分子的振动-转动光谱
- 格式:ppt
- 大小:610.00 KB
- 文档页数:7
IR是由于物质吸收电磁辐射后,分子振动-转动能级的跃迁而产生的,称为分子振动转动光谱,简称振转光谱。
分子的振动形式可分成两类:
1、伸缩振动(stretching vibration)
(1)对称伸缩振动(symmetrical stretching
vibration,ns);
(2)反对称伸缩振动(asymmetrical
stretching vibration,nas);
2、变形或弯曲振动(deformation vibration);
(1)面内变形振动(in plane bending vibration,d );剪式振动(scissoring vibration,d );
面内摇摆振动(rocking vibration,r );
(2)面外变形振动(out-of-plane bending vibration,g );面外摇摆振动(wagging vibration,w );
扭曲变形振动(twisting vibration,t )。
纯属记忆性的东西,特定的官能团对应特定的谱峰值,至于振动方式,大概你去图书馆借一些书看一下就懂了,用于判断的主要是伸缩振动,因为它吸收很明显,主要在高频区,而弯曲振动主要在指纹区,没有判断价值,能力有限,网上只能指点关键地方。
常规样品的红外光谱分析PB07206298龚智良实验目的1.初步掌握两种基本样品制备技术及傅立叶变换光谱仪器的简单操作;2.通过图谱解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。
实验原理红外光谱:红外光谱是分子的振动转动光谱,也是一种分子吸收光谱。
当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动引起的偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些区域的光透射强度减弱。
记录红外光的百分透射比或波长关系曲线,就得到红外光谱。
从分子的特征吸收可以鉴定化合物和分子结构,进行定性和定量分析。
红外光谱尤其在物质定性分析中应用广泛,它操作简便,分析速度快,样品用量少且不破坏样品,能提供丰富的结构信息,因此红外光谱法往往是物质定性分析中优先考虑的手段。
能产生红外吸收的分子为红外活性分子,如COଶ分子;不能产生红外吸收的分子为非红外活性分子,如Oଶ分子。
中红外区为基本振动区:4000-400cm-1研究应用最多。
红外吸收的波数与相应振动的力常数关系密切。
双原子分子的基本频率计算公式为ߨඨߨݒ=12ߨ其中ߨ为约化质量μ=mଵ∙mଶmଵ+mଶ对于多原子分子,其振动可以分解为许多简单的基本振动,即简正振动。
一般将振动形式分为两类:伸缩振动和变形振动。
各种振动都具有各自的特征吸收。
仪器结构和测试技术Fourier变换红外光谱仪(FTIR仪:能够同时测定所有频率的信息,得到光强随时间变化的谱图,称时域图,这样可以大大缩短扫描时间。
由于不采用传统的色散元件,其分辨率和波数精度都较好。
傅立叶变换红外谱仪主要由光源(硅碳棒、高压汞灯、Michellson干涉仪、检测器、计算机和记录仪组成。
测试样品时,由于样品对某些频率的红外光吸收,从而得到不同样品的干涉图。
红外光是复合光,检测器接收到的信号是所有频率的干涉图的加合。
对试样的要求:试样应该为纯物质,纯度大于98%,以便于和纯化合物进行比较;样品中不能含游离水;试样的浓度和测试厚度应选择适当,以使大多数吸收峰的透射比处于10%-80%。