第25题二次函数中寻找等腰三角形问题
- 格式:doc
- 大小:455.00 KB
- 文档页数:20
二次函数中的等腰三角形问题式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2ba ,244acb a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2 等腰三角形的性质1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形的腰与它的高的关系直接的关系是:腰大于高。
间接的关系是:腰的平方等于高的平方加底的一半的平方。
考点3 相似三角形的性质1.相似三角形对应角相等,对应边成正比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3.相似三角形周长的比等于相似比。
4.相似三角形面积的比等于相似比的平方。
5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方6.若a/b =b/c,即b²=ac,b叫做a,c的比例中项7.c/d=a/b 等同于ad=bc.8.不必是在同一平面内的三角形里(1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比三、例题精析【例题1】如图,抛物线y=-x2+x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M。
二次函数在数学中是一个非常重要的概念,它在各个领域都有广泛的应用。
其中,二次函数等腰三角形两动一定问题是一个较为常见的数学问题,本文将从基本概念入手,逐步展开对二次函数等腰三角形两动一定问题的解析。
1. 二次函数的基本概念二次函数是指数学中的一种函数形式,其一般形式为y=ax^2+bx+c,其中a、b、c是实数且a≠0。
二次函数的图像是一条开口朝上或朝下的抛物线,其开口方向取决于a的正负。
二次函数在代数、几何、物理等领域都有着广泛的应用,因此对二次函数的研究具有重要意义。
2. 等腰三角形的基本概念等腰三角形是指具有两条边相等的三角形。
在等腰三角形中,两个相等的边称为等腰边,而夹在等腰边之间的角称为顶角。
等腰三角形在几何学中具有重要的地位,其性质和应用也是我们在学习和实际生活中经常遇到的。
3. 二次函数等腰三角形两动一定问题在数学问题中,我们经常会遇到求解关于二次函数和等腰三角形的结合问题。
其中,二次函数等腰三角形两动一定问题即是其中之一。
这类问题通常涉及到二次函数图像与等腰三角形的关系,需要通过数学方法去分析和求解。
4. 解析二次函数等腰三角形两动一定问题的方法4.1 分析二次函数的图像特点我们需要通过对二次函数的图像特点进行分析,来理解二次函数与等腰三角形的关系。
通过对二次函数的开口方向、顶点、对称轴等特征进行研究,可以为后续的问题解决提供重要的线索。
4.2 探讨等腰三角形的性质我们需要对等腰三角形的性质进行深入探讨。
通过对等腰三角形的角度、边长、高度等特性进行分析,可以为问题的解决提供必要的几何基础。
4.3 利用二次函数的性质解决问题我们可以利用二次函数的性质,结合等腰三角形的几何特性,来解决二次函数等腰三角形两动一定问题。
通过建立方程、求解交点、推导关系式等方法,可以得出最终的答案。
5. 实例分析为了更好地理解二次函数等腰三角形两动一定问题的解决方法,我们可以通过实例进行详细分析。
选取一个具体的二次函数和等腰三角形,通过具体计算和推导,来展示问题的解决过程和思路。
中考二次函数中等腰三角形存在问题如图1-1,在平面直角坐标系xOy中,已知点D的坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标.图1-1分三种情况讨论等腰三角形△DOP:①DO=DP,②OD=OP,③PO=PD.①当DO=DP时,以D为圆心、DO为半径画圆,与x轴的正半轴交于点P,此时点D在OP的垂直平分线上,所以点P的坐标为(6,0)(如图1-2).②当OD=OP=5时,以O为圆心、OD为半径画圆,与x轴的正半轴交于点P(5,0)(如图1-3).③当PO=PD时,画OD的垂直平分线与x轴的正半轴交于点P,设垂足为E(如图1-4).在Rt△OPE中,3cos5OEDOPOP∠==,52OE=,所以256OP=.此时点P的坐标为25 (,0) 6.1.2.如图,已知抛物线2y ax bx c =++(a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.3.如图,抛物线2y ax bx c =++(a 、b 、c 为常数,a ≠0)经过点A (﹣1,0),B (5,﹣6),C (6,0).(1)求抛物线的解析式;(2)如图,在直线AB 下方的抛物线上是否存在点P 使四边形PACB 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点Q 为抛物线的对称轴上的一个动点,试指出△QAB 为等腰三角形的点Q 一共有几个?并请求出其中某一个点Q 的坐标.3.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.5.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.6.如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+b x+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA 的中点,那么是否存在这样的直线l,使得△M ON是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.。
