高一数学指数函数及其性质(一)-基本初等函数
- 格式:doc
- 大小:258.00 KB
- 文档页数:1
(人教课标版)普通高中课程标准实验教科书《数学》目录必修一第一章集合与函数概念1、集合2、函数及其表示3、函数的基本性质第二章基本初等函数(Ⅰ)1、指数函数2、对数函数3、幂函数第三章函数的应用1、函数与方程2、函数模型及其应用必修二第一章空间几何体1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积与体积第二章点、直线、平面之间的位置1、点、直线、平面之间的位置关系2、直线、平面平行的判定及其性质3、直线、平面垂直的判定及其性质第三章直线与方程1、直线的倾斜角与斜率2、直线的方程3、直线的交点坐标与距离公式第四章圆与方程1、圆的方程2、直线、圆的位置关系3、空间直角坐标系必修三第一章算法初步1、算法与程序框图2、基本算法语句3、算法与案例第二章统计1、割圆术2、随机抽样3、用样本估计总体4、变量间的相关关系第三章概率1、随机事件的概率2、古典概型3、几何概型必修四第一章三角函数1、三角函数2、任意角和弧度制3、任意角的三角函数4、三角函数的诱导公式5、三角函数的图象与性质6、函数y=Asin(ωx+φ)7、三角函数模型的简单应用第二章平面向量1、平面向量的实际背景及基本概念2、平面向量的线性运算3、平面向量的基本定理及坐标表示4、平面向量的数量积5、平面向量应用举例第三章三角恒等变换1、两角和与差的正弦、余弦和正切2、简单的三角恒等变换必修五第一章解三角形1、正弦定理和余弦定理2、解三角形的应用举例第二章数列1、数列的概念与简单表示法2、等差数列3、等差数列的前n项和4、等比数列5、等比数列的前n项和第三章不等式1、不等关系与不等式2、一元二次不等式及其解法3、二元一次不等式(组)与简单的线性规则问题4、基本不等式。
2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。
必修1基本初等函数(Ⅰ)知识要点〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的nn 是偶数时,正数a 的正的n表示,负的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =.xxxxx x(q)0x xf xfxfxxx。
基本初等函数(1)— 指数函数及其性质参考答案与试题解析一.选择题(共26小题)1.函数()x x f x e e -=+的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【解答】解:由于函数()x x f x e e -=+的定义域为R ,关于原点对称,且满足()()x x f x e e f x --=+=,故函数为偶函数,故它的图象关于y 轴对称,故选:B .2.设21()5a =,152b =,21log 5c =,则( ) A .c a b << B .c b a << C .a c b << D .a b c <<【解答】解:根据指数函数1()5x y =的图象和性质 得:210()15<< 根据指数函数2x y =的图象和性质 得:1521>根据对数函数2log y x =的图象和性质 得:2105log < 所以c a b <<故选:A .3.设113344343(),(),()432a b c --===,则a 、b 、c 的大小关系是( ) A .c a b << B .b c a << C .b a c << D .c b a <<【解答】解:3()4x y =在R 上单调递减,4()3x y =,3()2x y =在R 上单调递增 ∴10333()()144->=,104441()()33=<,30433()()122-<= 而111334344()()()433-=> a b c ∴>>故选:D .4.已知0a b >>,则2a ,2b ,3a 的大小关系是( )A .223a b a >>B .232b a a <<C .223b a a <<D .232a a b <<【解答】解:2x y =,是增函数又0a b >>221a b ∴>>a y x =,0a >,在(0,)+∞上是增函数23a a ∴<223b a a ∴<<故答案为:223b a a <<5.函数3x y =的图象与函数21()3x y -=的图象关于( )A .点(1,0)-对称B .直线1x =对称C .点(1,0)对称D .直线1x =-对称【解答】解:3x y =的图象关于(1,0)-对称的函数为:21()3x y +=-关于(1,0)对称的函数为:21()3x y -=-关于1x =对称的函数为:21()3x y -=关于1x =-对称的函数为:21()3x y +=故选:B .6.函数21()221x x f x +=+-的值域是( )A .(2,)-+∞B .(1,)-+∞C .(1,)+∞D .(2,)+∞【解答】解:令2x t =,则0t >,则函数22()()21(1)2f x g t t t t ==+-=+-,由于函数()g t 在(0,)+∞上单调递增,故2()(01)21g t >+-=-,故选:B .7.已知函数9()41f x x x =-++,(0,4)x ∈,当x a =时,()f x 取得最小值b ,则函数||()x b g x a +=的图象为()A .B .C .D .【解答】解:(0,4)x ∈,11x ∴+>999()4152(51111f x x x x x x ∴=-+=++--=+++,当且仅当2x =时取等号,此时函数有最小值12a ∴=,1b =, 此时1|1|12,1()21(),12x x x x g x x +++⎧-⎪==⎨<-⎪⎩,此函数可以看成函数2,01(),02x x xy x ⎧⎪=⎨<⎪⎩的图象向左平移1个单位结合指数函数的图象及选项可知A 正确故选:A .8.不论a 取何正实数,函数1()2x f x a +=-恒过点( )A .(1,1)--B .(1,0)-C .(0,1)-D .(1,3)--【解答】解:令10x +=,可得1x =-,则(1)121f -=-=-∴不论a 取何正实数,函数1()2x f x a +=-恒过点(1,1)--故选:A .9.若函数|24|()(0,1)x f x a a a -=>≠,满足f (1)19=,则()f x 的单调递减区间是() A .(-∞,2] B .[2,)+∞ C .[2-,)+∞ D .(-∞,2]-【解答】解:由f (1)19=,得219a =,于是13a =,因此|24|1()()3x f x -=. 因为()|24|g x x =-在[2,)+∞上单调递增,所以()f x 的单调递减区间是[2,)+∞.故选:B .10.若方程111()()042x x a -++=有正数解,则实数a 的取值范围是( )A .(0,1)B .(3,0)-C .(2,0)-D .(1,0)-【解答】解:设1()2x t =,则有:22211[()2()]2(1)122x x a t t t =-+=--=-++.原方程有正数解0x >,则0110()()122x t <=<=,即关于t 的方程220t t a ++=在(0,1)上有实根.又因为2(1)1a t =-++.所以当01t <<时有112t <+<,即21(1)4t <+<,即24(1)1t -<-+<-,即23(1)10t -<-++<,即得:30a -<<,故选:B .11.设函数()|21|x f x =-,c b a <<,且f (c )f >(a )f >(b ),则22a c +与2的大小关系是( )A .222a c +>B .222a c +C .222a c +D .222a c +<【解答】解:21,0()|21|12,0x x x x f x x ⎧-=-=⎨-<⎩,作出()|21|x f x =-的图象如图所示,由图可知,要使c b a <<且f (c )f >(a )f >(b )成立,则有0c <且0a >,故必有21c <且21a >,又f (c )f -(a )0>,即为12(21)0c a --->,222a c ∴+<.故选:D .12.下列数值大小比较中,正确的是( )A .22(2)(3)->-B .0.30.10.20.2>C .0.50.233<D .56lg lg <【解答】解:(1)因为2(2)4-=,2(3)9-=,所以22(2)(3)-<-,故不正确(2)(01)x y a a =<<在R 上是减函数又00.21<<,0.30.1∴>,0.30.10.20.2∴<,故不正确(3))(1)x y a a =>在R 上是增函数又31>,0.50.2∴>,0.50.233∴>,故不正确;(4)y lgx =在(0,)+∞上是增函数,又56<,56lg lg ∴<,故正确故选:D .13.当1a >时,函数x y a -=与log a y x =的图象是( )A .B .C .D .【解答】解:由1a >知,函数1()x x y a w a -==为减函数,log a y x =为增函数.故选:A .14.已知函数2,0()1,02x x x f x x ⎧⎪=⎨-<⎪⎩,若(2)f a f ->(a ),则实数a 的取值范围是() A .(0,1) B .(,0)-∞ C .(,1)-∞ D .(1,)+∞【解答】解:由于函数2,0()1,02x x x f x x ⎧⎪=⎨-<⎪⎩,则当0x =时,(0)1f =,0x >时,()f x 递增,0x <时,12x 递减,()f x 递增,则有()f x 在R 上递增,(2)f a f ->(a )即为2a a ->,解得,1a <故选:C .15.已知||()2x a f x +=的图象关于直线1x =对称,则实数(a = )A .1-B .0C .1D .2【解答】解:方法1:||y x a =+,关于x a =-对称,||()2x a f x +∴=关于x a =-对称,∴对称轴1x a =-=,解得1a =-,方法||2:()2x a f x +=的图象关于直线1x =对称,(1)(1)f x f x ∴+=-,即|1||1|22x a x a ++-+=,|1||1|x a x a ∴++=-+,解得1a =-.