大气边界层第一章
- 格式:ppt
- 大小:95.65 MB
- 文档页数:62
第一章大气边界层2.假定在近地层中,雷诺应力Tzx为常数,混合长错误!未找到引用源。
,并且在下边界z=0处,错误!未找到引用源。
,试求风随高度的分布。
解:∵错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
∴错误!未找到引用源。
∴错误!未找到引用源。
错误!未找到引用源。
∴错误!未找到引用源。
…………①对①式积分错误!未找到引用源。
3.已知由于湍流摩擦引起的边界层顶部的垂直速度为错误!未找到引用源。
(1)试推出正压大气中,由于湍流摩擦引起的二级环流对天气尺度涡旋的旋转减弱时间错误!未找到引用源。
的公式。
(2)若湍流系数k=8m2/s,f=10-4s-1,涡旋顶部w=0的高度为10km,试计算错误!未找到引用源。
为多少?解:(1)正压大气的涡度方程简化形式:错误!未找到引用源。
设错误!未找到引用源。
∴错误!未找到引用源。
…………①当z=H时错误!未找到引用源。
对①积分∵f为常数∴错误!未找到引用源。
错误!未找到引用源。
∴错误!未找到引用源。
∴错误!未找到引用源。
∴错误!未找到引用源。
(2)∵k=8m2/s f=10-4s-1H=10km∴错误!未找到引用源。
6.在某地测定平均风速随高度的分布,得到如下结果,假定风速分布对数规律,试计算z0,u及T0(去卡曼常数为0.40)。
高度(m)7 2 0.30 0.04平均风速(m/s) 3.92 3.30 2.40 1.41解:引入对数坐标系令错误!未找到引用源。
错误!未找到引用源。
得出右表:则通过错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
带入前两组值错误!未找到引用源。
错误!未找到引用源。
∴错误!未找到引用源。
(m)错误!未找到引用源。
(m/s)错误!未找到引用源。
错误!未找到引用源。
15.在定常、均匀的气流中,铅直方向处于静力平衡的空气质点受到水平气压梯度力、水平地转偏向力和水平摩擦力的作用,假定后者与风速矢方向相反、大小成比例,试求风压场之间的关系,并作图说明。
第一部分 气象学地球的大气成分;大气分层和结构;大气静力学;辐射过程;大气的热力学;大气边界层第一章 地球的大气成分一、了解大气的基本组成干洁空气水汽和大气气溶胶二、理解大气水汽的重要性 在地球大气的气体成分中,水汽是最重要、最活跃的,相变造成雨云雷电,潜热方式传递热量的载体,而且在地球的生态系统中起着重要作用。
三、了解气溶胶粒子在大气过程中的作用水汽相变的凝结核,吸收和散射太阳辐射,影响大气能见度,影响大气化学过程第二章 大气分层和结构一、了解大气的分层由于地球自转以及不同高度大气对太阳辐射吸收程度的差异,使得大气在水平方向比较均匀,而在垂直方向呈明显的层状分布,故可以按大气的热力性质、电离状况、大气组成等特征分成若干层次。
1按中性成分的热力结构,把大气分成对流层、平流层、中间层、热层,外逸层;2按大气的化学成分,把大气分为均质层和非均质层;二、掌握对流层的基本特征对流层的主要特点是:1大气温度随高度降低;2大气的垂直混合作用强;3气象要素水平分布不均匀。
三、理解温度、气压、湿度、风、云、降水、水平能见度等主要气象要素的概念 温度:温度是表示物体冷热程度的物理量,温度反映物体内部分子平均动能。
气压:一个位置的气压是该处单位面积上所承受的其上空的大气柱的重量湿度:大气中水汽含量多少的物理量。
风 :空气的水平运动称为风。
云 :水汽凝结物悬浮在自由大气中即形成云。
降水:从云中降落到地面的水汽凝结物(固态的或液态的)统称降水,常见的有雨、雪、冰雹等。
水平能见度:气象学上把人的正常视力所能看到的水平方向上目标物的最大距离叫做水平能见度。
四、掌握大气温度、湿度的表示方法大气湿度:通常采用以下特征量来定量表示空气湿度大小。
1、饱和水汽压(e ):010atb t E E +=⨯ (1.2.1)式中:0E 为0℃时的饱和水汽压,其值为6.11hPa ;t 为蒸发面温度;a 、b 为两个经验参数,平水面:7.45a =,237.3b =;平冰面:9.5a =,265.0b =。
