多原子分子振动和振动光谱
- 格式:ppt
- 大小:4.10 MB
- 文档页数:52
红外吸收光谱的基本原理一、分子的振动与红外吸收任何物质的分子都是由原子通过化学键联结起来而组成的。
分子中的原子与化学键都处于不断的运动中。
它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。
这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。
1、双原子分子的振动分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。
以双原子分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键长),两个原子分子量为m 1、m 2。
如果把两个原子看成两个小球,则它们之间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。
因此可以把双原子分子称为谐振子。
这个体系的振动频率υ(以波数表示),由经典力学(虎克定律)可导出:C ——光速(3×108 m/s )υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简化为υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。
H-Cl 2892.4 cm -1 C=C 1683 cm -1C-H 2911.4 cm -1 C-C 1190 cm -1同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就大。
由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红外的高频率区。
2、多原子分子的振动1¦Ð¦Ì2c K m 1m 2m 1m2+K μ(1)、基本振动的类型多原子分子基本振动类型可分为两类:伸缩振动和弯曲振动。
亚甲基CH 2的各种振动形式。
对称伸缩振动 不对称伸缩振动亚甲基的伸缩振动 剪式振动 面内摇摆 面外摇摆 扭曲变形面内弯曲振动 面外弯曲振动亚甲基的基本振动形式及红外吸收A 、伸缩振动 用υ表示,伸缩振动是指原子沿着键轴方向伸缩,使键长发生周期性的变化的振动。
1振动光谱的基本原理●定义及分类所谓振动光谱是指物质分子或原子基团的振动所产生的光谱。
●如果将透过物质的电磁辐射用单色器加以色散,使波长按长短依次排列,同时测量在不同波长处的辐射强度,得到的是吸收光谱。
如果用的光源是红外光谱范围,即0.78-1000µm,就是红外吸收光谱。
如果用的是强单色光,例如激光,产生的是激光拉曼光谱。
2电磁波与物质相互作用E=hν =hc/λ电磁波的产生与两个能态上粒子的跃迁有关。
在不同能量电磁波作用下, 物质的不同状态将出现共振吸收( Resonance), 形成共振谱。
3分子振动模型●1、双原子分子振动模型双原子分子是很简单的分子,其振动形式是很简单的,如HCl分子,它只有一种振动形式,即伸缩振动。
双原子分子的振动可以近似地看作为简谐振动,由经典力学的HOOK 定律可以推导出该体系的振动频率公式:●2、多原子分子振动模型(1)简正振动多原子分子的振动是复杂的,但可以把它们的振动分解成许多简单的基本振动单元,这些基本振动称为简正振动。
简正振动具有以下特点:1)振动的运动状态可以用空间自由度(坐标)来表示,体系中的每一质点具有XYZ三个自由度;2)振动过程中,分子质心保持不变,分子整体不转动;3)每个原子都在其平衡位置上作简谐振动,各原子的振动频率及位相相同,即各原子在同一时间通过其平衡位置,又在同一时间达到最大的振动位移;4)分子中任何一个复杂振动都可以看成这些简正振动的线性组合。
●(3)简正振动的数目简正振动的数目称为振动自由度。
每个振动自由度对应于IR谱图上的一个基频吸收带。
分子的总自由度取决于构成分子的原子在空间中的位置。
每个原子空间位置可以用直角坐标系中x、y、z三个坐标表示,即有三个自由度。
显然,由n个原子组成的分子,具有3n个总自由度,即有3n种运动状态,而3n种运动状态包括了分子的振动、平动和转动。
即:3n = 振动自由度 + 平动自由度 + 转动自由度振动自由度 = 3n - 平动自由度 - 转动自由度对于非线性分子,振动自由度 = 3n - 6对于线性分子,振动自由度 = 3n - 54物质因受红外光的作用,引起分子或原子基团的振动(热振动),从而产生对红外光的吸收。
第四章振动光谱当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射分子吸收了某些频率的辐射,,其振动或转动运动引起偶极矩发生变化转动运动引起偶极矩发生变化。