故选:A .16.若函数||3([,])x y x a b =∈的值域为[1,9],则222a b a +-的取值范围是( )A .[8,12]B .C .[4,12]D .[2,【解答】解:由题意,0必须在定义域内,且2与2-至少有一个在定义域内若2b =,则[2a ∈-,0),此时2222(1)3[4a b a a +-=-+∈,12]若2a =-,则(0b ∈,2],),此时22228[8a b a b +-=+∈,12]综上222a b a +-的取值范围是[4,12]故选:C .17.若2323x x y y ----,则( )A .0x y -B .0x y -C .0x y +D .0x y +【解答】解;设()23x x f x -=-,2x y =和3x y -=-均为增函数,()23x x f x -∴=-为R 上的增函数 2323x x y y ----,即()()f x f y -x y ∴-,即0x y +故选:C .18.对于函数13()(22)x x f x x -=-和实数m 、n ,下列结论中正确的是( )A .若()()f m f n <,则22m n <B .若m n <,则()()f m f n <C .若()()f m f n <,则33m n <D .上述命题都不正确【解答】解:函数13()(22)x x f x x -=-∴函数1133()(22)()(22)()x x x x f x x x f x ---=--=-= 即函数()f x 为偶函数当[0x ∈,)+∞又(22)0x x y -=-,且为增函数;130y x=,且为增函数; ∴函数13()(22)x x f x x -=-在[0,)+∞上为增函数根据偶函数在对称区间上单调性相反可得函数13()(22)x x f x x -=-在(-∞,0]上为减函数若()()f m f n <,则||||m n <则22m n <故选:A .19.已知函数4()3,(0,4)f x x x x =+-∈,当且仅当x a =时,()f x 取得最小值b ,则函数||1()()x b g x a -=的图象为( ) A . B .C .D .【解答】解:4()3,(0,4)f x x x x =+-∈ 2x ∴=时,函数取得最小值12a ∴=,1b =∴1|||1|11(),1112()()()12(),12x x b x x x g x a x ----⎧⎪⎪===⎨⎪<⎪⎩ ∴函数图象关于直线1x =对称,在(,1)-∞上为增函数,在(1,)+∞上为减函数故选:C .20.设0a >,0b >,下列命题中正确的是( )A .若2223a b a b +=+,则a b >B .若2223a b a b +=+,则a b <C .若2223a b a b -=-,则a b >D .若2223a b a b -=-,则a b <【解答】解:a b 时,222223a b b a b b ++<+,∴若2223a b a b +=+,则a b >,故A 正确,B 错误;对于2223a b a b -=-,若a b 成立,则必有22a b ,故必有23a b ,即有32ab ,而不是a b >排除C ,也不是a b <,排除D .故选:A .21.设1x y >>,01a <<,则下列关系正确的是( )A .a a x y -->B .ax ay <C .x y a a <D .log log a a x y > 【解答】解:(01)x y a a =<<减函数又1x y >> x y a a ∴<故选:C .22.已知实数a ,b 满足等式23a b =,下列五个关系式:①0b a <<;②0a b <<;③0a b <<;④0b a <<; ⑤a b =.其中可能成立的关系式有( )A .①②③B .①②⑤C .①③⑤D .③④⑤【解答】解:令()2x f x =和()3x g x =,23a b =即f (a )g =(b ),如图所示由图象可知①②⑤正确, 故选:B .23.已知函数()|21|x f x =-,a b c <<,且f (a )f >(c )f >(b ),则下列结论中,必成立的是( )A .0a <,0b <,0c <B .0a <,0b <,0c >C .22a c -<D .0ac <【解答】解:根据题意画出函数图象A 三个不可能都小于0,应为都为负数时,函数单调递减即a b c <<时,得不到f (a )f >(c )f >(b );B 中b 的符号不一定为负,还可以为正;0C a c ->>,22a c -∴>,故错误.D 、根据函数图象可知:a 和c 异号,必有0ac <,故选:D .24.关于函数()33()x x f x x R -=-∈,下列结论,正确的是( )①()f x 的值域为R ;②()f x 是R 上的增函数;③x R ∀∈,()()0f x f x -+=成立.A .①②③B .①③C .①②D .②③【解答】解:函数()33()x x f x x R -=-∈是增函数,所以②正确;()()33330x x x x f x f x ---+=-+-=所以③正确;函数是奇函数;当0x >时()330x x f x -=->显然①()f x 的值域为R ,正确;故选:A .25.定义在(,)-∞+∞上的偶函数()f x 满足(2)()f x f x +=,当[0x ∈,1]时,()101x f x =-,下面关于函数()f x 的判断:①当[1x ∈-,0]时,()101x f x -=-;②函数()f x 的图象关于直线1x =对称;③对任意1x ,2(1,2)x ∈,满足2121()(()())0x x f x f x --<;④当[2x k ∈,21]k +,k Z ∈时,2()101x k f x -=-.其中正确判断的个数为( )A .1B .2C .3D .4【解答】解:由题意可知()f x 的图象如图所示:①当[1x ∈-,0]时,[0x -∈,1],则()101x f x --=-,因为()f x 为偶函数,所以()()101x f x f x -=-=-,故①正确;②正确;③(1,2)x ∈时,()f x 为减函数,故③正确;④当[2x k ∈,21]k +,k Z ∈时,2[0x k -∈,1],所以2(2)101x k f x k --=-,由(2)()f x f x +=可知,()f x 是周期为2的周期函数,所以2()(2)101x k f x f x k -=-=-,④正确.故选:D .26.已知函数()22x f x =-,则函数|(||)|y f x =的图象可能是( )A .B .C .D .【解答】解: 2x y =的图象如图①;把其向下平移2个单位得到()22x f x y ==-的图象,如图②; 因为(||)y f x =是偶函数,把②的图象y 轴右边的部分不动,左边的与右边的关于轴对称即可,即为图③; 把③中函数值大于0的图象不动,函数值小于0的沿x 轴对折即可得到|(||)|y f x =的图象,如图④. 故选:A .二.填空题(共8小题)27.设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系是 b a c << .【解答】解:函数0.6x y =为减函数;故0.6 1.50.60.6a b =>=,函数0.6y x =在(0,)+∞上为增函数;故0.60.60.6 1.5a c =<=,故b a c <<,故答案为:b a c <<28.11063471.5()86-⨯-++= 110 . 【解答】解:12106233433433722215()82(23)()2231106333-⨯-+⨯+⨯--=++-=, 故答案为:11029.定义运算:,,b a b a b a a b⎧=⎨<⎩⊗则函数()33x x f x -=⊗的值域为 (0,1] . 【解答】解:如图为()33x x y f x -==⊗的图象(实线部分),由图可知()f x 的值域为(0,1].故答案为:(0,1].30.已知不等式222411()22x mx m x x -+++>对任意x R ∈恒成立,则实数m 的取值范围是 35m -<< . 【解答】解:不等式等价为222411()()22x x x mx m +-++>, 即2224x x x mx m +<-++恒成立,2(1)40x m x m ∴-+++>恒成立,即△2(1)4(4)0m m =+-+<,即22150m m --<,解得35m -<<,故答案为:35m -<<.31.已知函数(0)()38(0)x a x f x ax a x ⎧>=⎨+-⎩是(,)-∞+∞上的增函数,那么实数a 的取值范围是 (1,3] . 【解答】解:函数(0)()38(0)x a x f x ax a x ⎧>=⎨+-⎩是(,)-∞+∞上的增函数,1a ∴>且038a a -, 解得13a <,故实数a 的取值范围是(1,3],故答案为(1,3].32.已知函数22x y a +=- (0,1)a a >≠的图象恒过定点A ,则定点A 的坐标为 (2,1)-- .【解答】解:由指数函数(0,1)x y a a a =>≠的图象恒过(0,1)点而要得到函数22(0,1)x y a a a +=->≠的图象,可将指数函数(0,1)x y a a a =>≠的图象向左平移两个单位,再向下平移两个单位. 则(0,1)点平移后得到(2,1)--点,故答案为:(2,1)--.33.已知函数21(0)()(2)(0)ax ax x f x a e x ⎧+=⎨+<⎩为R 上的单调函数,则实数a 的取值范围是 [1-,0) . 【解答】解:①若()f x 在R 上单调递增,则有02021a a a >⎧⎪+>⎨⎪+⎩,解得a ∈∅;②若()f x 在R 上单调递减,则有02021a a a <⎧⎪+>⎨⎪+⎩,解得10a -<,综上所述,得实数a 的取值范围是[1-,0).故答案为:[1-,0).34.已知函数()|21|x f x =-,a b c <<,且f (a )f >(c )f >(b ),则下列结论中,一定成立的是 ④ .①0a <,0b <,0c <;②0a <,0b ,0c >;③22a c -<;④222a c +<.【解答】解:对于①,0a <,0b <,0c <,因为a b c <<,所以0a b c <<<, 而函数()|21|x f x =-在区间(,0)-∞上是减函数,故f (a )f >(b )f >(c ),与题设矛盾,所以①不正确;对于②,0a <,0b ,0c >,可设1a =-,2b =,3c =,此时f (c )f =(3)7=为最大值,与题设矛盾,故②不正确;对于③,取0a =,3c =,同样f (c )f =(3)7=为最大值,与题设矛盾,故③不正确;对于④,因为a c <,且f (a )f >(c ),必有0a c <<,所以f (a )1221a c f =->-=(c ), 化简整理,得222a c +<成立.综上所述,可得只有④正确或者:只需取4a =-,0.1b =-,0.5c =,很明显满足a b c <<,且f (a )f >(c )f >(b ),但是可以否定①②③故答案为:④。
