中国古代数学与古希腊数学的特点分析
- 格式:doc
- 大小:23.00 KB
- 文档页数:4
论述古代中国与古代希腊科学技术发展的异同及其启示古代中国和古代希腊是世界历史上两个非常重要的文明古国。
在科学技术发展方面,两者均有明显的异同之处。
本文将从科学思维、数学和天文学等方面探讨古代中国和古代希腊的科学技术发展的异同,并分析其给今人的启示。
首先,古代中国和古代希腊在科学思维方面存在着一些区别。
古代中国非常注重实用主义,强调实践和经验。
例如,中国古代的四大发明之一,指南针的出现是基于实际航海需求。
另外,中国的天文学发展也非常注重观察,例如《天文算法》便是基于大量的观测数据得出的。
与此相反,古希腊则更加注重理论的推理和逻辑。
他们试图通过理性的推测和推理来解释自然现象。
例如,希腊哲学家泰勒斯提出了“万物皆水”的理论,试图用一种基本物质解释世界的起源。
希腊还发展出了几何学,欧几里得的几何原理成为了后世的基础。
另一个明显的差异是古代中国和古代希腊在数学方面的发展。
古代中国的数学主要注重实际应用,例如商业计算和土地测量等方面。
中国古代数学家刘徽发展了一套解决数学问题的方法,即中国古代算法。
另外,中国还发展出一套记数法,即十进制的记数法,至今仍在使用。
相较之下,古希腊在数学上更加注重理论的推导和数学公理的建立。
欧几里得的《几何原本》集结了当时的数学知识,建立了几何学的公理体系,成为了数学的经典著作。
在天文学方面,古代中国和古代希腊也呈现出一些差异。
中国古代天文学的发展主要是以观测为基础,特别是天文观测。
中国古代的天文观测方法非常精确,例如《天文算法》中提供了准确的日食和月食的计算方法。
中国还发展了天干地支纪年法和二十四节气等天文历法。
相对而言,古希腊的天文学更多地关注理论和推导。
希腊天文学家提出了地心说,即认为地球是宇宙的中心。
此外,希腊的哥白尼、第谷及开普勒等天文学家的理论贡献也十分显著。
古代中国和古代希腊在科学技术发展方面存在着一些明显的不同,这也为今人提供了一些启示。
首先,中国注重实践和应用,这种实用主义的科学思维在今天仍然具有重要意义。
数学的文化背景了解不同文化中的数学发展数学的文化背景:了解不同文化中的数学发展数学是一门普遍存在于不同文化中的学科,它在不同的文化背景下发展出了各种不同的形态和特色。
通过了解不同文化中的数学发展,我们可以更全面地认识数学的本质以及数学科学的普遍性。
本文将以历史为线索,探索几个主要文化背景下的数学发展,并分析其对数学学科的影响。
一、古希腊数学古希腊是数学发展史上一个重要的里程碑。
古希腊数学强调几何,以欧几里得几何为代表。
古希腊人尊重证明和演绎推理,建立了严谨的数学体系。
毕达哥拉斯学派研究了数字之间的关系与形式之间的对应关系,发展了数论的基础。
欧几里得则用公理化的方法建立了几何学体系,并提出了许多著名的定理和证明方法,例如射影定理和勾股定理。
古希腊数学的几何观念和证明方法对后世产生了深远的影响,成为了西方数学发展的重要起源。
二、古印度数学古印度数学在历史上也占有重要地位。
古印度人提出了许多数学概念和方法,包括了零和十进制计数法。
他们研究了数列、方程、无理数等多个数学领域。
最为著名的是他们对三角函数的研究,发展出了今天我们所熟知的正弦函数、余弦函数和正切函数,并提出了一些基本的三角恒等式。
古印度数学对于后世的代数学和三角学的发展有着重要的影响。
