振动光谱-1
- 格式:ppt
- 大小:2.28 MB
- 文档页数:66
1振动光谱的基本原理●定义及分类所谓振动光谱是指物质分子或原子基团的振动所产生的光谱。
●如果将透过物质的电磁辐射用单色器加以色散,使波长按长短依次排列,同时测量在不同波长处的辐射强度,得到的是吸收光谱。
如果用的光源是红外光谱范围,即0.78-1000µm,就是红外吸收光谱。
如果用的是强单色光,例如激光,产生的是激光拉曼光谱。
2电磁波与物质相互作用E=hν =hc/λ电磁波的产生与两个能态上粒子的跃迁有关。
在不同能量电磁波作用下, 物质的不同状态将出现共振吸收( Resonance), 形成共振谱。
3分子振动模型●1、双原子分子振动模型双原子分子是很简单的分子,其振动形式是很简单的,如HCl分子,它只有一种振动形式,即伸缩振动。
双原子分子的振动可以近似地看作为简谐振动,由经典力学的HOOK 定律可以推导出该体系的振动频率公式:●2、多原子分子振动模型(1)简正振动多原子分子的振动是复杂的,但可以把它们的振动分解成许多简单的基本振动单元,这些基本振动称为简正振动。
简正振动具有以下特点:1)振动的运动状态可以用空间自由度(坐标)来表示,体系中的每一质点具有XYZ三个自由度;2)振动过程中,分子质心保持不变,分子整体不转动;3)每个原子都在其平衡位置上作简谐振动,各原子的振动频率及位相相同,即各原子在同一时间通过其平衡位置,又在同一时间达到最大的振动位移;4)分子中任何一个复杂振动都可以看成这些简正振动的线性组合。
●(3)简正振动的数目简正振动的数目称为振动自由度。
每个振动自由度对应于IR谱图上的一个基频吸收带。
分子的总自由度取决于构成分子的原子在空间中的位置。
每个原子空间位置可以用直角坐标系中x、y、z三个坐标表示,即有三个自由度。
显然,由n个原子组成的分子,具有3n个总自由度,即有3n种运动状态,而3n种运动状态包括了分子的振动、平动和转动。
即:3n = 振动自由度 + 平动自由度 + 转动自由度振动自由度 = 3n - 平动自由度 - 转动自由度对于非线性分子,振动自由度 = 3n - 6对于线性分子,振动自由度 = 3n - 54物质因受红外光的作用,引起分子或原子基团的振动(热振动),从而产生对红外光的吸收。
一、基团频率区和指纹区(一)基团频率区中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域:LT7U 键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。
若分子中含有C、H、N原子,-C ≡N基吸收比较强而尖锐。
若分子中含有O原子,且O原子离-C ≡N 基越近,-C ≡N基的吸收越弱,甚至观察不到。
1900~1200 cm-1为双键伸缩振动区该区域重要包括三种伸缩振动:①C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。
酸酐的羰基吸收带由于振动耦合而呈现双峰。
②C=C伸缩振动。
烯烃的C=C伸缩振动出现在1680~1620 cm-1 ,一般很弱。
单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-1附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。
③苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。
(二)指纹区d 1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、P-O、Si-O 等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。
红外光谱振动峰分析物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。
多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。
这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。
实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和CC等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。
通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。
一、基团频率区和指纹区(一)基团频率区中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650~3580 cm-1处出现游离O-H 基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