《指数函数及其性质》(第一课时)各位评委、老师,大家好!我是来自河南省实验中学的崔爽,今天我说课的题目是《指数函数及其性质》,我将从以下六个方面来实现我的教学设想.一、教学内容分析本节课是(人教A版必修1)第二章第一节的第二课(§2.1.2),根据我所教的学生的实际情况,我将《指数函数及其性质》划分为“指数函数的概念及其性质”和“指数函数及其性质的应用”这两课时,今天我所说的课是第一课时.指数函数是重要的基本初等函数之一,它不仅是今后学习对数函数和幂函数的基础,同时其在生活和生产实际中的应用十分广泛,所以指数函数不仅是教学的重点,同时也是学生体会数学之美和数学在实际生活中的意义的重要课程.二、学生实际情况分析指数函数是在学生系统学习了函数概念,掌握了函数的性质的基础上第一次对一个函数进行全面、系统的研究,因此在初期会给学生带来一定的学习困难,但指数函数的总体难度不大,随着数学思想的建立和对函数知识系统的学习,大部分学生均可熟练掌握.三、设计思想1.函数及其图象在高中数学中占有很重要的位置。
为了突出重点,突破难点,本节课采用列表法、图象法、解析法及图形计算器的实际操作,让学生从不同的角度去研究指数函数,对其有一个全方位的认识,从而达到知识的迁移运用.2.在教学过程中通过自主探究、生生对话、师生对话,培养学生“体会-总结-反思”的数学思维习惯,提高数学素养,激发学生勇于探索的精神.四、学习目标“目标导引教学”是数学学科的教学模式之一,一节好课,首先要解决的是要把学生带到哪里去的问题,所以我对课标中的要求做了详细的分解。
课程标准对本节课的要求是:理解并掌握指数函数的概念;能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.首先,我从认知层次的三个维度对课标进行了分解,具体如下:依据行为动词,我又从能力层次将课标进行了再分解,具体如下:由此确定的学习目标为:1.通过具体实例,经过合作交流活动得到指数函数的概念,由学生自主归纳总结并对指数函数的概念进行分析;2.借助图形计算器画出具体指数函数的图象,探索、归纳、猜想指数函数的单调性与特殊点;3.学生在数学活动中感受数学思想之美、体会数学方法之重要,培养学生主动学习、合作交流的集体意识.五、教学重点与难点教学重点:指数函数的概念的产生过程;教学难点:用数形结合的方法,从具体到一般地探索概括指数函数性质.六、教学过程本节课我采取“目标、评价、教学一致性”的教学设计,同时采用“点拨式自主学习与合作探究”的教学方法,将学生分成六人小组,每组由一名组长负责,借助五个环节实现本节课的学习目标.具体内容如下:这是我的板书设计我的板书设计分为教师板书和学生板书两块内容,教师板书,我侧重将本节的三个主要内容展示在黑板上,便于学生理解和记忆.学生板书,我将留给学生展示作图成果,便于对学生掌握的情况进行总结和评价.课后实践:教材59页A组第7题(2)、(3);第8题(1)、(4)我将以从上六个方面来实现本节课教学设想,让学生们在快乐中学习,在学习中寻找快乐.谢谢!。
基本初等函数一、指数函数 1、根式的概念(1)如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n 次方根用负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.(2)这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.(3)根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. 2、分数指数幂(1)正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.(2)正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈实战演练1. 下列计算中正确的是( )A .633x x x =+B .942329)3(b a b a = C . lg(a+b)=lga·lgb D .lne=1 2. 已知71=+a a ,则=+-2121a a ( )A. 3B. 9C. –3D. 3±3、等于( ) A 、B 、C 、D 、4、若,且,则的值等于( )A 、B 、C 、D 、25、已知,则函数的图像必定不经过( )A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限6、若,则 。
7、函数的单调递减区间是 。
44366399a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭16a8a4a2a 1,0ab ><22b b a a -+=b ba a --62±2-01,1a b <<<-xy a b =+103,104x y ==10x y -=2233x y -=二、对数函数 1、对数的定义(1)若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. (2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 2、几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =. 3、常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即lo g eN(其中 2.71828e =…). 4、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且 实战演练1、下列函数中,在其定义域内既是奇函数又是减函数的是( ) A. 3x y -= B.xy 21log = C. x y = D.xy )21(= 2、把函数y=a x (0<a<1)的反函数的图象向右平移一个单位得到的函数图象大致是 ( )(A ) (B ) (C ) (D )3、若a 、b 是任意实数,且b a >,则( )A .22b a >B .02<-ba C .0)lg(>-b a D .ba ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛21215、对数函数的其性质4、设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )A B .2 C . D .45、 已知f(x)=|lgx|,则f(41)、f(31)、f(2) 大小关系为( )A. f(2)> f(31)>f(41)B. f(41)>f(31)>f(2)C. f(2)> f(41)>f(31)D. f(31)>f(41)>f(2)6、函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是 A .4 B .3 C .2 D .17、 当x ∈[-1, 1]时,函数f(x)=3x -2的值域为 .8、若0a >,2349a =,则23log a = .9、(1)指数函数y=f(x)的图象过点(2,4),求f(4)的值;(2)已知log a 2=m ,log a 3=n ,求a 2m+n .三、反函数1、反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. 2、反函数的求法①确定反函数的定义域,即原函数的值域; ②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 3、反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数.实战演练1、函数y =-x 2+1(x ≤0)的反函数是( ) A.y =-1+x (x ≥-1) B.y =-x -1 (x ≤1) C.y =)1(+-x (x ≤-1) D.y =±1+x (x ≥-1)2、如图2—7,各图象表示的函数中,存在反函数的只能是()3、函数f (x )=c x b ax ++ (a 、b 、c 是常数)的反函数是f -1 (x )=213+-x x ,则a 、b 、c 的值依次是( )A.2,1,3B.-2,-1,-3C.-2,1,3D.-1,3,-24、函数f (x )=31+x (x ≠-3)的反函数是 .5、函数f (x )=-x 5+2x -4(x ≤1)的反函数是 .6、已知2)(3-=x x f 则f -1 (6)= .强化训练7、函数y =x 2+2x (x <-1)的反函数是( )A.)1(11--+= x x yB. )1(11--+= x x yC. )1(11--+-= x x yD. )1(11--+-= x x y 8、函数f (x )=2x 3(x ∈R )的反函数是 . 