三、古中国数学古中国数学注重实用,主要体现在日常生活和天文、地理等领域的实际问题上。
古代中国人研究了数量关系、比例、根号等,在代数、几何和算术方面都有独特的贡献。
《九章算术》是古代中国最重要的数学著作之一,其中包含了许多实际问题和解决方法。
中国古代数学还独立地发展了一种计算工具,即算盘,使得计算更加高效。
古中国数学强调实务和实际应用,这种实用主义的数学观念对中国数学历史产生了深远的影响。
四、阿拉伯数学阿拉伯数学在古代承袭并发展了古希腊和古印度数学的成果,并以阿拉伯数字和代数学为代表,形成了一套独特的数学体系。
阿拉伯数学在代数学中引入了字母符号来表示未知数,这使得解方程更加方便。
简述中国古代数学和古希腊数学的对比中国古代数学和古希腊数学都是世界文明史上非常重要的数学学派,两者在很多方面有相似之处,但也有很大的区别。
一、基础理论中国古代数学的基础是算术、代数和几何学。
算术是起点,代数是中心,几何被用来验证。
中国古代数学的传统思想强调实用,强调解决实际问题,以求实用为主要目的。
因此,算术和代数都是围绕着实际问题来发展的。
几何是为了充实代数学内容,加强几何图形的理解,而使之从支配数字变为支配空间。
古希腊数学的基础则是几何学。
古希腊数学学派的三位大师柏拉图、亚历克西芬、欧多克索斯都是几何学家。
古希腊几何是由尺规作图时的形式构成的:先给出所用工具及问题把它们放在一起,然后获得所要证明的形式结构的知识。
这与中国古代数学相比,明显地强调了形式的优雅和逻辑的推理,强调了证明和推导的过程。
二、研究领域中国古代数学主要研究的领域有算术、代数、几何、概率等,其中尤以算术和代数为主要领域。
中国古代数学主要致力于解决实际问题,例如星间距离测定、农业生产问题、日影测算、工程测量等,都是中国古代数学在实际应用中发挥重要作用的领域。
古希腊数学的主要领域则是几何学。
古希腊数学家致力于从形式上理解几何学和空间的本质,他们研究的问题主要涉及圆和线的性质,比如唯一平行公设、圆锥截面、黄金分割等等。
古希腊数学家还涉及一些代数问题,但随着时间的推移,他们的代数研究逐渐减少。
三、方法手段中国古代数学强调实际问题,并注重方法和技巧的传承和创新。
中国古代数学家喜欢使用算盘和珠算等计算工具,其实际意义重于形式推导。
另外,他们还采用求等量关系、化解为已知、化简、展开、合并等方法来解决数学问题。
古希腊数学家则注重逻辑推导和演绎,强调证明和推理的精确性。
古希腊数学家的方法主要是演绎,即从基础概念出发,一步步逐渐推导出更加深入的结论,重复推导,进而得到所需证明结论。
这种方法被称为证明性数学的演绎方法。
总之,中国古代数学和古希腊数学在方法、领域、基本理论等方面都有着自己独特的特色和优劣之分。
中国和希腊数学发展史的对比分析与反思摘要:中国和古希腊在数学发展的过程中都取得了辉煌的成就,但中国和古希腊的数学存在着比较大的差异。
造成这一差异的主要原因是两国自然地理环境、政治制度及社会文化上的差别,以及由此而形成的价值观和思维方式上的差异。
从以上这些方面分析,中国古代数学的衰落是历史的必然。
关键词:中国和古希腊数学发展史对比分析差异反思在数学发展史的长河中,中国和古希腊这两个文明古国都取得了超乎当时其他文明古国之上的成就,并分别成为了当时的世界数学的研究中心。
在中国到纪元前后形成了《九章算术》为代表的初等数学体系,取得了辉煌的成就;与此同时,以《原本》为代表的西方数学体系已经形成,古希腊的数学方兴未艾,也取得了许多领先于世界的成果。