第一章大气边界层基本的概念1、大气边界层定义,特征2、大气边界层的垂直分层结构,通常可分为粘性副层、近地面层、混合层3、边界层发展的日变化,陆上高压区大气边界层通常由三部分组成,对流混合层,残余层,稳定边界层4、大气边界层按稳定度分类:稳定边界层,不稳定边界层及中性边界层5、风与气流的流动形式:平均风速、波动、湍流6、自然界中的流体运动存在着两种完全不同的运动状态:层流、湍流7、莫宁-奥布霍夫(Monin-Obukhov)相似理论以及π理论是边界层湍流研究的理论基础,8、大气湍流的能量来源于机械运动作功和浮力作功两方面。
9、名词解释:泰勒假说第二章湍流基础1、湍流的基本特征:随机性、非线性、扩散性、涡旋性、耗散性按照能量学的观点,大气湍流的存在和维持有三大类型:风切变产生的湍流、对流湍流、波产生湍流2、湍流的定量描述(重点掌握):平均量和平均法则、雷诺分解、统计量、湍流尺度大气湍流中,雷诺平均通常有三种平均方式,分别是时间平均,空间平均,系统平均。
第三章大气边界层控制方程(要知道出发方程都是什么,推导方法,拿出来一个方程能够识别出是什么方程,各项对应的物理意义是什么,这章会有个推导题,题目见课件)1、基本控制方程(状态方程、一个质量守恒方程(连续方程)、三个动量守恒方程(Navier-Stokes方程)、一个热力学能量方程)水汽及污染物的守恒方程形式与热量守恒形式一致通过Boussinesq 近似得到简化方程,克罗内克符号,交变张量,2、平均量方程出发方程:Boussinesq 近似方程组采用雷诺平均的方法,将任意一个物理量表示成平均量和脉动量之和,代入方程组,然后再取平均————大气边界层平均量控制方程,重要:在动量、热量和水汽平均方程组均出现了湍流通量散度项,表现出湍流通量对平均场动量、热量和水汽含量增减的贡献。
P.S 定常、水平均匀,忽略下沉,取平均风速为x轴方向几种假设的含义3、湍流脉动量方程将出发方程展开为平均量和脉动量相加的形式,与平均量方程相减,即可得到湍流脉动量控制方程。
第一章概论第一节边界层理论的创立和发展一、初始阶段(1904年~二十世纪三十年代中期):布拉休斯(普朗特的学生)于1908年采用相似解的方法将偏微分的边界层方程组变换为常微分方程,完成了平板边界层问题的求解,得出了流体沿平板壁面的摩擦阻力的计算公式。
计算结果与实验数据基本吻合,给解决实际流动问题提供理论分析的基础,且可用于解释用理想流体概念所不能说明的物理现象,如流动脱体(边界层分离)现象等。
流动脱体现象:流体流经障碍物、截面突然扩大或缩小、弯头等局部阻力骤变处时,流体的流动状况会由层流转化为湍流(紊流)。
而流体在作湍流流动时,其质点作不规则的杂乱运动,流经绕流体时会互相碰撞产生旋涡等现象。
流体流过平板或在直径相同的管道中流动时,流动边界层紧贴壁面。
流经曲面,如球体、圆柱体或其它几何形状物体的表面时,无论是层流还是湍流,在一定条件下都会产生边界层与固体表面脱离的现象,并且在脱离处产生旋涡。
二、第二阶段(二十世纪三十年代中期~六十年代中期):高速边界层、层流稳定性以及湍流边界层,将边界层概念从速度边界层推广到温度边界层,使边界层理论发展成为对流换热理论分析的基础。
出现边界层方程的解法:相似解法、积分方程解法、级数解法、匹配渐进展开法(现统称“奇异摄动法”)和差分数值计算法。
随着飞行器飞行速度增加,必须考虑空气的可压缩性,从而研究了可压缩流体(即高速流体)边界层的阻力计算和传热计算。
由于边界层内层流和湍流的阻力和传热规律不同,除了研究层流边界层,还必须研究层流稳定性和湍流边界层。
湍流边界层研究:雷诺应力的半经验公式,湍流边界层的分层和速度分布的分析与实验研究,湍流边界层的摩擦阻力和传热的计算。
三、第三阶段(六十年代中期至今):处于深入攻坚阶段,当代流体力学的两大问题——湍流与分离流的研究。
分离流:由于边界层相对于逆压力梯度行进足够远时,边界层相对于物体的速度几乎下降到零而产生流动分离的一种现象。
第二节粘性流体的性质一、理想流体与粘性流体理想流体:指不计及粘性的流体。