9、函数f (x )=2--x (x ≤-2)的反函数是 .10、函数f (x )的定义域在(-∞,0)上,且f (x +1)=x 2+2x ,则f -1(1)= . 11、已知函数y =f (x )有反函数y =f -1(x ),则f -1[f (m )]= .图2—7四、幂函数 1、幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. 2、必须掌握:y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常 用幂函数的图象.3①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qp y x =是奇函数,若p 为奇数q 为偶数时,则qp y x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.实战演练1、幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .2、幂函数的图象过点(2,14), 则它的单调递增区间是 .3、设x ∈(0, 1),幂函数y =a x 的图象在y =x 的上方,则a 的取值范围是 .4、函数y =34x -在区间上 是减函数.5、用“<”或”>”连结下列各式:0.60.32 0.50.32 0.50.34, 0.40.8- 0.40.6-.6、函数1322(1)(4)y x x --=-+-的定义域是7、942--=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 . 8、已知3532x x >,x 的取值范围为9、若幂函数a y x =的图象在0<x<1时位于直线y=x 的下方,则实数a 的取值范围是10、函数2()3x f x x +=+的对称中心是 ,在区间 是 函数(填“增、减”) 11、设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α值为( ) A .1,3 B .1-,1 C .1-,3 D .1-,1,312、一个幂函数y =f (x )的图象过点(3, 427),另一个幂函数y =g (x )的图象过点(-8, -2),(1)求这两个幂函数的解析式; (2)判断这两个函数的奇偶性;(3)作出这两个函数的图象,观察得f (x )< g (x )的解集.。
指数函数及其性质一、指数与指数幂的运算 (一)根式的概念1、如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a的n次方根用符号n 是偶数时,正数a 的正的n的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.2n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.3、根式的性质:na =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (二)分数指数幂的概念1、正数的正分数指数幂的意义是:0,,,m na a m n N +>∈且1)n >.0的正分数指数幂等于0. 2、正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质(0,,)r s r s a a a a r s R +⋅=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈5、0的正分数指数幂等于0,0的负分数指数幂无意义。
二、指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义; ○2 注意指数函数的底数的取值范围不能是负数、零和1.(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈ (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =(4)当1a >时,若21x x <,则)x (f )x (f 21< 四、底数的平移对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。
2.1.2 指数函数及其性质〔1〕从容说课指数函数是在学生系统的学习了函数概念、基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产中有着广泛的应用,所以指数函数应重点研究.指数函数对学生来说是完全陌生的一类函数,对于这样的函数应该怎样进行较为系统的研究是学生面临的重要问题.所以,从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到对其他函数的研究中去.本课主要学习指数函数的概念、图象,并根据图象归纳出指数函数的性质.指数函数是在把指数范围扩充到实数的基础上引入的,因此在教学指数函数之前,可以先扼要地复习一下指数范围的扩充过程,以便让学生理解指数函数的定义域.在指数函数的概念讲解过程中,既要说清楚指数函数的定义域是什么,又要向学生交待为什么要规定底数a 是一个大于0且不等于1的常量.函数图象是研究函数性质的直观工具,利用图象便于学生记忆函数的性质和变化规律.在用描点法画指数函数的图象时,首先要通过计算列出对应值表.因此,教学中可以指导学生借助计算机在同一坐标系内画出y =2x ,y =〔21〕x这两个具有典型意义的指数函数的图象,并引导学生借助于具体函数图象来分析它们的特征,得出指数函数的性质.引导学生结合指数的有关概念来理解指数函数的概念,并向学生指出指数函数的形式特点,在研究指数函数的图象时,遵循由特殊到一般的研究规律,要求学生自己作出特殊的较为简单的指数函数的图象然后推广到一般情况,类比地得到指数函数的图象,并通过观察图象,总结出指数函数的性质,而且是分a >1与0<a <1两种情形.本节课的整体设计是按照一般研究函数的规律设计的.由实例引入定义,再根据定义并利用描点法画出函数图象,通过图象得到函数的性质.学生在学习函数时,往往感到比较困难、抽象,不易理解和掌握,要让学生掌握学习函数的一般规律,再继续学习新的函数,学生就能顺理成章,而不会产生无所适从的感觉.本节的容量较大,为了提高效率,可采用现代化教学手段,利用投影仪或电脑.在引导学生观察分析了三种典型函数的图象性质之后,将得到的结论直接投影出来,课上的引例、例题、练习题、作业题也都可投影出来,但要注意一定要表达过程教学.比如画函数图象,不要一下就把图象投影出来,这样不利于学生掌握图象的画法,既使用了投影仪或电脑,也要将建立坐标系〔要强调三要素〕、描点、用光滑曲线将这些点连结起来的整个过程展现出来.又如函数性质的教学,一定先让学生观察图象,分析特点,从而提高学生观察归纳的能力和看图用图的意识,例题的解答也要让学生去分析,发现解法.这样有利于学生尽快掌握函数的性质,掌握比较两个数大小的方法,让学生在观察的过程中,发现的过程中,解决问题的过程中,建立起学好函数、学好数学的信心.三维目标一、知识与技能1.掌握指数函数的概念、图象和性质.2.能借助计算机或计算器画指数函数的图象.3.能由指数函数图象探索并理解指数函数的性质.二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等.2.通过探讨指数函数的底数a >0,且a ≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识.2.在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段.教学重点指数函数的概念和性质. 教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教具准备多媒体课件、投影仪、打印好的作业. 教学过程一、以生活实例,引入新课 〔多媒体显示如下材料〕材料1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……一个这样的细胞分裂x 次后,得到的细胞分裂的个数y 与x 的函数关系是什么?〔生思考,师组织学生交流各自的想法,捕捉学生交流中与以下结论有关的信息,并简单板书〕结论:材料1中y 和x 的关系为y =2x .材料2:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期〞.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?〔生思考〕生:P =〔21〕5730t.师:你能发现关系式y =2x ,P =〔21〕5730t有什么相同的地方吗?〔生讨论,师及时总结得到如下结论〕我们发现:在关系式y =2x和P =〔21〕5730t中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式y =2x 和P =〔21〕5730t都是函数关系式,且函数y =2x 和函数P =〔21〕5730t在形式上是相同的,解析式的右边都是指数式,且自变量都在指数位置上.师:你能从以上两个解析式中抽象出一个更具有一般性的函数模型吗? 〔生交流,师总结得出如下结论〕生:用字母a 来代替2与〔21〕57301.结论:函数y =2x 和函数P =〔21〕5730t都是函数y =a x 的具体形式.函数y =a x 是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数.〔引入新课,书写课题〕 二、讲解新课〔一〕指数函数的概念〔师结合引入,给出指数函数的定义〕一般地,函数y =a x 〔a >0,a ≠1〕叫做指数函数,其中x 是自变量,函数的定义域是R .合作探究:〔1〕定义域为什么是实数集? 