本文将对古希腊与中国古代数学的发展进行对比分析,以寻求形成差异的原因,并对此进行反思。
1 古希腊和中国数学发展之比较分析从古希腊和中国古代数学发展史中,我们可以看到,虽然古希腊和中国古代数学都取得了许多辉煌的成就,但它们所走过的道路却有着很大的差异。
由于《原本》和《九章算术》在数学发展上具有十分重要的历史意义,下面将主要以这两本传世名著为素材进行分析比较,以期窥一斑而见全豹。
欧几里得的《原本》,是将古希腊雅典时期的许多数学发现用演绎法加以整理,从几个简明的定义、公理、公设出发,撰写而成,从而初步奠定了严格的演绎推理的基础。
《九章算术》是我国古代数学最重要的经典著作。
它总结了我国先秦到西汉的数学成果,初步形成了以问题为中心的算法体系。
从内容上看,《原本》共有13卷,主要讨论的是几何问题,另外还有数论问题、“不可公度量”的理论等,可以说包括了当时希腊数学各个方面的成就。
而《九章算术》的内容包括算术、代数、几何以及某些数论知识,其中水平最高的是算术和代数,但在几何方面有关面积、体积等度量性问题上的水平也不低,特别是有些复杂的体积计算法是《原本》中所没有的,如一些楔形体体积的计算。
古希腊数学与中国古代数学的区别古希腊数学与中国古代数学具有截然不同的社会背景,完全不同的发展历程。
古希腊数学以空间形式为主要研究对象,理论形式表现为逻辑的演绎体系,即重逻辑;中国古代数学以数量关系为主要研究对象,其理论形式则呈现出以题解为中心的算法体系,即重算法. 因此古希腊数学与中国古代数学在概念、算法及推理上均有很大差别.1 社会历史背景分析希腊是沿海国家,具有优良的自然条件,因此古希腊航海业十分发达,与外界交流非常频繁。
而与希腊相邻的国家却是两大文明古国:埃及和巴比伦,这就便于希腊人能够从不同的文化传统中吸取精华。
这样的大环境,有利于希腊国内部形成一个良好的、宽松的、能够自由研讨的学术氛围。
由于对各种文化都有较广泛的接触,加之希腊人的广泛交流,更有利于他们对事物有个整体的看法,即形成世界观,将其世界观进行整合、系统化,便形成了古希腊特有的高度发达的哲学,其思维是理性的。
在此基础上诞生的数学,其体系也就表现为逻辑的演绎。
与古希腊同时代的中国相比较,正处于“百家争鸣,百花齐放”的时代,其哲学理论也发展到了相当的高度,但数学的发展却与古希腊大相径庭,因为中国古代数学完全是由自己、在没有与外界交流的情况下发展起来的。
这样的数学必然是与实际结合紧密的,因为早期的人类要同大自然抗争,有利于其生存的东西才能被运用、保留和发展,数学正是这样的环境下不断发展衍生。
例如,中国古代数学的一个特色就是算筹,早在商朝甚至更早的时候,算筹的思想就已基本产生,至此时期,算筹已经作为计算工具,数学与实际相结合的思想也已牢固树立。
因此,此时高度发达的哲学理论对数学发展的影响,已经远远不能和古希腊哲学的影响相提并论了。
中国古代数学主要表现为算法也就顺理成章了。
在与古希腊同时代的其他任何国家中,哲学和科学都没有达到他们那样发展、系统化的高度,中国也不例外。
不仅如此,中国古代还缺少一个良好的学术氛围,连年的战事,使得理论研究相当不易。
古希腊科学技术与中国古代科学技术的特点比较古希腊科学技术(1) 非功利性我国在科学技术和文化发展中一贯主张“经世致用”,仅仅将科学技术视为改善生活状况的一种工具和手段,即使在今天我们也把“实践是认识的目的和归宿”放在一个非常突出的位置。