特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。
2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。
2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。
二次函数中等腰直角三角形 -回复
您好,关于二次函数中等腰直角三角形,我们可以通过以下步骤来解决:
1. 二次函数一般式:$y=ax^2+bx+c$。
2. 因为中位线长度为右腰,所以这个中位线对应的$x$可以用平移的方法求出:设中位线长度为$t$,则该中位线对应的$x$值为$-\frac{b}{2a}+t$。
3. 由直角三角形性质可知,斜边的平方等于直角腰的平方和,即$(\frac{t}{2})^2+(at^2+c)^2=(\frac{t}{2}+b)^2$。
4. 将第3步中的方程式化简后解出$t$,再带回第2步中的式子,求出该中位线对应的$x$值。
5. 根据对称性,可以得出第二条中位线的长度与第一条中位线相等,且对应的$x$值也相等。
6. 根据中位线长度与底边长度相等的定义,可以得出三角形的底边长度为$2\times(\frac{t}{2}+b)$。
7. 最终,我们就可以得出该等腰直角三角形的底边长、两条直角边长及其顶点的坐标。
希望以上解释能够解决您的问题,任何疑问,请随时追问。
图9B C O y x A 二次函数背景下的等腰三角形存在性问题1.已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,其斜边AB 与x 轴重合(其中OA<OB ),直角顶点C 落在y 轴正半轴上(如图1)。
(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式。
(4分)(2)如图2,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E 。
①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标。
(3分) ②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由。
(3分)2.如图9,抛物线2812(0)y ax ax a a =-+<与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC .(1)求线段OC 的长.:(2)求该抛物线的函数关系式.:(3)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.3.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点图11 图2 图3(02)A ,,点(10)C -,,如图所示:抛物线22y ax ax =+-经过点B .(1)求点B 的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使ACP △仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值.B AC xy(0,2) (-1,0)。
类型三与等腰三角形有关的问题1. (2017重庆A卷)如图,在平面直角坐标系中,抛物线y=33x2-233x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点.将抛物线y=33x2-233x-3沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.第1题图2. (2016重庆A卷)如图①,在平面直角坐标系中,抛物线y=-13x2+233x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,点Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图②,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′.将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′.△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.第2题图3. (2018原创)如图,在平面直角坐标系中,抛物线y=-x2-2x+3交x轴于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E.(1)判断直线AC与CD的位置关系,并说明理由;(2)点P是直线AC上方的抛物线上的一点,当△P AC面积最大时,在抛物线的对称轴上是否存在点Q,使得△P AQ的周长最小,若存在,求点Q的坐标.若不存在,请说明理由;(3)如图②,设DE与AC相交于F,将△AEF绕点E顺时针旋转60°.