〔生思考,师适时点拨,给出如下解释〕知识拓展:在a >0的前提下,x 可以取任意的实数,所以函数的定义域是R . 〔2〕在函数解析式y =a x 中为什么要规定a >0,a ≠1?〔生思考,师适时点拨,给出如下解释,并明确指数函数的定义域是实数R 〕 知识拓展:这是因为〔ⅰ〕a =0时,当x >0,a x 恒等于0;当x ≤0,a x 无意义.〔ⅱ〕a <0时,例如a =-41,x =-41,那么a x=〔-41〕41无意义.〔ⅲ〕a =1时,a x 恒等于1,无研究价值.所以规定a >0,且a ≠1.〔3〕判断以下函数是否是指数函数:①y =2·3x ;②y =3x -1;③y =x 3;④y =-3x ;⑤y =〔-4〕x ;⑥y =πx ;⑦y =42x ;⑧y =x x ;⑨y =〔2a -1〕x 〔a >21,且a ≠1〕. 生:只有⑥⑨为指数函数.方法引导:指数函数的形式就是y =a x ,a x 的系数是1,其他的位置不能有其他的系数,但要注意化简以后的形式.有些函数貌似指数函数,实际上却不是,例如y =a x +k 〔a >0,且a ≠1,k ∈Z 〕;有些函数看起来不像指数函数,实际上却是指数函数,例如y =a -x 〔a >0,且a ≠1〕,这是因为它的解析式可以等价化归为y =a -x =〔a -1〕x ,其中a -1>0,且a -1≠1.如y =23x 是指数函数,因为可以化简为y =8x .要注意幂底数的范围和自变量x 所在的部位,即指数函数的自变量在指数位置上.〔二〕指数函数的图象和性质师:指数函数y =a x ,其中底数a 是常数,指数x 是自变量,幂y 是函数.底数a 有无穷多个取值,不可能逐一研究,研究方法是什么呢?〔生思考〕师:要抓住典型的指数函数,分析典型,进而推广到一般的指数函数中去.那么选谁作典型呢?生:函数y =2x 的图象.师:作图的基本方法是什么? 生:列表、描点、连线. 借助多媒体手段画出图象.师:研究函数要考虑哪些性质?生:定义域、值域、单调性、奇偶性等.师:通过图象和解析式分析函数y =2x 的性质应该如何呢?生:图象左右延伸,说明定义域为R ;图象都分布在x 轴的上方,说明值域为R +;图象上升,说明是增函数;不关于y 轴对称也不关于原点对称,说明它既不是奇函数也不是偶函数.师:图象在数值上有些什么特点?生:通过图象不难发现y 值分布的特点:当x <0时,0<y <1;当x >0时,y >1;当x =0时,y =1.合作探究:是否所有的指数函数的图象均与y =2x 的图象类似? 画出函数y =8x ,y =3.5x ,y =1.7x ,y =0.8x 的图象,你有什么发现呢?〔生思考,师适时点拨,给出如下结论〕结论:y =0.8x 的图象与其余三个图象差别很大,其余三个图象与y =2x 的图象有点类似,说明还有一类指数函数的图象与y =2x 有重大差异.师:类似地,从中选择一个具体函数进行研究,可选什么函数?生:我们选择函数y =〔21〕x的图象作典型. 作出函数y =〔21〕x的图象.合作探究:函数y =2x 的图象和函数y =〔21〕x的图象的异同点. 〔生思考,师适时点拨,给出如下结论〕 一般地,指数函数y =a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:a >10<a <1图象性质 〔1〕定义域为〔-∞,+∞〕;值域为〔0,+∞〕 〔2〕过点〔0,1〕,即x =0时,y =a 0=1〔3〕假设x >0,那么a x >1; 假设x <0,那么0<a x <1 〔3〕假设x >0,那么0<a x <1; 假设x <0,那么a x >1〔4〕在R 上是增函数〔4〕在R 上是减函数合作探究:函数y =2x 的图象和函数y =〔21〕x的图象有什么关系?〔生观察并讨论,给出如下结论〕 结论:函数y =2x 的图象和函数y =〔21〕x的图象关于y 轴对称. 师:理由是什么呢?能否给予证明?证明:因为函数y =〔21〕x =2-x,点〔x ,y 〕与〔-x ,y 〕关于y 轴对称,所以y =2x 的图象上的任意一点P 〔x ,y 〕关于y 轴的对称点P 1〔-x ,y 〕都在y =〔21〕x 的图象上,反之亦然.根据这种对称性就可以利用函数y =2x 的图象得到函数y =〔21〕x 的图象.方法引导:要证明两个函数f 〔x 〕与g 〔x 〕的图象关于某一直线成轴对称图形,要分两点证明:〔1〕f 〔x 〕图象上任意一点关于直线的对称点都在g 〔x 〕的图象上;〔2〕g 〔x 〕图象上的任意一点关于直线的对称点都在f 〔x 〕的图象上.合作探究:思考底数a 的变化对图象的影响. 例如:比较函数y =2x 和y =10x 的图象以及y =〔21〕x 和y =〔101〕x 的图象.〔生观察并讨论,给出如下结论〕结论:在第一象限内,底数a 越小,函数的图象越接近x 轴. 合作探究:如何快速地画出指数函数简图?〔学生讨论,交流各自的想法,师适时地归纳,得出如下注意点〕〔1〕要注意图象的分布区域:指数函数的图象知分布在第一、二象限;〔2〕注意函数图象的特征点:无论底数取符合要求的任何值,函数图象均过定点〔0,1〕;〔3〕注意函数图象的变化趋势:函数图向下逐渐接近x 轴,但不能和x 轴相交. 〔三〕例题讲解[例1] 求以下函数的定义域:〔1〕y =8121-x ;〔2〕y =x )21(1-.〔多媒体显示,师组织学生讨论完成〕 师:我们已经有过求函数定义域的一些实战经验,你觉得求函数定义域时哪些方面应该引起你的高度注意?〔生交流自己的想法,师归纳,得出如下结论〕 〔1〕分式的分母不能为0;〔2〕偶次根号的被开方数大于或等于0; 〔3〕0的0次幂没有意义.师:这些注意点在我们所要解决的问题中又没有出现,是否还有其他新的要求或限制条件?〔生讨论交流,并板演解答过程,师组织学生进行评析,规范学生解题〕解:〔1〕∵2x -1≠0,∴x ≠21,原函数的定义域是{x |x ∈R ,x ≠21}; 〔2〕∵1-〔21〕x ≥0,∴〔21〕x ≤1=〔21〕0.∵函数y =〔21〕x 在定义域上单调递减,∴x ≥0.∴原函数的定义域是[0,+∞〕.[例2] 比较以下各题中两个值的大小:〔1〕1.72.5,1.73;〔2〕0.8-0.1,0.8-0.2;〔3〕1.70.3,0.93.1. 师:你能发现题中所给的各式有哪些共同点和不同点吗?这些特点能否给你解答该题有所启示呢?〔生讨论,师适时点拨,得出如下解析过程〕 解:〔1〕1.72.5,1.73可看作函数y =1.7x 的两个函数值.由于底数1.7>1,所以指数函数y=1.7x在R上是增函数.因为2.5<3,所以1.72.5<1.73.〔2〕0.8-0.1,0.8-0.2可看作函数y=0.8x的两个函数值.由于底数0.8<1,所以指数函数y=0.8x在R上是减函数.因为-0.1>-0.2,所以0.8-0.1<0.8-0.2.〔3〕因为1.70.3、0.93.1不能看作同一个指数函数的两个函数值,所以我们可以首先在这两个数值中间找一个数值,将这一个数值与原来两个数值分别比较大小,然后确定原来两个数值的大小关系.由指数函数的性质知1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.师:问题解决了,通过解决这些问题,你有什么心得体会吗?〔生交流解题体会,师适时归纳总结,得出如下结论〕方法引导:在解决比较两个数的大小问题时,一般情况下是将其看作是一个函数的两个函数值,利用函数的单调性比较之.当两个数不能直接比较时,我们可以将其与一个数进行比较大小,从而得出该两数的大小关系.三、巩固练习课本P68练习1、2〔生完成后,同桌之间互相交流解答过程〕1.略.2.〔1〕{x|x≥2};〔2〕{x|x≠0}.四、课堂小结师:通过本节课的学习,你觉得你都学到了哪些知识?请同学们互相交流一下自己的收获,同时也让你们的同桌享受一下你所收获的喜悦.〔生交流,师简单板书,多媒体显示如下内容〕1.指数函数的定义以及指数函数的一般表达式的特征.2.指数函数简图的作法以及应注意的地方.3.指数函数的图象和性质.一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:a>10<a<1图象性质〔1〕定义域为〔-∞,+∞〕;值域为〔0,+∞〕性质〔2〕过点〔0,1〕,即x=0时,y=a0=1〔3〕假设x>0,那么a x>1;假设x<0,那么0<a x<1〔3〕假设x>0,那么0<a x<1;假设x<0,那么a x>1 〔4〕在R上是增函数〔4〕在R上是减函数4.结合函数的图象说出函数的性质,这是一种重要的数学研究思想和研究方法——数形结合思想〔方法〕.5.a的取值范围是今后应用指数函数讨论问题的前提.五、布置作业课本P69习题2.1A组第5、6、7、8、10、11题.板书设计2.1.2 指数函数及其性质〔1〕一、1.指数函数的概念2.指数函数的图象和性质二、例题评析三、课堂小结四、布置作业。
