函数的基本初等函数与复合函数
- 格式:docx
- 大小:37.25 KB
- 文档页数:3
初等函数、简单函数、复合函数、初等函数的概念及
关系
1.初等函数:
初等函数是由基本初等函数经过有限次四则运算(加、减、乘、除)与有限次复合形成的函数。
基本初等函数包括以下几种类型:-常数函数:如f(x)=C,C是常数。
-幂函数:如f(x)=x^n,n为实数。
-指数函数:如f(x)=a^x,a>0且a≠1.
-对数函数:如f(x)=log_a(x),a>0且a≠1.
-三角函数:sin(x),cos(x),tan(x),cot(x),sec(x),csc(x)及其逆函数(反三角函数)。
2.简单函数:
简单函数通常是指构成复杂函数的基本单元,它们相对独立且形式较为简单。
在解决具体问题时,简单函数可能指的就是上述基本初等函数,或者是通过基本初等函数进行一次或几次基本运算(如加法、乘法等)得到的函数。
3.复合函数:
复合函数是两个或多个函数通过变量的代换相互结合而成的新
函数。
如果存在两个函数f和g,那么可以定义一个复合函数h(x)=f(g(x)),其中g的值域需包含在f的定义域内。
例如,`h(x)
=sin(2x)`就是一个复合函数,其中`g(x)=2x`作为外层函数的“内层”被嵌套到`f(u)=sin(u)`中。
关系上:
-所有的基本初等函数都是简单函数。
-简单函数经过组合(包括复合和四则运算)可以形成更复杂的初等函数。
-复合函数是构造初等函数过程中的一种重要手段,它可以将几个简单函数联接起来构建新的、具有更丰富特性的函数表达式。
基本初等函数公式及运算法则一、基本初等函数公式:1. 幂函数公式: $(a^m)^n=a^{mn}$;2. 对数函数公式: $\log_{a^n}b=\frac{1}{n}\log_ab$;3. 指数函数公式: $a^{\log_ab}=b$;4.三角函数公式:$\begin{aligned} (\sin x)^2+(\cos x)^2&=1\\ (\secx)^2&=1+(\tan x)^2 \\ (\csc x)^2&=1+(\cot x)^2 \end{aligned}$。
5.反三角函数公式:$\begin{aligned} \sin^{-1}x+\cos^{-1} x&=\frac{\pi}{2}\\\tan^{-1}x+\cot^{-1} x&=\frac{\pi}{2} \end{aligned}$。
6.双曲函数公式:$\begin{aligned} \cosh^2x-\sinh^2x&=1\\ \cos^2x+\sinh^2x&=1 \end{aligned}$。
二、基本初等函数运算法则:1.基本四则运算法则:加法、减法、乘法、除法;2. 复合函数法则:$(f\circ g)(x)=f(g(x))$;3. 取模运算法则:$(a+b)\bmod m=(a\bmod m+b\bmod m)\bmod m$;4. 取整函数法则:$\lfloor x+y\rfloor=\lfloorx\rfloor+\lfloor y\rfloor,\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$;5.比较大小法则:对于正整数$a,b,c$,若。
$(1)\ a>b>0,c>0$,则$ac>bc$;$(2)\ a>b>0,c<0$,则$ac<bc$;$(3)\ a<b<0,c>0$,则$ac<bc$;$(4)\ a<b<0,c<0$,则$ac>bc$。
一、复合函数函数y=log2x是对数函数,那么函数y=log2(2x-1)是什么函数呢?我们可以这样理解:设y=log2u,u=2x-1,因此函数y=log2(2x-1)是由对数函数y=log2u和一次函数u=2x-1经过复合而成的。
一般地,如果y是u的函数,而u又是x的函数,即y=f(u),u=g(x),那么y关于x的函数y=f[g(x)]叫做函数f和g的复合函数,u叫做中间变量。
二、复合函数。