与此相反,古希腊科学技术体系则具有鲜明的“为科学而科学”的非功利性色彩,这一特点在古希腊前后期是一以贯之的。
文艺复兴后西方的科学技术发展部分地继承了古希腊的这一传统。
欧几里得是希腊化时期的数学巨人,正是他总结了当时的数学成就并使之体系化,在此基础上编写了几何学的经典著作《几何原本》。
关于欧几里得,有一则流传甚广的故事。
说的是有一位青年向欧几里得学习几何学,刚学了一个命题,就问欧几里得学了几何学有什么用处,欧几里得不满地对仆人说:“给这个学生三个钱币,让他走,他居然想从几何学中得到好处。
”这则故事具有象征意义,这说明整个古希腊一直十分强调科学的非功利性。
(2)理论性强,体系完整古希腊科学技术模式的最主要特点是善于运用逻辑思维和演绎的方法进行科学研究,成功地将数学运用在几个科学领域,进行定量分析,重视事物的抽象与一般,在此基础上确立了一系列科学概念和原理、命题。
古希腊这种逻辑数理型科技模式的一个明显优点就是容易透过现象把握到事物的本质,通过杂乱无章的表面现象发现事物的内在规律。
正因为如此,古希腊才能在自然哲学、数学等诸多科学领域取得辉煌的成就。
我国古代除墨学有关于逻辑学的只言片语外,没有建立起自己的逻辑学体系,学术发展与民族心理相互影响,使我国古代对逻辑推理、抽象思维未予重视,而只是突出发展了形象、直观思维的方面;而古希腊则开创了逻辑学,在亚里士多德时期就已经建立起庞大的逻辑学体系,亚里士多德还被西方称为“逻辑之父”。
因此在整个古希腊时期,科学家善于运用逻辑思维方法来考虑问题。
中国特点是:(1)与封建社会同兴衰;从封建社会开始,我国就形成了政府功能强大而社会功能弱小的特殊社会结构,在社会资源配置过程中,政府和各级官吏占有极其重要的地位,这使我国逐步形成了“官本位”的思想观念,在以后二千年的封建社会中这一观念得到了进一步强化,甚至现在都能看到它的痕迹,为官者无论政治地位还是经济、社会地位都高高在上。
从中国与希腊古代数学对比看中国数学现状沈阅人文1003班31001005762010/10/20摘要:中国的数学从数千年前的结绳计数开始已经历了漫长恒久的发展,宋元时期曾一度到达当代数学的巅峰,远远超过同时代的欧洲,如:高次方程解法较欧洲早出八百年,多元高次方程组消去法较欧洲早出近五百年,联立一次同余式解法较欧洲早出五百多年。
然而如今的数学无疑西方才是领跑者,中国的数学从输出开始转为西方的输入。
本文主要将将中国古代数学与希腊古代数学进行对比,以史为镜,从而发现中国数学与西方对比的不同与不足之处,寻求中国数学更进一步发展的方向,并从中国长久以来思想文化入手浅析中国几千年来一脉相传的思想对数学发展的影响。
关键字:宋元数学、古希腊数学、文化影响Ⅰ、引言数学虽然属于自然科学的范畴,但任何学科都不可脱离其他文化科学的共同作用。
正如《数学与人类文明》一书的序言中所说:“科学文化与人文文化的相互是时代发展的必然趋势”、“数学与科学、人文的各个分支一样,都是人类进化和智力发展进程的反映。
它们在特定的历史时期必然呈现出某种相通的特性,甚至相互影响。
”因此选本题就是为了从历史人文方面入手,了解中国数学发展的现状与未来趋势。
本文将首先回顾中国数学的整个发展,重点介绍宋元时期的数学成就并联系中国思想文化特点分析数学发展趋势的缘由。
然后再简略地介绍希腊数学并将中国数学与之对比。
最后得出结论。