红外各基团特征峰对照表一、红外吸收光谱中的重要区段:1) O-H、N-H伸缩振动区(3750~3000 cm-1)2) 不饱和碳上的C-H伸缩振动区(3300~3000 cm-1)不饱和碳(三键和双键、苯环)上的C-H的伸缩振动在3300~3000 cm-1区域中出现不同的吸收峰。
3) C-H伸缩振动区(3000~2700 cm-1)饱和碳上的C-H伸缩振动(包括醛基上的C-H)4) 叁键和累积双键区(2400~2100 cm-1)波数在2400~2100 cm-1区域内的谱带较少。
5) 羰基的伸缩振动区(1900~1650 cm-1)羰基的吸收最常见出现的区域为1755~1670 cm-1。
由于羰基的电偶极矩较大,一般吸收都很强烈,常成为IR光谱中的第一强峰。
6) 双键伸缩振动区(1690~1500 cm-1)该区主要包括C=C,C=N,N=N,N=O等的伸缩振动以及苯环的骨架振动(σC=C)。
7) X-H面内弯曲振动及X-Y伸缩振动区(1475~1000 cm-1)这个区域主要包括C-H面内弯曲振动, C-O、C-X(卤素)等伸缩振动, 以及C-C单键骨架振动等。
该区域是指纹区的一部分。
8) C-H面外弯曲振动区(1000~650 cm-1)烯烃、芳烃的C-H面外弯曲振动(σC-H)在1000~650 cm-1区。
苯环邻二取代:770~735cm-1;苯环间二取代:710~690、810~750cm-1;苯环对二取代:830~810cm-1具体对照表如下所示:(其中:VS:很强;W:弱;S:强;VW:很弱;m:中等;w:宽)1、O-H、3、C-H46-178二、指纹区和官能团区从第1-6区的吸收都有一个共同点,每一红外吸收峰都和一定的官能团相对应,此区域从而称为官能团区。
官能团区的每个吸收峰都表示某一官能团的存在,原则上每个吸收峰均可以找到归属。
第7和第8区和官能团区不同,虽然在此区域内的一些吸收也对应着某些官能团,但大量的吸收峰仅仅显示该化合物的红外特征,犹如人的指纹,指纹区的吸收峰数目较多,往往大部分不能找到归属,但大量的吸收峰表示了有机化合物的具体特征。
第四章振动光谱当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射分子吸收了某些频率的辐射,,其振动或转动运动引起偶极矩发生变化转动运动引起偶极矩发生变化。
由于分子的振动能量比转动能量大由于分子的振动能量比转动能量大,,当发生振动能级跃迁时发生振动能级跃迁时,,不可避免地伴随有转动能级的跃迁动能级的跃迁,,只能得到分子的振动只能得到分子的振动--转动光谱,这种光谱称为红外吸收光谱这种光谱称为红外吸收光谱。
案例1500100015002000250030003500400001020304050607080T r a n s m i t i v i t y -1图4-1 灼烧前Nd:YAG前驱体的红外光谱图案例2500100025003000350040002030405060708090100T r a n s m i t t i v i t y 图4-2灼烧后Nd:YAG前驱体的红外光谱图第一节振动光谱的基本原理1.1.光的二重性光的二重性普朗克公式普朗克公式::E =h ν一、光与分子的相互作用波数即波长的倒数波数即波长的倒数,,表示单位(cm)长度光中所含光波的数目长度光中所含光波的数目。
波长或波数可以按下式互换波长或波数可以按下式互换::( cm -1)=1/λ(cm)=104/λ(μm)在2.5μm 处,对应的波数值为对应的波数值为::= 104/2.5 (cm -1)=4000cm -1ν_ν_(式4-1)图4-1能级跃迁示意图△E 1=E 2-E 1=h ν1△E 2=E 3-E 1=h ν22.2.原子或分子的能量组成原子或分子的能量组成分子的运动可分为移动分子的运动可分为移动、、转动转动、、振动和分子内的电子运动运动。
而每种运动状态又都属于一定的能级属于一定的能级。
分子总能量E =E 0+E t +E r +E v +E e 图4-2双原子分子能级示意图(式4-3)红外光谱法的特点紫外、可见吸收光谱常用于研究不饱和有机化合物,特别是具有共轭体系的有机化合物;红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼变化的化合物光谱中出现)。
红外各基团特征峰对照表一、红外吸收光谱中的重要区段:-1)(3750~3000 cm 1) O-H、N-H伸缩振动区-1)(3300~3000 cm 2) 不饱和碳上的C-H 伸缩振动区不饱和碳(三键和双键、苯环)上的C-H的伸缩振动在3300~3000 cm-1区域中出现不同的吸收峰。