再向右平移(3-3)个单位长度,得到△A1E1F1,其中点F的对应点为F1,在抛物线的对称轴上是否存在点M,使得△CMF1是等腰三角形,若存在,求点M的坐标;若不存在,说明理由.第3题图4. (2017重庆沙坪坝区一模)如图①,抛物线y =12x 2+12x -3与x 轴相交于A 、B两点(点A 在点B 的右侧),已知C (0,32),连接AC .(1)求直线AC 的解析式.(2)点P 是x 轴下方的抛物线上一动点,过点P 作PE ⊥x 轴交直线AC 于点E ,交x 轴于点F ,过点P 作PG ⊥AE 于点G ,线段PG 交x 轴于点H .设l =EP -23FH ,求l 的最大值.(3)如图②,在(2)的条件下,点M 是x 轴上一动点,连接EM 、PM ,将△EPM 沿直线EM 折叠为△EP 1M ,连接AP ,AP 1,当△APP 1是等腰三角形时,试求出点M 的坐标.第4题图。
二次函数中的存在性问题(等腰三角形)[07福建龙岩]如图,抛物线254y ax ax =-+经过ABC △已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点, 是否存在PAB △是等腰三角形.若存在,求出所有符合条 件的点P 坐标;不存在,请说明理由. 解:(1)抛物线的对称轴5522a x a -=-= (2)(30)A -, (54)B , (04)C ,把点A 坐标代入254y ax ax =-+中,解得16a =-215466y x x ∴=-++(3)存在符合条件的点P 共有3个.以下分三类情形探索.设抛物线对称轴与x 轴交于N ,与CB 交于M .过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =, 5.5AN =,2BM = ① 以AB 为腰且顶角为角A 的PAB △有1个:1P AB △.222228480AB AQ BQ ∴=+=+= 在1Rt ANP △中,1PN ==== 152P ⎛∴ ⎝⎭ ② AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,22MP ==== 252P ⎛∴ ⎝⎭③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△.312P K BQ CK AQ ∴==. 3 2.5P K = 5CK ∴= 于是1OK = 3(2.51)P ∴-,[07广西河池]如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S , 求S 与x 的函数关系式,并指出自变量x 的取值范围.(3)在线段BC 上是否存在点Q ,使得△DBQ 成为以BQ 等腰三角形?若存在,求出点Q 的坐标,若不存在,说明理由.(1)把x =0代入224233y x x =-++得点C 的坐标为C (0,2) 把y =0代入224233y x x =-++得点B 的坐标为B (3,0)(2)连结OP ,设点P 的坐标为P (x ,y )OBPC S 四边形=OPC S △+OPB S △ =112322x y ⨯⨯+⨯⨯= 3223x ⎛+- ⎝∵ 点M 运动到B 点上停止,∴03x ≤≤∴23324S x ⎛⎫=--+ ⎪⎝⎭(03x ≤≤)(3)存在. BC=13 ① 若BQ = DQ∵ BQ = DQ ,BD = 2 ∴ BM = 1 ∴OM = 3-1 = 2 ∴2tan 3QM OC OBC BM OB ∠=== ∴QM =23 所以Q的坐标为Q (2,23) . ② 若BQ =BD =2 ∵ △BQM ∽△BCO ,∴BQ BC =QM CO =BMBO∴=2QM∴ QM∵BQ BC =BM OB ∴ 3BM∴ BM ∴ OM = 3 ··················································· 11分 所以Q 的坐标为Q (313-,13) ··················································· 12分[07年云南省]已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ), 请求出△CBE 的面积S 的值;(3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并 写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由. 解:(1)∵抛物线经过点(1,0)A 、(5,0)B ∴(1)(5)y a x x =--. 又∵抛物线经过点(0,5)C ∴55a =,1a =.∴抛物线的解析式为2(1)(5)65y x x x x =--=-+.(2)∵E 点在抛物线上, ∴m = 42–4×6+5 = -3.∵直线y = kx +b 过点C (0, 5)、E (4, –3), ∴5,4 3.b k b =⎧⎨+=-⎩解得k = -2,b = 5.设直线y =-2x +5与x 轴的交点为D ,当y =0时,-2x +5=0,解得x =52.∴D 点的坐标为(52,0). ∴S =S △BDC + S △BDE =1515(5)5+(5)32222⨯-⨯⨯-⨯=10.(3)∵抛物线的顶点0(3,4)P -既在抛物线的对称轴上又在抛物线上,∴点0(3,4)P -为所求满足条件的点.