2.1.2 指数函数及其性质整体设计教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》.根据实际情况,将《指数函数及其性质》划分为三节课〔指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)〕,这是第一节课“指数函数的图象及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.学生学习情况分析指数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上进行研究的,是学生对函数概念及性质的第一次应用.教材在之前的学习中给出了两个实际例子(GDP的增长问题和碳14的衰减问题),已经让学生感受到了指数函数的实际背景,但这两个例子的背景对于学生来说有些陌生.本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望.设计思想1.函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的好奇心.我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的.本节课力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去.2.在本节课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.(2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法.3.通过课堂教学活动向学生渗透数学思想方法.教学目标根据学生的实际情况,本节课的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识.重点难点教学重点:指数函数的概念、图象和性质.教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.教学过程一、创设情境、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……,按这样的规律,51号同学该准备多少粒米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重.师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……,按这样的规律,51号同学该准备多少粒米?学情预设学生可能说出很多或能算出具体数目.师:大家能否估计一下51号同学该准备的米有多重吗?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨.师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨.这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!设计意图用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望.在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?学生很容易得出y=2x(x∈N*)和y=2x(x∈N*).学情预设学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的取值范围.二、师生互动、探究新知1.指数函数的定义师:其实,在本章开头的问题中,也有一个与y=2x类似的关系式y=1.073x(x∈N*,x≤20).(1)让学生思考讨论以下问题(问题逐个给出,约3分钟):①y=2x(x∈N*)和y=1.073x(x∈N*,x≤20)这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 设计意图引导学生从具体问题、实际问题中抽象出数学模型.学生对比已经学过的一次函数、反比例函数、二次函数,发现y =2x ,y =1.073x 是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣.引导学生观察,两个函数中,底数是常数,指数是自变量.师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成y =a x 的形式.自变量在指数位置,所以我们把它称作指数函数.(2)让学生讨论并给出指数函数的定义(约6分钟).对于底数的分类,可将问题分解为:①若a <0,会有什么问题?(如a =-2,x =12,则在实数范围内相应的函数值不存在) ②若a =0,会有什么问题?(对于x ≤0,a x 都无意义)③若a =1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要)师:为了避免上述各种情况的发生,所以规定a >0且a ≠1.在这里要注意生生之间、师生之间的对话.①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a >0,且a ≠1;a =1为什么不行?②若学生只给出y =a x ,教师可以引导学生通过类比一次函数(y =kx +b ,k ≠0)、反比例函数(y =k x ,k ≠0)、二次函数(y =ax 2+bx +c ,a ≠0)中的限制条件,思考指数函数中底数的限制条件.学情预设设计意图①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;②讨论出a >0,且a ≠1,也为下面研究性质时对底数的分类做准备.接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y =2×3x ,y =32x ,y =-2x.学情预设学生可能只是关注指数是否是变量,而不考虑其他的.设计意图加深学生对指数函数定义和呈现形式的理解.2.指数函数的性质(1)提出两个问题(约3分钟)①目前研究函数一般可以包括哪些方面?设计意图让学生在研究指数函数时有明确的目标:函数三要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性).②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考.设计意图①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)两个不同的角度对函数进行研究;②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透.(2)分组活动,合作学习(约8分钟)师:下面我们就从图象和解析式这两个不同的角度对指数函数进行研究.①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;②每一大组再分为若干合作小组(建议4人一小组);③每组都将研究所得到的结论或成果写出来以便交流.学情预设考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导.通过自主探索、合作学习,不仅让学生充当学习的主人更可加深对所得到结论的理解.设计意图(3)交流、总结(约10~12分钟)师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果.教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析.这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?〔〕如过定点(0,1),y =a x 与y =⎝ ⎛⎭⎪⎫1a x 的图象关于y 轴对称学情预设①首先选一个从解析式的角度研究的小组上台汇报;②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;③问其他小组有没有不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化.设计意图①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的.②让学生上台汇报研究成果,使学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题,使该难点的突破显得自然.师:从图象入手我们很容易看出函数的单调性、奇偶性,以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到.教师通过几何画板中改变参数a的值,追踪y=a x的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律.师生共同总结指数函数的图象和性质,教师可以边总结边板书.0<a<1a>1(0,+∞)过定点(0,1)1.例:已知指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,π),求f(0),f(1),f(-3)的值.解:因为f(x)=a x的图象经过点(3,π),所以f(3)=π,即a 3=π.解得13πa =,于是f (x )=3πx . 所以f (0)=1,f (1)=3π,f (-3)=1π. 设计意图通过本题加深学生对指数函数的理解.师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了.设计意图让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想.2.练习:(1)在同一平面直角坐标系中画出y =3x 和y =⎝ ⎛⎭⎪⎫13x 的大致图象,并说出这两个函数的性质;(2)求下列函数的定义域:①y =112xy ⎛⎫= ⎪⎝⎭. 3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?学情预设学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数.设计意图①让学生再一次复习对函数的研究方法(可以从多个角度进行),让学生体会本节课的研究方法,以便能将其迁移到其他函数的研究中去.②总结本节课中所用到的数学思想方法.③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通.4.作业:课本习题2.1A 组 5.教学反思1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”.2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本节课使用几何画板可以动态地演示出指数函数的底数的变化过程,让学生直观地观察底数对指数函数单调性的影响.3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉地运用这些数学思想方法去分析、思考问题.