Ⅱ、正文中国的数学源远流长,从五六千年前结绳记数,发展到夏商时以甲骨记载大数字,筹算、珠算支配中国数学年千多年,确立十进制值记数法。
数学发展到宋元时期,许多成果是领先当代。
可是到了明朝八股取士的制度一开,中国的数学就此一落千丈。
宋代社会经济繁荣,传统数学必须加快改革与简化旧有的筹算,而印刷术也在这个时候获得发扬,同时唐朝科举考试所设的明算科,至宋朝中止了,数学脱离了科举考试的朿缚,向一个更为广阔天地迈进。
宋元是中国数学史上的黄金时代,宋元数学在很多领域都达到了当时世界数学的巅峰。
古希腊数学与中国数学比较古代希腊的数学,自公元前600年左右开始,到公元641年为止共持续了近1300年。
前期始于公元前600年,终于公元前336年希腊被并入马其顿帝国,活动范围主要集中在驱典附近;后期则起自亚历山大大帝时期,活动地点在亚历山大利亚;公元641年亚历山大城被阿拉伯人占领,古希腊文明时代宣告终结。
而中国数学起源于遥远的石器时代,经历了先秦萌芽时期(从远古到公元前200年);汉唐始创时期(公元前200年到公元1000年),元宋鼎盛时期(公元1000年到14世纪初),明清西学输入时期(十四世纪初到1919年)。
一、最早的有关数学的记载的比较最早的希腊数学记载是拜占庭的希腊文的手抄本(可能做了若干修改),是在希腊原著写成后500年到1500年之间录写的。
其原因是希腊的原文手稿没有保存下来。
而成书最早的是帕普斯公元三世纪撰写的《数学汇编》和普罗克拉斯(公元5世纪)的《欧德姆斯概要》。
《欧德姆斯概要》一书是以欧德姆斯写的一部著作(一部相当完整的包括公元前335年之前的希腊几何学历史概略,但已经丢失)为基础的。
中国最早的数学专著有《杜忠算术》和《许商算术》(由《汉书·艺文志》记载可知),但这两部著作都已失传。
《算术书》是目前可以见到的中国最早的,也是一部比较完整的数学专著。
这部著作于1984年1月,在湖北江陵张家山出土大批竹简中发现的,据有关专家认定《算术书》抄写于西汉初年(约公元前2世纪),成书时间应该更早,大约在战国时期。
《算术书》采用问题集形式,共有60多个小标题,90多个题目,包括整数和分数四则运算、比例问题、面积和体积问题等。
结论:中国是四大文明古国之一,所有的文化创造,均源自华夏大地。
一般来讲,中国的数学成果较古希腊为迟。
二、经典之作的比较古希腊数学的经典之作是欧几里得的名著《几何原本》。
亚历山大前期大数学家欧几里得完成了具有划时代意义工作——把以实验和观察而建立起来的经验科学,过渡为演绎的科学,把逻辑证明系统地引入数学中,欧几里得在《几何原本》中所采用公理、定理都是经过细致斟酌、筛选而成,并按照严谨的科学体系进行内容的编排,使之系统化、理论化,超过他以前的所有著作。
中国古代数学与古希腊数学的特点分析摘要:通过对中国古代数学的发展史与古希腊数学的发展史及有关经典之作的分析比较,总结出了中国古代数学与古希腊数学的主要特点并进行了比较分析。
关键词:古希腊;《九章算术》;《几何原本》
中图分类号:g623.5
一、中国古代数学的发展史
中国的数学既有系统的理论又有丰硕的成果,中国也是世界上最早使用十进制记数的国家之一。
春秋战国时期,我国人民就有了分数的概念、整数四则运算和九九表。
秦、汉时期成书的《周髀算经》是我国现存最早的天文数学著作。
约公元一世纪东汉时成书的《九章算术》包括246个应用问题及其解法,涉及初等代数等各个方面,为我国古代数学的发展奠定了基础。