由于分子的振动能量比转动能量大由于分子的振动能量比转动能量大,,当发生振动能级跃迁时发生振动能级跃迁时,,不可避免地伴随有转动能级的跃迁动能级的跃迁,,只能得到分子的振动只能得到分子的振动--转动光谱,这种光谱称为红外吸收光谱这种光谱称为红外吸收光谱。
案例1500100015002000250030003500400001020304050607080T r a n s m i t i v i t y -1图4-1 灼烧前Nd:YAG前驱体的红外光谱图案例2500100025003000350040002030405060708090100T r a n s m i t t i v i t y 图4-2灼烧后Nd:YAG前驱体的红外光谱图第一节振动光谱的基本原理1.1.光的二重性光的二重性普朗克公式普朗克公式::E =h ν一、光与分子的相互作用波数即波长的倒数波数即波长的倒数,,表示单位(cm)长度光中所含光波的数目长度光中所含光波的数目。
波长或波数可以按下式互换波长或波数可以按下式互换::( cm -1)=1/λ(cm)=104/λ(μm)在2.5μm 处,对应的波数值为对应的波数值为::= 104/2.5 (cm -1)=4000cm -1ν_ν_(式4-1)图4-1能级跃迁示意图△E 1=E 2-E 1=h ν1△E 2=E 3-E 1=h ν22.2.原子或分子的能量组成原子或分子的能量组成分子的运动可分为移动分子的运动可分为移动、、转动转动、、振动和分子内的电子运动运动。
而每种运动状态又都属于一定的能级属于一定的能级。
分子总能量E =E 0+E t +E r +E v +E e 图4-2双原子分子能级示意图(式4-3)红外光谱法的特点紫外、可见吸收光谱常用于研究不饱和有机化合物,特别是具有共轭体系的有机化合物;红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼变化的化合物光谱中出现)。
原子和分子的光谱光谱是研究物质结构和性质的重要手段之一,可以通过光的传播、吸收和发射等现象来揭示物质的特征。
原子和分子的光谱是指在特定能量条件下,原子和分子所吸收或发射的光线的频率和强度的变化规律。
在本文中,我们将探讨原子和分子的光谱现象及其应用。
一、原子光谱1. 光谱的背景知识原子是由核和核外电子组成的,电子围绕原子核运动,其运动状态可以用能级来描述。
当原子受到激发或处于激发态时,其电子会跃迁到更高的能级,随后又会发射光子返回到低能级。
这种光子的能量与频率与原子的能级差有关,从而形成了原子光谱。
2. 原子吸收光谱原子在吸收光谱中,从基态向激发态跃迁,从而吸收了与跃迁能量相对应的特定频率的光。
每种元素具有独特的光谱特征,可以通过测量被样品吸收的特定波长或频率的光线来确定样品中的元素。
3. 原子发射光谱原子在发射光谱中,由激发态返回到基态,释放出与跃迁能量相对应的特定频率的光。
这些特定频率的光线可以用来鉴定物质中所含的元素,并可用于元素含量的快速分析和检测。
4. 原子吸收光谱的应用原子吸收光谱广泛应用于环境监测、食品安全、地质勘探等领域。
例如,通过分析土壤或水中的金属元素吸收光谱,可以判断环境中是否超出了安全标准。
二、分子光谱1. 分子的振动光谱分子振动主要存在于红外和近红外光谱范围内。
当分子发生振动时,其极性发生变化,导致电偶极矩的变化,从而对吸收和发射特定波长的光线起作用。
分析物质的振动光谱可以确定化学键的类型和有机分子的结构。
2. 分子的旋转光谱分子旋转主要存在于微波和亚毫米波段的光谱范围内。
分子在旋转时,其转动状态会对特定波长的光线产生作用,从而形成分子的旋转光谱。
旋转光谱广泛应用于天体物理学和化学领域,用于研究星际空间中的分子及大气中的稀有气体。
三、光谱分析的应用1. 光谱在物质分析中的应用光谱分析技术可以用于研究和鉴定物质的成分和结构,包括金属元素、有机化合物、无机盐和生物分子等。
2. 光谱在医学诊断中的应用光谱技术在医学诊断中有广泛的应用,如红外光谱用于检测癌症细胞的变化、核磁共振光谱用于分析体内化学物质的浓度等。
振动光谱学的原理和应用振动光谱学是一种用于研究分子结构和因此引起的分子振动的技术。
振动光谱学被广泛应用于许多不同的领域,包括化学,物理学,生物学,地球科学和工程学等等。
本文将介绍振动光谱学的原理和一些常见的应用。
振动光谱学的原理振动光谱学基于分子中原子的相对位置和运动之间的关系。
当分子振动时,原子之间的距离和角度会发生改变,这样就会产生不同种类的振动模式。
根据振动模式的不同,可以将振动分为伸缩振动和弯曲振动。
振动光谱学主要有两种类型:红外光谱学和拉曼光谱学。