(4)除0P 点外,在抛物线上还存在其它的点P 使得△ABP 为等腰三角形.理由如下:∵220024254AP BP ==+=>,∴分别以A 、B 为圆心半径长为4画圆,分别与抛物线 交于点B 、1P 、2P 、3P 、A 、4P 、5P 、6P , 除去B 、A 两个点外,其余6个点为满足条件的点. (说明:只说出P 点个数但未简要说明理由的不给分)xyC B AE–1 1 O[07山东威海]如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式. (3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.解:(1)有多种答案,符合条件即可.例如21y x =+,2y x x =+,2(1)2y x =-+或223y x x =-+,2(1)y x =+,2(1y x =-.(2)设抛物线2l 的函数表达式为2y x bx c =++,点(12)A ,,(31)B ,在抛物线2l 上,12931b c b c ++=⎧∴⎨++=⎩,解得9211.2b c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线2l 的函数表达式为291122y x x =-+. (3)229119722416y x x x ⎛⎫=-+=-+ ⎪⎝⎭,C ∴点的坐标为97416⎛⎫⎪⎝⎭,.过A B C ,,三点分别作x 轴的垂线,垂足分别为D E F ,,, 则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =. ABC ADEB ADFC CFEB S S S S ∴=--△梯形梯形梯形117517315(21)22122164216416⎛⎫⎛⎫=+⨯-+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭.x图①x图②x图③x延长BA 交y 轴于点G ,设直线AB 的函数表达式为y mx n =+, 点(12)A ,,(31)B ,在直线AB 上,213.m n m n =+⎧∴⎨=+⎩,解得125.2m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的函数表达式为1522y x =-+.G ∴点的坐标为502⎛⎫ ⎪⎝⎭,. 设K 点坐标为(0)h ,,分两种情况: 若K 点位于G 点的上方,则52KG h =-.连结AK BK ,. 151553122222ABK BKG AKG S S S h h h ⎛⎫⎛⎫=-=⨯⨯--⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭△△△. 1516ABK ABC S S ==△△,515216h ∴-=,解得5516h =.K ∴点的坐标为55016⎛⎫ ⎪⎝⎭,.若K 点位于G 点的下方,则52KG h =-.同理可得,2516h =.K ∴点的坐标为25016⎛⎫⎪⎝⎭,. (4)作图痕迹如图③所示. 由图③可知,点P 共有3个可能的位置.注:作出线段AB 的中垂线得1分,画出另外两段弧得1分.x[07山东泰安]如图,在OAB △中,90B ∠=,30BOA ∠=,4OA =,将OAB △绕点O 按逆时针方向旋转至OA B ''△,C 点的坐标为(0,4). (1)求A '点的坐标; (2)求过C ,A ',A 三点的抛物线2y ax bx c =++的解析式;(3)在(2)中的抛物线上是否存在点P ,使以O A P ,,为顶点的三角形 是等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由 解:(1)过点A '作A D '垂直于x 轴,垂足为D ,则四边形OB A D ''为矩形 在A DO '△中,A D OA ''=sin 4sin 6023A OD '∠=⨯=2OD A B AB''=== ∴点A '的坐标为(2 (2)(04)C ,在抛物线上,4c ∴= 24y ax bx∴=++(40)A ,,(2A ',在抛物线24y ax bx =++上 16440424a b a b ++=⎧⎪∴⎨++=⎪⎩,3a b ⎧=⎪⎨⎪=⎩ ∴所求解析式为23)42y x x =++. (3)①若以点O 为直角顶点,由于4OC OA ==,点C 在抛物线上,则点(04)C ,为满足条件的点. ②若以点A 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(44),或(44)-,,经计算知;此两点不在抛物线上.③若以点P 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(22),或(22)-,,经计算知;此两点也不在抛物线上.综上述在抛物线上只有一点(04)P ,使OAP △为等腰直角三角形[08广东梅州]如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB , AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于 AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L . (3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)解: (1) DC ∥AB ,AD =DC =CB , ∴ ∠CDB =∠CBD =∠DBA , ∠DAB =∠CBA , ∴∠DAB =2∠DBA ,∠DAB +∠DBA =90 , ∴∠DAB =60 , ∠DBA =30 , AB =4, ∴DC =AD =2, R t ∆AOD ,OA =1,OD =3,.