煅烧,以获得预期的催化剂。
最后,要对所制备的催化剂进行测试,测试反应速度和作用力学活性。
如果测试结果不理想,则需要重新准备材料,重新混合煅烧,再次测试,以确定最终的制备工艺参数,最后,可以实现理想的催化剂制备。
催化剂的制备不仅需要类似的步骤,而且需要对原料的分散程度,反应的温度,时间和粒度要严格控制和管理。
该过程中,催化剂的结构及其活性也有很大对于最后产品质量的影响,必须仔细研究和加以改进,以获得理想的结果。
只有经过在此过程中谨慎地实践,才可以制备出质量优良的催化剂,以满足工业的需求。
第四章金属催化剂及其催化作用4.1 金属催化剂的应用及其特性4.1.1 金属催化剂概述及应用金属催化剂是一类重要的工业催化剂。
主要包括块状催化剂,如电解银催化剂、融铁催化剂、铂网催化剂等;分散或者负载型的金属催化剂,如Pt-Re/-Al2O3重整催化剂,Ni/Al2O3加氢催化剂等;4.1.2 金属催化剂的特性几乎所有的金属催化剂都是过渡金属,这与金属的结构、表面化学键有关。
过渡金属能级中都含有未成对电子,在物理性质中表现出具有强的顺磁性或铁磁性,在化学吸附过程中,这些d电子可与被吸附物中的s电子或p电子配对,发生化学吸附,生成表面中间物种,从而使吸附分子活化。
金属适合于作哪种类型的催化剂,要看其对反应物的相容性。
发生催化反应时,催化剂与反应物要相互作用。
除表面外,不深入到体内,此即相容性。
如过渡金属是很好的加氢、脱氢催化剂,因为H2很容易在其表面吸附,反应不进行到表层以下。
但只有“贵金属”(Pd、Pt,也有Ag)可作氧化反应催化剂,因为它们在相应温度下能抗拒氧化。
故对金属催化剂的深入认识,要了解其吸附性能和化学键特性。
4.2 金属催化剂的化学吸附4.2.1 金属的电子组态与气体吸附能力间的关系不同的金属催化剂的化学吸附能力取决于各种因素,包括金属化学性质、气体化学性质、金属结构、吸附条件等等,见表4-3。
1 具有未结合d电子的金属催化剂容易产生化学吸附2 电子云重叠少,吸附弱;电子云重叠多,吸附强。
3 气体的化学性质越活泼,化学吸附越容易。
4 吸附条件也有一定影响。
低温有利于物理吸附,高温有利于化学吸附(但不能太高,否则TPD怎么做?)。
压力增加对物理吸附和化学吸附都有利。
4.2.2 金属催化剂的化学吸附与催化性能的关系金属催化剂催化活化的过程可以看成是化学吸附的过程,化学吸附的状态与金属催化剂的逸出功及反应物气体的电离势有关。
1 电子逸出功:将电子从金属催化剂中移到外界所需的最小功,或电子脱离金属表面所需的最低能量。
实验方案采用酸化后凹凸棒土(ATP)做载体,通过分步浸渍法分别浸渍含量为10%Ni 与杂多酸催化剂制备:酸化凹凸棒土:配制一定浓度的5 mol/L 的硝酸,取20 g ATP 粉末置于500 mL 烧杯中,向烧杯中加入100 mL 的5 mol/L 硝酸溶液搅拌均匀后封口置于水浴锅中60 ℃ 恒温搅拌2 h ,,以去离子水洗至上层清液为中性,酸化后ATP 洗至中性,取出烧杯于常温下静置,进行抽滤,获得滤饼。
将滤饼于100 ℃烘箱中干燥12 h ,研磨粉碎、过筛,最后在600 ℃ 下煅烧4 h ,升温速率4 ℃/min 。
1、负载活性金属:(1)Ni 负载总量为10%, 则:% 105N N =+ N=5/9 g 1 Ni 1 Ni(NO 3)2·6H 2O带入:g 2.7528290.8158.69X M M m m 硝酸镍Ni Ni 硝酸镍=⨯=⋅= 称取2.7528 g Ni(NO 3)2·6H 2O 置于250 mL 烧杯中,加入80 mL 去离子水完全溶解,形成溶液I 。
称取5.00 g 实验室改性后的ATP ,加入溶液I 中,封口后在常温下搅拌2小时,充分混匀后置于水浴锅中恒温60 ℃ 搅拌12 h ,之后在90 ℃ 恒温水浴锅中搅拌至蒸干,蒸干过程用少量去离子水冲洗内壁,已达到充分混合。
蒸干后收集置于烘箱干燥12小时,研磨粉碎、过筛,最后在管式反应炉中500 ℃ 煅烧4h ,升温速率2 ℃/min 。
固体收集后称为Ni/ATP 。