红外光谱学利用红外辐射的吸收来识别分子中的振动模式,而拉曼光谱学则利用拉曼散射来识别分子中的振动模式。
在红外光谱学中,物质中的化学键在特定的波长处会吸收辐射。
每个振动模式的吸收峰都会出现在不同的波长区间。
鉴别物质中的特定元素或化学键所吸收的红外辐射带的位置和形状,可以使用红外光谱。
拉曼光谱学则利用物质分子中的分子振动引起的分子极化作用所导致的散射光。
相对于红外光谱,拉曼光谱具有更高的分辨率和更精确的定量分析能力,因此在化学、生物学和材料科学等领域广泛应用。
振动光谱学的应用振动光谱学广泛应用于分析物质的分子结构,确定分析物质的分子成分以及分析分子间的相互作用力等。
以下是振动光谱学应用的一些实例:1. 化学结构确定振动光谱学技术可用于化学结构的确定。
利用红外光谱或拉曼光谱,可以识别物质中的化学键、官能团及其位置等信息。
通过综合分析标准谱图,可以进一步确定物质的化学结构,因此在化学分析领域得到了广泛的应用。
2. 生物化学分析对于生物大分子,如蛋白质和DNA等,振动光谱学可以用于研究它们的结构和动力学。
拉曼光谱法也可以用于细胞生物学研究中。
例如,可以用拉曼光谱对细胞中的脂质、蛋白质、核酸等大分子进行非破坏性检测。
3. 物质检测振动光谱学的另一个常见应用是在非常低浓度下检测物质。
这种方法利用物质分子与振动光子之间的相互作用,准确测定分子在样品中的存在量。
有机化学中的分子振动与拉曼光谱在有机化学中,分子振动是一个重要的研究领域,它不仅有助于了解有机分子的结构和性质,还可以通过拉曼光谱分析来确定分子的振动信息。
本文将介绍有机化学中的分子振动和拉曼光谱的相关知识。
一、分子振动的基本原理分子振动是指分子内原子相对位置的变化产生的运动。
根据量子力学的理论,分子的振动运动是量子化的,只能取某些特定的能量。
分子振动可以分为拉伸振动和弯曲振动两种基本形式。
1. 拉伸振动:拉伸振动是分子中化学键的伸缩运动,类似于弹簧的拉伸和压缩。
单原子间的键只能产生伸缩振动,而多原子间的键则可以发生更复杂的拉伸振动。
2. 弯曲振动:弯曲振动是分子中原子相对位置的改变,如角度的增大或减小。
这种振动是由于原子之间碰撞而产生的。
二、拉曼光谱与分子振动的关系拉曼光谱是一种分析物质分子振动状态的方法,通过测量物质与激光交互作用后的散射光谱来获得分子的振动信息。
根据光谱的特征峰,我们可以确定分子中各种键的振动模式。
1. 瑞利散射与斯托克斯线:拉曼光谱中的峰主要分为两种,一种是瑞利散射线,另一种是斯托克斯线。
瑞利散射线的波长与入射光波长相同,它们的光子能量没有变化,主要用于判断材料的光学特性。
而斯托克斯线的波长比入射光波长要长,与分子振动的能量差有关。
2. 拉曼活性与激发频率:不是所有的分子都能产生拉曼散射。
只有在分子对外部电场具有极化作用的键才能产生拉曼散射。
这种键被称为拉曼活性键。
三、应用案例拉曼光谱在有机化学中具有广泛的应用。
以下是一些常见的案例:1. 确定分子结构:通过拉曼光谱的特征峰可以判断分子中的化学键以及它们的振动模式,从而推断出分子的结构。
这对于有机化合物的鉴定和分析非常重要。
2. 监测反应过程:拉曼光谱可以实时监测分子在化学反应中的变化,从而了解反应动力学和中间产物的生成情况。
这对于有机合成的优化和过程控制非常有帮助。
3. 表征纳米材料:由于拉曼光谱对微小样品的要求不高,因此可用于表征纳米材料的结构和性质。
多原子分子的结构及振动光谱多原子分子是由两个或更多个原子通过化学键相互结合形成的分子,包括了大多数的化合物,如水、二氧化碳、氨等。
这些分子的结构和振动光谱对于研究化学反应、分子结构和动力学性质等方面具有重要意义。
下面将详细介绍多原子分子的结构及其振动光谱。
1.多原子分子的结构:多原子分子的结构由原子之间的相互作用决定,包括原子间的化学键和非化学键相互作用。
化学键可以是共价键、离子键或金属键。
非化学键包括静电吸引力、氢键、范德华力等。
多原子分子的结构通常可以用分子式、结构式和空间构型来描述。
分子式:用化学符号表示分子中原子的种类和数量,如H2O、CO2等。
结构式:通过化学键来描述分子中原子之间的连接方式,包括平面结构、线性结构和三维立体结构。
空间构型:描述分子中原子之间的空间排列,包括平面分子、非平面分子、角度分子等。
2.多原子分子的振动光谱:振动光谱是分子结构和振动性质的一种分析方法,可以通过测量分子振动态的能量吸收、发射光谱来获得分子的结构信息。
多原子分子的振动光谱主要包括红外光谱和拉曼光谱。
红外光谱:红外光谱是通过测量分子对红外光的吸收来获取分子振动信息的一种分析方法。
红外光谱通常分为近红外、中红外和远红外三个区域。
多原子分子的红外光谱可以提供关于分子中原子之间振动的信息,如键伸缩振动、弯曲振动和扭曲振动等。