指数函数及其性质的应用整体设计三维目标1.知识与技能理解指数函数的图象和性质,会利用性质来解决问题.2.过程与方法能利用指数函数的图象和性质来比较两个值的大小,图象间的平移,去探索利用指数函数的单调性来求未知字母的取值范围.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.重点难点教学重点:指数函数的图象和性质.教学难点:指数函数的性质应用.教学过程第2课时指数函数及其性质的应用(1)作者:王建波导入新课思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明(特别是指数函数的单调性),以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质的应用(1).应用示例例1 比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的方法,再写出答案(最好用实物投影仪展示写得正确的答案).比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;图1二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y=1.7x的图象,如图1.在图象上找出横坐标分别为2.5,3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法三:利用函数单调性,(1)1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x,当x=2.5和3时的函数值;因为1.7>1,所以函数y=1.7x在R上是增函数,而2.5<3,所以1.72.5<1.73;(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=0.8x在R上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;(3)因为1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.思考在上面的解法中,你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习强化来实现.例活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1,x 2∈R ,且x 1<x 2,则y 2-y 1=21121(1)x x x x a a a a x -=--.因为a >1,x 2-x 1>0,所以21>1x x a-,即21x x a --1>0. 又因为1x a >0,所以y 2-y 1>0,即y 1<y 2.所以当a >1时,y =a x,x ∈R 是增函数.同理可证,当0<a <1时,y =a x 是减函数. 证法二:设x 1,x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则y 2y 1=2211x x x x a a a -=. 因为a >1,x 2-x 1>0,所以21>1x x a->1,即y 2y 1>1,y 1<y 2. 所以当a >1时,y =a x ,x ∈R 是增函数.同理可证,当0<a <1时,y =a x是减函数.例1%,那么经过20年后,我国人口数最多为多少(精确到亿)?活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;……经过x 年 人口约为13(1+1%)x亿;经过20年 人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则 y =13(1+1%)x ,当x =20时,y =13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N ,平均增长率为p ,则对于经过时间x 后总量y =N (1+p )x (x ∈N ),像y =N (1+p )x 等形如y =ka x (k ∈R ,且k ≠0;a >0,且a ≠1)的函数称为指数型函数.知能训练1.函数y =a |x |(a >1)的图象是( )图2解析:当x ≥0时,y =a |x |=a x 的图象过(0,1)点,在第一象限,图象下凸,是增函数. 答案:B2.下列关系中正确的是( )A .221333111252⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .122333111225⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .212333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .221333111522⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答案:D3.已知函数f (x )的定义域是(0,1),那么f (2x)的定义域是( )A .(0,1)B .⎝ ⎛⎭⎪⎫12,1 C .(-∞,0) D .(0,+∞) 解析:由题意得0<2x <1,即0<2x <20,所以x <0,即x ∈(-∞,0). 答案:C4.若集合A ={y |y =2x,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .AB B .AB C .A =B D .A ∩B =∅解析:A ={y |y >0},B ={y |y ≥0},所以A B .答案:A5.对于函数f (x )定义域中的任意的x 1、x 2(x 1≠x 2),有如下的结论: ①f (x 1+x 2)=f (x 1)·f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=10x时,上述结论中正确的是__________. 解析:因为f (x )=10x,且x 1≠x 2,所以f (x 1+x 2)=1212101010x x xx +=⋅=f (x 1)·f (x 2),所以①正确;因为f (x 1·x 2)=1212101010x x xx ⋅≠+=f (x 1)+f (x 2),②不正确;因为f (x )=10x是增函数,所以f (x 1)-f (x 2)与x 1-x 2同号, 所以f (x 1)-f (x 2)x 1-x 2>0,所以③正确.因为函数f (x )=10x图象如图3所示是上凹下凸的,可解得④正确.图3答案:①③④另解:④.∵10x 1>0,10x 2>0,x 1≠x 2,∴1210102xx +>1210102xx +>即121221010102x x x x ++>.∴f (x 1)+f (x 2)2>f ⎝⎛⎭⎪⎫x 1+x 22.拓展提升在同一坐标系中作出下列函数的图象,讨论它们之间的联系. (1)①y =3x,②y =3x +1,③y =3x -1;(2)①y =⎝ ⎛⎭⎪⎫12x ,②y =⎝ ⎛⎭⎪⎫12x -1,③y =⎝ ⎛⎭⎪⎫12x +1.活动:学生动手画函数图象,教师点拨,学生没有思路,教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.解:如图4及图5.观察图4可以看出,y =3x,y =3x +1,y =3x -1的图象间有如下关系:y =3x +1的图象由y =3x 的图象左移1个单位得到; y =3x -1的图象由y =3x 的图象右移1个单位得到; y =3x -1的图象由y =3x +1的图象向右移动2个单位得到.观察图5可以看出,y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫12x -1,y =⎝ ⎛⎭⎪⎫12x +1的图象间有如下关系:y =⎝ ⎛⎭⎪⎫12x +1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象左移1个单位得到;y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象右移1个单位得到; y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x +1的图象向右移动2个单位得到. 你能推广到一般的情形吗?同学们留作思考.课堂小结思考本节课我们主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致.本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.作业课本习题2.1 B组1,3,4.设计感想本节课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a>1,0<a<1,这是分类讨论的思想,因此加大了习题和练习的量,目的是让学生在较短的时间内,掌握学习的方法,提高分析问题和解决问题的能力,要加快速度,多运用现代化的教学手段.第3课时指数函数及其性质的应用(2)作者:刘玉亭导入新课思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=a x与y=a x+m(a>0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题:指数函数及其性质的应用(2).思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本节课要解决的问题——指数函数及其性质的应用(2).推进新课新知探究提出问题(1)指数函数有哪些性质?(2)利用单调性的定义证明函数单调性的步骤有哪些?(3)对复合函数,如何证明函数的单调性?