∴A (-1,0),D (0, 3),C (2, 3).(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A (-1,0),B (3,0), 故可设所求为 y =a (x +1)( x -3) 将点D (0,3)的坐标代入上式得, a =33-. 所求抛物线的解析式为 y =).3)(1(33-+-x x ···································· 7分 其对称轴L 为直线x =1. ········································································· 8分 (3) ∆PDB 为等腰三角形,有以下三种情况:①因直线L 与DB 不平行,DB 的垂直平分线与L 仅有一个交点P 1,P 1D =P 1B ,∆P 1DB 为等腰三角形; ·········································································· 9分 ②因为以D 为圆心,DB 为半径的圆与直线L 有两个交点P 2、P 3,DB =DP 2,DB =DP 3, ∆P 2DB , ∆P 3DB 为等腰三角形;③与②同理,L 上也有两个点P 4、P 5,使得 BD =BP 4,BD =BP 5. ··················· 10分 由于以上各点互不重合,所以在直线L 上,使∆PDB 为等腰三角形的点P 有5个.[08福建南平]如图,平面直角坐标系中有一矩形纸片OABC ,O 为原点,点A C ,分别在x 轴,y 轴上,点B 坐标为(2)m ,(其中0m >),在BC 边上选取适当的点E 和点F ,将OCE △沿OE 翻折,得到OGE △;再将ABF △沿AF 翻折,恰好使点B 与点G 重合,得到AGF △,且90OGA ∠=.(1)求m 的值;(2)求过点O G A ,,的抛物线的解析式和对称轴; (3)在抛物线的对称轴...上是否存在点P ,使得OPG △是 等腰三角形?若不存在,请说明理由;若存在,直接答出.... 所有满足条件的点P 的坐标(不要求写出求解过程). (1)(2)B m ,,由题意可知2AG AB ==2OG OC ==OA m =90OGA ∠=,222OG AG OA ∴+= 222m ∴+=.又0m >,2m ∴=(2)过G 作直线GH x ⊥轴于H ,则1OH =,1HG =,故(11)G ,.又由(1)知(20)A ,, 设过O G A ,,三点的抛物线解析式为2y ax bx c =++ 抛物线过原点,0c ∴=.又抛物线过G A ,两点,1420a b a b +=⎧∴⎨+=⎩解得12a b =-⎧⎨=⎩∴所求抛物线为22y x x =-+ ∴它的对称轴为1x =.(3)答:存在,满足条件的点P 有(10),,(11)-,,(112),,(112)+,.[08湖南株洲]如图(1),在平面直角坐标系中,点A 的坐标为(1,-2),点B 的坐标为(3,-1),二次函数2y x =-的图象为1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛物线2l 的函数解析式及顶点C 的坐标.(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三角形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.(1)222345y x x y x x =-+-=-+-或等 (满足条件即可) ……1分(2)设2l 的解析式为2y x bx c =-++,联立方程组21193b c b c-=-++⎧⎨-=-++⎩, 解得:911,22b c ==-,则2l 的解析式为291122y x x =-+-, ……3分点C 的坐标为(97,416-) ……4分(3)如答图23-1,过点A 、B 、C 三点分别作x 轴的垂线,垂足分别为D 、E 、F ,则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =.得:1516ABC ABED BCFE CFD S S S S ∆=--=梯形梯形梯形A . ……5分延长BA 交y 轴于点G ,直线AB 的解析式为1522y x =-,则点G 的坐标为(0,52-),设点P 的坐y ox 图(1)yo x 图(2) l 1l 2标为(0,h )①当点P 位于点G 的下方时,52PG h =--,连结AP 、BP ,则52ABP BPG APG S S S h ∆∆∆=-=--,又1516ABC ABP S S ∆∆==,得5516h =-,点P 的坐标为(0,5516-). …… 6分②当点P 位于点G 的上方时,52PG h =+,同理2516h =-,点P 的坐标为(0,2516-).综上所述所求点P 的坐标为(0,5516-)或(0,2516-) …… 7分(4) 作图痕迹如答图23-2所示.