拉曼光谱:拉曼光谱是测量分子散射光中频率移位的一种分析方法,通过观察样品散射光的强度和频率变化,可以得到分子的振动信息。
拉曼光谱主要分为强拉曼光谱和弱拉曼光谱两种类型。
多原子分子的拉曼光谱可以提供关于分子中原子振动模式的信息,如伸缩振动、转动振动和弯曲振动等。
3.多原子分子的谱图解析:谱图预测:通过实验测定的分子光谱数据,利用理论计算方法,如量子化学方法和密度泛函理论,可以预测分子的振动光谱。
谱图比对:通过将实验测得的分子光谱与已知的标准光谱进行比对,确定分子的结构和振动模式。
谱图比对可以利用数据库和谱图图谱手册等参考资料进行。
常见高分子红外光谱谱图解析1. 红外光谱的基本原理1)红外光谱的产生能量变化ννhch==E-E=∆E12ννh∆E=对于线性谐振子μκπνc21=2)偶极矩的变化3)分子的振动模式多原子分子振动伸缩振动对称伸缩不对称伸缩变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆AX3:对称变形、反对称变形. 不同类型分子的振动线型XY2:对称伸缩不对称伸缩弯曲弯曲型XY2:不对称伸缩对称伸缩面内弯曲(剪式)面内摇摆面外摇摆卷曲平面型XY3:对称伸缩不对称伸缩面内弯曲面外弯曲角锥型XY3:对称弯曲不对称弯曲面内摇摆4)聚合物红外光谱的特点1、组成吸收带2、构象吸收带3、立构规整性吸收带4、构象规整性吸收带5、结晶吸收带2 聚合物的红外谱图1)聚乙烯各种类型的聚乙烯红外光谱非常相似。
在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。
要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。
这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。
低压聚乙烯(热压薄膜)中压聚乙烯(热压薄膜)高压聚乙烯(热压薄膜)2.聚丙烯无规聚丙烯等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。
这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。
3.聚异丁烯CH3H2C CnCH3丁二烯聚合可以生成多种结构不同的异构体。
H2 CHCHC CH2C CHCH2HH2CC CHCH2H2CH 1,2- 顺式1,4- 反式1,4-990、910 cm-1 775、741、690 cm-1 970 cm-1 1,2-聚丁二烯顺式1,4-聚丁二烯用于橡胶的顺式1,4-丁二烯的光谱中,730 cm-1的宽强吸收很特征,但反式1,4-和1,2-结构的吸收虽弱但仍很明显。
双原子分子振动转动光谱双原子分子振动转动光谱2010-05-10 16:35双原子分子通常同时具有振动和转动,振动能态改变时总伴随着转动能态的改变,产生的光谱称为振动-转动光谱,其波长范围一般位于红外区。
双原子分子的纯振动作为初步近似,可以先忽略双原子分子的转动,只考虑分子的振动。
实际分子的原子核振动不是严格的简谐振动。
采用非简谐振子模型,把质量为M1和M2的原子核相对振动视为具有折合质量的单一质点在平衡位置re附近作非简谐振动,这个质点处于分子的原子核的有效势能场(分子中电子能量与原子核库仑排斥势能之和)中。
势能函数包含偏离平衡位置的位移量的二次幂项和更高次幂项。
这时,分子的振动能级的能量值为相应的光谱项为式中h为普朗克常数,с为真空中光速,υ为振动量子数,为分子的经典振动频率,Ke为振动力常数。
式(2)中等号右边第一项是简谐振子的振动光谱项;其后各项是非简谐振动的修正项,wexe和weye为非简谐性常数。
通常可以忽略更小的高次项,但当光谱仪器分辨率很高时以及在激光光谱学研究中应予考虑。
分子的最低振动态(υ=0)的能量值E0不为零,称为零点能。
图1为双原子分子在电子基态下的振动能级示意图。
双原子分子的势能可以用经验公式表示,莫尔斯势能函数是广泛采用的一种形式。
如图1中实曲线所示。
式中De称为分子离解能,β是与电子态有关的参数。
取r=re处的势能U=0;当r→∞时,势能曲线趋于水平渐近线,这时分子被离解。
从势阱底部算起的离解能是De,从υ=0能级算起的离解能是D0(见分子的离解能)。
双原子分子的振动-转动同时考虑分子的振动和转动时,转动能量可以看成是振动能量的微扰。
按照转动振子模型,对给定非简谐振子势能曲线的确定电子态,振动-转动能级的能量值可用下式表示相应的光谱项为式中Bv、Dv是振动态υ的转动常数。
转动振子光谱项表示为非简谐振子振动光谱项G(υ)与转动光谱项Fv(J)之和,其中转动谱项不仅与转动量子数J有关,而且由于分子的振动-转动相互作用,还与振动量子数υ有关。