定理:设y=f(u),u=g(x),已知u=g(x)在[a,b]上是单调增(减)函数,y=f(u)在区间[g(a),g(b)](或[g(b),g(a)]上是单调增(减)函数,那么复合函数y=f[g(x)]在[a,b]上一定是单调函数,并有以下结论:同增异减判断复合函数的单调性的步骤如下:(1)求复合函数定义域;(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);(3)判断每个常见函数的单调性;(4)将中间变量的取值范围转化为自变量的取值范围;(5)求出复合函数的单调性。
例1.讨论函数y=0.8x2-4x+3的单调性。
解:函数定义域为R。
令u=x2-4x+3,y=0.8u。
指数函数y=0.8u在(-∞,+∞)上是减函数,u=x2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,∴ 函数y=0.8x2-4x+3在(-∞,2]上是增函数,在[2,+∞)上是减函数。
这里没有第四步,因为中间变量允许的取值范围是R,无需转化为自变量的取值范围。
例2.讨论函数y=(log2x)2+log2x的单调性。
解:显然函数定义域为(0,+∞)。
令 u=log2x,y=u2+u∵ u=log2x在(0,+∞)上是增函数,y=u2+u在(-∞,- ]上是减函数,在[- ,+∞)上是增函数(注意(-∞,-]及[-,+∞)是u的取值范围)因为u≤- log 2x≤- 0<x≤,(u≥- log2x≥-x≥)所以y=(log2x)2+log2x在(0,]上是减函数,在[,+∞)上是增函数。
函数的基本初等函数与复合函数函数作为数学中重要的概念,是数学研究的核心内容之一。
本文将
探讨函数的基本初等函数与复合函数,并介绍它们的定义、性质和应用。
1. 基本初等函数
基本初等函数是指一些常见的基本函数,包括常数函数、幂函数、
指数函数、对数函数、三角函数和反三角函数等。
每个基本初等函数
都有其独特的性质和特点。
1.1 常数函数
常数函数是指函数图像上所有的点都位于同一条水平线上,即对于
任意的x值,函数的取值都是一个常数。
常数函数的表达式为f(x) = C,其中C为常数。
1.2 幂函数
幂函数是指函数的定义域为全体实数,并且函数表达式为f(x) = x^a,其中a为实数指数。
幂函数的图像呈现出平滑的曲线,且取决于指数a
的不同而有不同的特征。
1.3 指数函数
指数函数是以常数e为底的幂函数,其定义域为全体实数。
指数函
数的表达式为f(x) = e^x,其中e约等于2.71828。
指数函数具有快速上
升的特点,是模型中常见的函数之一。
1.4 对数函数
对数函数是指以某个正实数为底的幂函数的反函数,其定义域为正实数集合。
对数函数的表达式为f(x) = log_a(x),其中a为底数。
对数函数具有递增且变化逐渐减缓的特点。
1.5 三角函数与反三角函数
三角函数包括正弦函数、余弦函数和正切函数等,其定义域为全体实数。
三角函数具有周期性和周期性平移的特点。
反三角函数是指三角函数的反函数,其定义域和值域视情况而定。
2. 复合函数
复合函数是指多个函数的组合形成的新的函数。
设有两个函数f(x)和g(x),则其复合函数为f(g(x))。
复合函数的性质取决于原函数之间的关系。
复合函数的定义要求满足两个函数的定义域和值域相互对应,且内层函数的值域必须是外层函数的定义域。
复合函数的运算法则是由内到外进行运算。
3. 应用
基本初等函数和复合函数在数学和实际问题中有着广泛的应用。
在数学上,基本初等函数是构建更复杂函数的基础,通过组合使用这些基本函数,可以推导出其他函数的性质和特点。
基本初等函数的研究为数学发展提供了坚实的基础。
在实际生活中,函数的应用非常广泛。
例如,指数函数可用于描述人口增长或物质衰变等自然现象;对数函数可用于解决与倍数关系相关的问题;三角函数可用于描述周期性变化的现象等等。
复合函数则可以帮助我们解决更为复杂的问题,例如经济学中的成本函数与收益函数的复合运用。
总结起来,基本初等函数与复合函数是数学中重要的概念和工具,具有广泛的应用领域。
通过深入了解其定义、性质和应用,我们可以更好地理解函数的本质和运用。