-1)(3000~2700 cm 3) C-H伸缩振动区饱和碳上的C-H伸缩振动(包括醛基上的C-H)-1)(2400~2100 cm 4) 叁键和累积双键区波数在2400~2100 cm-1区域内的谱带较少。
-1)(1900~1650 cm 5) 羰基的伸缩振动区-1。
由于羰基的电偶极矩较1755~1670 cm 羰基的吸收最常见出现的区域为大,一般吸收都很强烈,常成为IR光谱中的第一强峰。
-1) 6) 双键伸缩振动区(1690~1500 cm该区主要包括C=C,C=N,N=N,N=O等的伸缩振动以及苯环的骨架振动(σ)。
C=C-1) 伸缩振动区(1475~1000 cmX-Y7) X-H面内弯曲振动及这个区域主要包括C-H面内弯曲振动, C-O、C-X(卤素)等伸缩振动, 以及C-C单键骨架振动等。
该区域是指纹区的一部分。
-11000~650 cm面外弯曲振动区(C-H8) )-1区。
苯环邻二取)在1000~650 cmσC-H烯烃、芳烃的C-H面外弯曲振动(-1-1;苯环对二取代:、770~735cm810~750cm;苯环间二取代:710~690代:-1 830~810cm 具体对照表如下所示:(其中:VS:很强;W:弱;S:强;VW:很弱;m:中等;w:宽)1、O-H、N-H伸缩振动区(3750—3000 cm-1)-峰的强波/c基团类V3700~320O-V,尖锐吸收3700~350游O-分子间氢V,尖锐吸收3550~345二分子缔3500~320,宽吸收多分子缔V3500~250,宽吸收羧O-V3570~345,尖锐吸收分子内氢N-,尖锐吸收3500~3300 游离W,尖锐吸收带3500~3100 缔合3500~3300 可变酰胺-13300—3000 cm伸缩振动区(2、C-H)-1峰的强度波数/cm 基团类型νVS ~3300-C≡C-HM-C=C-H 3100~3000M3050~3010Ar-H-13000—2700 cmC-H伸缩振动区(3、)-1基团类型ν波数/cm峰的强度VS-CH 2960及28703VS -CH及2850 - 29302W2890 ≡C-HW -CHO 2720-12400—2100 cm、叁键和累积双键区(4)-1基团类型波数/cm ν峰的强度m R-C≡C-H2140~2100`RC≡CR 2260~2190可变RC≡CR 无吸收S R-C≡N2260~2120SR-N=N=N 2160~2120SR-N=C=N-R2155~2130S-C=C=C-~1950-C=C=O~2150~2000-C=C=NO=C=O~2349R-N=C=O 2275~2250S-11900—1650 cm、羰基的伸缩振动区(5)-1峰的强度/cm 波数基团类型νS 1740~1720 饱和脂肪醛Sα,β-不饱和脂肪醛1705~1680S 1715~1690 芳香醛S 1725~1705 饱和脂肪酮S1685~1665 不饱和脂肪酮α,β-S 1745~1725α-卤代酮S1700~1680 芳香酮S 1800~1750 )(脂环酮四员环S(五员环) 1780~1700S1760~1680 (六员环)S1740~1710 )酯(非环状S 1750~1730 六及七员环内酯S 1780~1750 五员环内酯S1815~1720 酰卤S1850~1800 1780~1740 酸酐(游离)1700~1680 酰胺1660~1640 (缔合)-11690—1500 cm、双键伸缩振动区(6)-1基团类型/cm波数ν峰的强度1680~1620-C=C-不定1620~1450 苯环骨架1690~1640 -C=N不定1630~1575 -N=N=不定-N1615~1511390~1320-11000—650 cm面外弯曲振动区(、C-H8)-1波数峰的强度/cmν基团类型1000~650 )(不定σC-H770~735 苯环邻二取代-810~750cm、710~690 不定苯环间二取代830~810 不定苯环对二取代二、指纹区和官能团区从第1-6区的吸收都有一个共同点,每一红外吸收峰都和一定的官能团相对应,此区域从而称为官能团区。
水的光谱各峰所属振动
水分子在不同频率下的振动会产生不同的光谱吸收峰。
根据研究,水的光谱各峰所属振动可分为如下几个部分:
1. 基频振动:位于3500-3700 cm^-1的峰,对应水分子中的O-H 键的拉伸振动。
2. 第一谐振:位于3200-3500 cm^-1的峰,对应水分子中的O-H 键的弯曲振动。
3. 第二谐振:位于1600-1800 cm^-1的峰,对应水分子中的O-H 键的伸缩振动。
4. 弯曲振动:位于550-750 cm^-1的峰,对应水分子中两个氢
原子的弯曲振动。
5. 扭曲振动:位于100-200 cm^-1的峰,对应水分子中两个氢
原子的扭曲振动。
水的光谱各峰所属振动的研究对于分析水的结构和性质具有重
要意义,也在工业和环境监测等领域有着广泛的应用。
- 1 -。