魏晋时期,中国数学理论有了比较大的发展。
赵爽和刘徽的工作开创了中国古代数学理论体系的先河。
赵爽是证明数学定理和公式的最早的数学家之一,对《周髀算经》进行了详尽的注释。
刘徽对《九章算术》做了注释,不仅解释和推导了书中的公式、方法和定理,而且在论述过程中有所创新。
其中一项重要的工作是刘徽创立的割圆术,为进一步研究圆周率奠定了理论基础和提供了科学的算法。
隋朝时期,唐初王孝通撰《缉古算经》,主要是讨论土木工程中计算土方、工程的分工与验收以及仓库和地窖的计算问题。
此外,隋唐时期还创立出二次内插法,为宋元时期的高次内插法奠定了基础。
二、古希腊数学发展史
泰斯勒是公认的希腊数学鼻祖。
他在数学方面的贡献是开始了命题的证明,这在数学史上是一个不寻常的飞跃。
毕达哥拉斯学派企图用数学解释一切,他们以发现勾股定理(西方叫做毕达哥拉斯定理)闻名于世。
公元前三世纪的希腊数学中还有以芝诺为代表的埃利亚学派,他提出四个悖论,给学术界以极大的震动。
以德谟克利特为代表的原子论学派,认为线段、面积和立体,是由许多不可分的原子所构成。
公元前四世纪以后的希腊数学,初等几何等已基本成为独立的科目。
因此叫做初等数学时期。
三、中国古代数学与古希腊数学的经典之作比较
古希腊数学的经典之作是欧几里得的名著《几何原本》。
欧几里得在《几何原本》中所采用的公理、定理都是经过细致斟酌、筛选而成的,并按照严谨的科学体系进行内容编排,使之系统化。
《几何原本》分13篇,含有467个命题,精辟地总结了人类长期积累的数学成就,建立了系统的科学体系。
而中国的经典之作是《九章算术》。
全书分为九章,列举了246个数学问题,并在若干问题之后,叙述这类问题的解题方法。
《九章算术》系统地总结了西周至秦汉时期我国数学的重大成就,对中国数学发展的影响,和欧几里得《几何原本》对西方数学的影响一
样,是非常深远的。
结论:《九章算术》和《几何原本》在世界数学史上都堪称经典,它们分别以其算法实用性和逻辑演绎的思想方法闻名世界。
二者相互补充,相得益彰。
四、古希腊数学与中国数学特点的比较
古希腊数学的特点如下:
1、希腊人将数学抽象化,坚持使用演绎证明;
2、希腊人在数学内容方面的贡献主要是创立平面几何、立体几何、平面与球面三角、数论,推广了算术和代数,但只是初步的,还有不足甚至错误;
3、希腊人认为数学是一种美;
4、希腊人认为在数学中可以看到关于宇宙结构和设计的最终真理,并认为宇宙是按数学规律设计的,并且能被人们所认识。
中国数学的特点如下:
1、中国数学最基本的特点是具有鲜明的社会性;
2、中国数学教育与研究始终为适应统治阶级的需要;
3、中国的数学论著深受历史上各种社会思潮等的影响;
4、中国数学是以几何方法与代数方法的相互渗透表现为数形结合;
5、中国数学理论表现在运算过程之中。
结论:古希腊数学属于公理化演绎体系,着眼于”理”--首先给出公理、定义,然后在此基础上有条不紊地、由简到繁地进行一
系列定理的证明;中国数学属于机械化算法体系,着眼于”算”--把问题分门别类,然后用一个固定的方程式解决问题的计算。
综上所述,漫长的数学历史发源于古希腊的公理化演绎体系和中国的机械化算法体系,曾多次反复、互为消长,交替成为数学的主流。
参考文献:
【1】傅海伦《中外数学史概论》科学出版社2001
【2】(美)斯科特《数学史》中国人民大学出版社2010
【3】(美)卡茨《数学史通论》高等教育出版社2004。