2、负载杂多酸:取计算好的含量占10 %的杂多酸置于烧杯中,加水完全溶解,再加入 5 g Ni/ATP ,充分混匀后置于60 o C 水浴锅中搅拌12 h ,之后蒸干,干燥、研磨后收集记为HPA-Ni/ATP 。
催化剂的制备及其在化学反应中的应用催化剂是指能够极大地提高化学反应速度的物质,是许多化学反应工业化生产中不可或缺的一环。
催化剂制备的方法有很多种,其中包括物理法、化学法、生物法等等。
物理法催化剂制备主要是利用物理性质来制备催化剂。
首先要获得纯净的金属材料,然后将其加工成处理器件,最后在特定的温度和气压下进行处理,形成催化剂。
化学法催化剂制备主要是把化学反应过程作为催化剂制备的过程。
例如有机合成中使用的氧化钒催化剂,就是将钒以某种特定的方式与其他化合物反应,在适当的条件下制备而成。
生物法催化剂制备主要是利用生物学的技术和知识制备催化剂。
例如酶制造,就是使用基因工程技术生产特定的酵素,然后将其用作催化剂。
同时,生物法还包括利用生物体内的酵素或细胞作为催化剂的方法。
催化剂在化学反应中起到至关重要的作用,能够加速化学反应进度,改善反应条件,提高反应产率和化学反应的选择性等。
催化剂在大量的化学反应中都得到了广泛的应用,下面主要介绍几个典型的应用。
1. 环氧化反应环氧化反应是乙烯与过氧化氢反应生成环氧乙烷的反应。
在反应中,过氧化氢水解为氧气和水,同时氧原子与乙烯发生加成反应生成环氧乙烷。
在该反应中,以钒、钼等过渡金属或酸性凝胶催化剂为固定的催化剂可以起到非常好的效果,使环氧乙烷的收率大大提高。
2. 氧化反应氧化反应是指将有机化合物中含有的碳、氢等元素氧化为更氧化状态的的反应。
氧化反应在很多有机合成中都得到了广泛的应用,如制备甲醇、丙烯酸、吲哚等。
在这些反应中,空心球化铁酸催化剂的使用能够使化学反应效果得到优化,在反应的选择性和收率上都有很好的表现。
3. 加氢反应加氢反应是将烯烃或芳香烃中的π键和氢气加成生成饱和化合物的反应。
加氢反应是许多化学反应中的关键步骤,也是制备化学品的一项重要工艺。
在加氢反应中,钯、铱、铂、镍等催化剂经常用来催化反应,以使效果达到最优。
总的来说,催化剂的制备和利用已经成为现代化学生产中非常重要的一部分。
催化剂制备及应用催化剂是一种能够加速化学反应速率,同时不被反应所消耗的物质。
催化剂在许多工业过程中起到重要的作用,可以提高反应产率,降低能耗,减少废物产生等。
下面将首先介绍催化剂的制备方法,然后探讨催化剂在各个领域的应用。
催化剂的制备方法包括物理法、化学法和生物法等。
物理法主要通过物理方法调整催化剂的形貌和结构。
例如,可以通过溶胶凝胶法合成具有特定孔径和表面积的催化剂颗粒。
化学法则是利用化学反应合成催化剂,常用的方法包括共沉淀法、沉积法、水热合成法等。
例如,通过改变沉淀反应的温度、pH值、反应物浓度等条件,可以得到具有不同晶相和组成的催化剂。
生物法则是利用生物体制备催化剂,例如利用酶或微生物合成特定催化剂。
这些制备方法可以根据所需催化剂的性质和应用领域选择合适的方法。
催化剂在化学工业中具有广泛的应用。
以催化裂化为例,它是石油炼制中的重要工艺,能将重质石油分子裂解为轻质燃料和化工原料。
在催化裂化过程中,使用沸石作为催化剂可以提高反应选择性和产率。
此外,催化剂还在有机合成、氧化还原反应等领域有重要的应用。
例如,金属催化剂可以催化羰基化合物的加氢反应,将醛酮还原为相应的醇。
此外,催化剂还广泛应用于环境保护领域,例如汽车尾气净化中使用的三元催化剂可以将一氧化碳、氮氧化物和有机物转化为无害物质。
催化剂的应用还延伸到能源领域。
例如,在燃料电池中,催化剂可以加速氧气的还原反应和燃料的氧化反应,将化学能转化为电能。
铂是燃料电池催化剂中常用的材料,因为它具有良好的催化活性和稳定性。
此外,催化剂还可以应用于可再生能源的转化和利用中。
例如,光催化剂可以通过光激发产生电子-空穴对,从而催化水的光解制氢,为可再生能源提供氢燃料。
此外,催化剂在生物医药领域也具有广泛的应用。
例如,有机合成中催化剂的应用可以高效合成复杂的药物分子。
此外,酶催化剂可以用于生物转化和生物分析等领域。
例如,葡萄糖氧化酶可以将葡萄糖氧化为葡萄糖酸,用于血糖检测。