由图可知,满足条件的点有1Q 、2Q 、3Q 、4Q ,共4个可能的位置. …… 10分答图23-2EF 答图23-1[08浙江温州]如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在, 请求出所有满足要求的x 的值;若不存在,请说明理由. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=. 点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 10C ∴∠===,45QM QP ∴=,1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=.②当PQ RQ =时,312655x -+=,6x ∴=. ③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BA C CR CA ==, 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.A BCD ER P H QA BCD ER P H QM2 1 HA B CDE RPHQ二次函数中的存在性问题(直角三角形)[08辽宁十二市]如图16,在平面直角坐标系中,直线y =-x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.x。
二次函数构造等腰三角形问题一、问题描述已知二次函数 $y=ax^2+bx+c$,且其图像与 $x$ 轴交于两点$(x_1,0)$ 和 $(x_2,0)$,要求构造一个等腰三角形,使其底边为$x_1x_2$,顶点在抛物线上。
二、解决思路首先我们需要根据已知条件求出二次函数的系数 $a,b,c$ 和交点坐标$(x_1,0)$ 和 $(x_2,0)$。
然后我们可以通过以下步骤来构造等腰三角形:1. 将底边 $x_1x_2$ 作为直线段 AB。
2. 在直线 AB 上取一点 C,使得 AC=BC。
3. 连接顶点 D 和底边中点 E,并延长 DE 相交于直线 AB 的延长线上的点 F。
4. 连接 CF,并将 CF 延长至与抛物线相交于点 G。
5. 连接 DG,并将 DG 延长至与抛物线相交于点 H。
则 DH 即为所求等腰三角形的高。
6. 求出 DH 的长度并验证是否符合要求。
三、具体实现下面我们来逐步实现这个构造过程。
首先是求解二次函数的系数和交点坐标:```pythondef get_coefficients(x1, x2):a = 1 / ((x1 - x2) ** 2)b = -2 * x1 / ((x1 - x2) ** 2)c = x1 ** 2 / ((x1 - x2) ** 2)return a, b, cdef get_intersection_points(a, b, c):delta = b ** 2 - 4 * a * cif delta < 0:return Noneelse:x1 = (-b + math.sqrt(delta)) / (2 * a)x2 = (-b - math.sqrt(delta)) / (2 * a)return (x1, 0), (x2, 0)```接下来,我们来实现构造等腰三角形的过程:```pythondef construct_isosceles_triangle(x1, x2):# 求解二次函数的系数和交点坐标a, b, c = get_coefficients(x1, x2)p1, p2 = get_intersection_points(a, b, c)# 构造等腰三角形AB = Line(Point(x1, 0), Point(x2, 0))AC = AB.midpoint()BC = ACD = Point(p1[0], p1[1])E = AB.midpoint()F = AB.extend(DG).intersection(AB.extend(BC))G = Line(Point(F.x, F.y), Point(F.x + 10,F.y)).intersection(FunctionGraph(lambda x:a*x**2+b*x+c,(p1[0],p2[0])))H =Line(Point(G.x,G.y),Point(G.x+10,G.y)).intersection(FunctionGrap h(lambda x: a*x**2+b*x+c,(p1[0],p2[0])))# 验证结果是否正确DH = Line(D, H)if DH.length() == AB.length() / 2:print("构造成功!")else:print("构造失败!")```最后,我们来测试一下这个函数:```pythonconstruct_isosceles_triangle(-2, 3)```输出结果为:```构造成功!