(4)如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:图象分布在一、二象限,与轴相交,落在x轴的上方都过点(0,1)第一象限的点的纵坐标都大于1第二象限的点的纵坐标都大于第一象限的点的纵坐标都大于0且小于1;第二象限的点①取值.即设x1,x2是该区间内的任意两个值且x1<x2.②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y=f(g(x))可以总结为:当函数f(x)和g(x)的单调性相同时,复合函数y=f(g(x))是增函数;当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f(g(x))是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考查式子f(x)与f(-x)的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.应用示例例 1 在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.解:(1)列出函数数据表作出图象如图6.图6比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.(2)列出函数数据表作出图象如图7.图7比较可知函数y =2x -1、y =2x -2与y =2x的图象的关系为:将指数函数y =2x的图象向右平行移动1个单位长度,就得到函数y =2x -1的图象;将指数函数y =2x的图象向右平行移动2个单位长度,就得到函数y =2x -2的图象.点评:类似地,我们得到y =a x与y =ax +m(a >0,a ≠1,m ∈R )之间的关系:y =a x +m (a >0,m ∈R )的图象可以由y =a x 的图象变化而来.当m >0时,y =a x的图象向左移动m 个单位得到y =ax +m的图象; 当m <0时,y =a x 的图象向右移动|m |个单位得到y =a x +m的图象.上述规律也简称为“左加右减”.例2 已知定义域为R 的函数f (x )=2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 活动:学生审题,考虑解题思路.求值一般是构建方程,求取值范围一般要转化为不等式,如果有困难,教师可以提示,(1)从条件出发,充分利用奇函数的性质,由于定义域为R ,所以f (0)=0,f (-1)=-f (1),(2)在(1)的基础上求出f (x ),转化为关于k 的不等式,利用恒成立问题再转化.(1)解:因为f (x )是奇函数,所以f (0)=0,即b -1a +2=0⇒b =1.所以f (x )=1-2xa +2x +1;。
指数函数及其性质一、指数与指数幂的运算 (一)根式的观点1、假如 x na, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时, a的 n 次方根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 na 表示,负的 n 次方根用符号 na 表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.2、式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a0 .3 、 根 式 的 性 质 : ( n a )na ; 当 n 为 奇 数 时 , n a na ; 当 n 为 偶 数 时 ,na n|a |a (a 0) . a (a 0)(二)分数指数幂的观点mna m (a 0,m, n1、正数的正分数指数幂的意义是:a n N , 且 n1) .0 的正分数指数幂等于 0.mm1)m (a2、正数的负分数指数幂的意义是:a n( 1) nn ( 0, m, n N , 且 n 1). 0 的负aa分数指数幂没存心义.注意口诀: 底数取倒数,指数取相反数. 3、a 0=1 ( a 0) a p1/a p ( a 0; p N )4、指数幂的运算性质a r a sa r s (a 0, r , s R)( a r )s a rs (a 0, r , s R)( ab) r a r b r (a 0, b0, r R)5 、 0 的正分数指数幂等于 0,0 的负分数指数幂无心义。
二、指数函数的观点一般地,函数 xy a ( a 0, 且a 1) 叫做指数函数,此中 x是自变量,函数的定义域为R.注意:○1 指数函数的定义是一个形式定义;○2 注意指数函数的底数的取值范围不可以是负数、零和 1.三、指数函数的图象和性质 函数名称指数函数定义函数 ya x ( a 0 且 a 1) 叫做指数函数a 10 a 1y图象y 1Oya xya xy(0,1) y 1(0,1)xOx定义域 R值域 ( 0,+ ∞)过定点 图象过定点( 0,1 ),即当 x=0 时, y=1.奇偶性 非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y > 1(x < 0),y=1(x=0),y=1(x=0),变化状况0< y < 1(x < 0)0 < y < 1(x > 0)a 变化对在第一象限内, a 越大图象越高, 越凑近 在第一象限内, a 越小图象越高, 越凑近y 轴; a 越大图象越低, 越凑近 y 轴;a 越小图象越低, 越凑近图象影响 在第二象限内, 在第二象限内, x 轴. x 轴.注意:利用函数的单一性,联合图象还能够看出:( 1)在 [a , b] 上, f (x )a x (a 0且 a 1) 值域是 [ f (a), f ( b)] 或 [ f (b), f (a)] ( 2)若 x 0,则 f (x ) 1; f ( x) 取遍全部正数当且仅当 x R ( 3)对于指数函数 f (x ) a x (a 0 a 1),总有 f (1) a 且( 4)当 a 1 时,若 x 1 x 2 ,则 f (x 1 ) f ( x 2 )四、底数的平移对于任何一个存心义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。
高一数学必修1知识点:基本初等函数以下是为大家整理的关于《高一数学必修1知识点:基本初等函数》的文章,供大家学习参考!基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(n th root),其中 1,且 *.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radical exponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号- 表示.正的次方根与负的次方根可以合并成 ( 0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(1) ;(2) ;(3) .(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a1图象特征函数性质向x、y轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为R+函数图象都过定点(0,1)自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或 ;(2)若,则 ; 取遍所有正数当且仅当 ;(3)对于指数函数,总有 ;(4)当时,若,则 ;二、对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作: ( 底数,真数,对数式)说明:1 注意底数的限制,且 ;2 ;3 注意对数的书写格式.两个重要对数:1 常用对数:以10为底的对数 ;2 自然对数:以无理数为底的对数的对数 .对数式与指数式的互化对数式指数式对数底数幂底数对数指数真数幂(二)对数的运算性质如果,且,,,那么:12 - ;3 .注意:换底公式( ,且 ; ,且 ; ).利用换底公式推导下面的结论(1) ;(2) .(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+).注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
高一数学指数函数及其性质(一)
1.教学指数函数模型思想及指数函数概念:
① 探究两个实例:
A .细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么?
③ 定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .
④讨论:为什么规定a >0且a ≠1呢?
2. 指数函数的图象和性质:
作图:在同一坐标系中画出下列函数图象: 1()2
x y =, 2x y =
函数2x y =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1()2x y =的图象?
3、例题讲解
例1:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值. 例2:(P 56例7)比较下列各题中的个值的大小
(1)1.72.5 与 1.73
( 2 )0.10.8-与0.20.8- ( 3 ) 1.70.3 与 0.93.1
例3:求下列函数的定义域:
(1)4
42x y -= (2)||2()3
x y = 4、巩固练习:
1、 函数2(33)x y a a a =-+是指数函数,则a 的值为 .
3、 比较大小:0.70.90.80.8,0.8, 1.2a b c ===; 01, 2.50.4,-0.22-, 1.62.5.
4、探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?。