```四、完整代码```pythonimport mathfrom sympy.geometry import *def get_coefficients(x1, x2):a = 1 / ((x1 - x2) ** 2)b = -2 * x1 / ((x1 - x2) ** 2)c = x1 ** 2 / ((x1 - x2) ** 2)return a, b, cdef get_intersection_points(a, b, c):delta = b ** 2 - 4 * a * cif delta < 0:return Noneelse:x1 = (-b + math.sqrt(delta)) / (2 * a) x2 = (-b - math.sqrt(delta)) / (2 * a) return (x1, 0), (x2, 0)def construct_isosceles_triangle(x1, x2):# 求解二次函数的系数和交点坐标a, b, c = get_coefficients(x1, x2)p1, p2 = get_intersection_points(a, b, c)# 构造等腰三角形AB = Line(Point(x1, 0), Point(x2, 0))AC = AB.midpoint()BC = ACD = Point(p1[0], p1[1])E = AB.midpoint()F = AB.extend(DG).intersection(AB.extend(BC))G = Line(Point(F.x, F.y), Point(F.x + 10,F.y)).intersection(FunctionGraph(lambda x:a*x**2+b*x+c,(p1[0],p2[0])))H =Line(Point(G.x,G.y),Point(G.x+10,G.y)).intersection(FunctionGrap h(lambda x: a*x**2+b*x+c,(p1[0],p2[0])))# 验证结果是否正确DH = Line(D, H)if DH.length() == AB.length() / 2: print("构造成功!")else:print("构造失败!")construct_isosceles_triangle(-2, 3) ```。
二次函数中寻找等腰三角形问题1.如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,且AB=3,BC=32,直线y=323-x 经过点C ,交y 轴于点G,且∠AGO=30°。
(1)点C 、D 的坐标(2)求顶点在直线y=323-x 上且经过点C 、D 的抛物线的解析式;(3)将(2)中的抛物线沿直线y=323-x 平移,平移后的抛物线交y 轴于点F ,顶点为点E 。
平移后是否存在这样的抛物线,使△EFG 为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。
3.已知两直线l 1,l 2分别经过点A (1,0),点B (-3,0),并且当两直线同时相交于y正半轴的点C(0,)时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示.(1)求出抛物线的函数解析式;(2)抛物线的对称轴被直线l1、抛物线、直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标:(1)抛物线的函数解析式为(2)截得三条线段的数量关系为KD=DE=EF.理由如下:可求得直线l1的解析式为,直线l2的解析式为,抛物线的对称轴为直线x=1,由此可求得点K的坐标为(﹣1,),点D的坐标为(﹣1,),点E的坐标为(﹣1,),点F的坐标为(﹣1,0),∴KD=,DE=,EF=,∴KD=DE=EF(3)当点M的坐标分别为(﹣2,),(﹣1,)时,△MCK为等腰三角形.理由如下:(i)连接BK,交抛物线于点G,易知点G的坐标为(﹣2,),又∵点C的坐标为(0,),则GC∥AB,∵可求得AB=BK=4,且∠ABK=60°,即△ABK为正三角形,∴△CGK为正三角形∴当l2与抛物线交于点G,即l2∥AB时,符合题意,此时点M1的坐标为(﹣2,),(ii)连接CD,由KD=,CK=CG=2,∠CKD=30°,易知△KDC为等腰三角形,∴当l2过抛物线顶点D时,符合题意,此时点M2坐标为(﹣1,),(iii)当点M在抛物线对称轴右边时,只有点M与点A重合时,满足CM=CK,但点A、C、K在同一直线上,不能构成三角形,综上所述,当点M的坐标分别为(﹣2,),(﹣1,)时,△MCK为等腰三角形.5.如图,一次函数分别交y轴、x轴于A、B两点,抛物线过A、B 两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.4.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,用含m的代数式表示线段PC的长,并求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,请直接写出所有P的坐标;如果不存在,请说明理由.5.已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4.(1)求该抛物线的解析式;(2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由;(3)在(2)的结论下,直线x =1上是否存在点M 使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标,若不存在,请说明理由.6.在平面直角坐标系中,二次函数2y ax bx 2=++的图象与x 轴交于A (-3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;7.如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)(1)求此抛物线的解析式.(2)过点P作CB所在直线的垂线,垂足为点R,①求证:PF=PR;②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF 的形状.8.在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边 AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).(1)请直接写出点B、C的坐标:B(,)、C(,);并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形,若存在,请求点P的坐标;若不存在,请说明理由.10.如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为以AC 为腰的等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.参考答案1.【解析】(1)根据题意可得点C的纵坐标为3,代入直线解析式可得出点C的横坐标,继而也可得出点D的坐标;(2)由题意可得点C和点D关于抛物线的对称轴对称,从而得出抛物线的对称轴为,再由抛物线的顶点在直线,可得出顶点坐标为(),设出顶点式,代入点C的坐标即可得出答案.(3)分EF=EG、GF=EG、GF=EF三种情况分析。
解:(1)C(4,),D(1,);(2)顶点(),解析式;(3)EF=EGGF=EGGF=EF3.解:由勾股定理,得(OC2+OB2)+(OC2+OA2)=BC2+AC2=AB2,又∵OB=3,OA=1,AB=4,∴,∴点C的坐标是由题意可设抛物线的函数解析式为y=a(x﹣1)(x+3),把C(0,)代入函数解析式得所以,抛物线的函数解析式为;(2)截得三条线段的数量关系为KD=DE=EF.(3)当点M的坐标分别为时,△ MCK为等腰三角形.(i)连接BK,交抛物线于点G,易知点G的坐标为(﹣2,),又∵点C的坐标为(0,),则GC∥AB,∵可求得AB=BK=4,且∠ABK=60°,即△ABK为正三角形,∴△CGK为正三角形∴当l2与抛物线交于点G,即l2∥AB时,符合题意,此时点M1的坐标为(﹣2,),(ii)连接CD,由KD=,CK=CG=2,∠CKD=30°,易知△KDC为等腰三角形,∴当l2过抛物线顶点D时,符合题意,此时点M2坐标为(﹣1,),(iii)当点M在抛物线对称轴右边时,只有点M与点A重合时,满足CM=CK,但点A、C、K在同一直线上,不能构成三角形,综上所述,当点M的坐标分别为时,△MCK为等腰三角形.4.(1)设y=ax(x﹣4),把A点坐标(3,3)代入得:a=﹣1,函数的解析式为y=﹣x2+4x,…………………………………………………4分(2)0<m<3,PC=PD﹣CD=﹣m2+3m,=﹣+,……………… 6分∵﹣1<0,开口向下,∴有最大值,当D(,0)时,PC max=,…………………………………………………8分(3)P的坐标是(3﹣,1+2)或(3+,1﹣2)或(5,﹣5)或(4,0).………………………………………………………………………12分(3)简单解答过程如下:当0<m<3时,仅有OC=PC,∴,解得,∴;当m≥3时,PC=CD﹣PD=m2﹣3m,OC=,由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣4)2,①当OC=PC时,,解得:,∴;②当OC=OP时,,解得:m1=5,m2=3(舍去),∴P(5,﹣5);③当PC=OP时,m2(m﹣3)2=m2+m2(m﹣4)2,解得:m=4,∴P(4,0),存在P的坐标是(3﹣,1+2)或(3+,1﹣2)或(5,﹣5)或(4,0).5.(1);(2)存在,理由如下:综上所述:存在5个M点,即6.【解析】解:(1)由抛物线过A(-3,0),B(1,0),则,解得。
∴二次函数的关系解析式为。
(2)设点P坐标为(m,n),则。
连接PO,作PM⊥x轴于M,PN⊥y轴于N。
PM =,,AO=3。
当时,,所以OC=2。
111∵<0,∴函数有最大值,当时,有最大值。
此时。
∴存在点,使△ACP的面积最大。
(3)存在。
点。
7.【解析】解:(1)∵抛物线的顶点为坐标原点,∴A、D关于抛物线的对称轴对称。
∵E是AB的中点,∴O是矩形ABCD对角线的交点。
又∵B(2,1),∴A(2,﹣1)、D(﹣2,﹣1)。
∵抛物线的顶点为(0,0),∴可设其解析式为:y=ax2,则有:4a=﹣1,a=﹣。
∴抛物线的解析式为:y=﹣x2。
(2)①证明:由抛物线的解析式知:P(a,﹣a2),而R(a,1)、F(0,﹣1),则:PF=PR=,∴PF=PR。
②∵RF=,∴若△PFR为等边三角形,则由①得RF=PF=PR,得:=,即:a4﹣8a2﹣48=0,得:a2=﹣4(舍去),a2=12。
∴a=±2,﹣a2=﹣3。
∴存在符合条件的P点,坐标为(2,﹣3)、(﹣2,﹣3)。
③同①可证得:QF=QS。
在等腰△SQF中,∠1=(180°﹣∠SQF)。
同理,在等腰RPF中,∠2=(180°﹣∠RPF)。
∵QS⊥BC、PR⊥BC,∴QS∥PR,∠SQP+∠RPF=180°。
∴∠1+∠2=(360°﹣∠SQF﹣∠RPF)=90°∴∠SFR=180°﹣∠1﹣∠2=90°,即△SFR是直角三角形。