高中数学 2.2.1 综合法和分析法(1)教学案 新人教a版选修1-2
- 格式:doc
- 大小:181.50 KB
- 文档页数:4
2.2.1 综合法和分析法第1课时综合法及其应用(教师用书独具)●三维目标1.知识与技能结合学过的数学实,了解直接证明的基本方法:综合法.了解综合法的思维过程、特点.2.过程与方法会用综合法证明数学问题,培养学生的分析问题、解决问题的能力,提高学生思维能力.3.情感、态度与价值观通过学生参与,激发学生学习数学的兴趣,端正学生严谨治学的态度,提高其思维论证能力.●重点难点重点:掌握综合法的思维过程、特点及其解题步骤,会用综合法证明数学问题.难点:根据问题的特点,结合综合法的思考过程、特点,应用综合法证明较复杂的数学问题.综合法是从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后得出所要证明问题.所以分析解读已知条件、挖掘隐含条件是解决问题的关键因素,在教学过程中指导学生正确审题,合理应用已知条件可达到事半功倍的效果.(教师用书独具)●教学建议建议本节课采取探究式教学方法,教师主要作用在“引导”“点拨”,让学生自主思考综合法的证明特点,总结解题步骤,对于不同类型的问题如何思考、如何推理,教师应给出必要的指导.另外应注意引导学生学会分析和利用已知条件,阐明如何挖掘题目的隐含条件,如何联想与所证问题有关的定理、公理、公式等.证明过程中要注意每一步证明的充分性,注重由因导果推理方式的思路引领.在解答每一个例证前,最好先引导学生分析出思维路线图.●教学流程创设问题情境,引出问题,引导学生认识直接证明的方法之一——综合法. 让学生自主完成填一填,使学生进一步了解综合法的证明格式、步骤、作用等. 引导学生分析例题1的已知条件,师生共同探究证明思路,学生自主完成证明过程,教师指导完善.完成变式训练. 学生分组探究例题2解法,总结用综合法证明立体几何问题的规律方法.完成互动探究.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正. 归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法. 学生自主完成例题3变式训练,老师抽查完成情况,对出现问题及时指导. 让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法,老师组织解法展示.引导学生总结解题规律.阅读下列证明过程,回答问题.已知实数x,y满足x+y=1,求证:2x+2y≥2 2.证明:因为x+y=1,所以2x+2y≥22x·2y=22x+y=22,故2x+2y≥22成立. 1.本题的条件和结论是什么?【提示】 条件:x +y =1,结论2x+2y≥2 2. 2.本题的证明顺序是什么?【提示】 从已知条件利用基本不等式到待证结论. 1.综合法的定义利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.2.综合法的框图表示P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q(P 表示已知条件、已有的定义、定理、公理等,Q 表示所要证明的结论)已知a ,b 是正数,且a +b =1,求证:a +b≥4.【思路探究】 解答本题可由已知条件出发,结合基本不等式利用综合法,即可得出结论.【自主解答】 法一 ∵a ,b 是正数且a +b =1, ∴a +b ≥2ab >0(当且仅当a =b 时,取等号). 又0<ab ≤12,0<ab ≤14,∴1ab ≥4,∴1a +1b =a +b ab =1ab≥4.法二 ∵a ,b 是正数, ∴a +b ≥2ab >0, 1a +1b≥21ab>0(当且仅当a =b 时,上两式取等号).∴(a +b )(1a +1b)≥4.又a +b =1,∴1a +1b≥4.法三 ∵a ,b 是正数且a +b =1, ∴1a +1b =a +b a +a +b b=1+b a +ab +1≥2+2b a ·ab=4(当且仅当a =b 时,取等号).1.解答本题时,关键是灵活运用条件a +b =1. 2.综合法证题的一般步骤是:(1)分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法.(2)转化条件,组织过程.把题目的已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.(3)适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.(2013·新乡高二检测)已知a ,b ,c 为不全相等的正实数,求证:b +c -a a +c +a -bb+a +b -cc>3. 【证明】 左边=(b a +a b )+(c b +b c )+(a c +c a)-3, 因为a ,b ,c 为不全相等的正实数, 所以b a +a b ≥2,c b +b c ≥2,a c +c a≥2, 且上述三式的等号不能同时成立,所以(b a +a b )+(c b +b c )+(a c +c a)-3>6-3=3, 即b +c -a a +c +a -b b +a +b -cc>3.11111111111AB 的中点.图2-2-1求证:(1)C1M⊥平面AA1B1B.(2)A1B⊥AM.(3)平面AC1M∥平面B1NC.【思路探究】(1)由B1C1=A1C1,M为A1B1的中点可知C1M⊥A1B1,再根据C1M⊥A1A即可得证.(2)要证A1B⊥AM,可转化为证明A1B⊥平面AC1M.(3)要证面面平行,应转化证明线面平行.【自主解答】(1)∵在直三棱柱ABC-A1B1C1中,B1C1=A1C1,M是A1B1的中点,∴C1M⊥A1B1.又∵C1M⊥A1A,A1A∩A1B1=A1,A1A,A1B1⊂平面AA1B1B,∴C1M⊥平面AA1B1B.(2)∵A1B⊂平面AA1B1B,由(1)知C1M⊥平面AA1B1B,∴A1B⊥C1M.又A1B⊥AC1,AC1,C1M⊂平面AC1M,AC1∩C1M=C1,∴A1B⊥平面AC1M.又∵AM⊂平面AC1M,∴A1B⊥AM.(3)在矩形AA1B1B中,易知AM∥B1N,AM⊄平面B1NC,B1N⊂平面B1NC,∴AM∥平面B1NC.又C1M∥CN,CN⊂平面B1NC,C1M⊄平面B1NC,∴C1M∥平面B1NC.又∵C1M∩AM=M,C1M,AM⊂平面AC1M,∴平面AC1M∥平面B1NC.平行与垂直关系的转化:本例重点强调在证明空间线线垂直、线线平行、线面垂直、线面平行、面面平行或垂直问题时,要特别注意平行与垂直之间的相互转化,如:⎭⎪⎬⎪⎫a ∥b b ⊥c ⇒a ⊥c ,⎭⎪⎬⎪⎫a ∥b b ⊥α⇒a ⊥α,⎭⎪⎬⎪⎫α∥ββ⊥γ⇒α⊥γ等.其中线面平行和线面垂直一般起到关键作用,如本例(2)中通过证明A 1B ⊥平面AC 1M 来证明A 1B ⊥AM ;本例(3)中,通过证明AM ∥平面B 1NC ,C 1M ∥平面B 1NC ,来证明平面AC 1M ∥平面B 1NC .将本例条件“B 1C 1=A 1C 1,AC 1⊥A 1B ,M ,N 分别是A 1B 1,AB 的中点”改为“AB =BB 1,AC 1⊥平面A 1BD ,D 为AC 的中点”,求证:(1)B 1C ∥平面A 1BD .(2)B 1C 1⊥平面ABB 1A 1.【证明】 (1)如图,连接AB 1. 令AB 1∩A 1B =O , 则O 为AB 1的中点. 连接OD ,∵D 为AC 的中点, ∴在△ACB 1中,有OD ∥B 1C . 又∵OD ⊂平面A 1BD ,B 1C ⊄平面A 1BD ,∴B 1C ∥平面A 1BD .(2)∵AB =B 1B ,三棱柱ABC -A 1B 1C 1为直三棱柱, ∴四边形ABB 1A 1为正方形. ∴A 1B ⊥AB 1,又∵AC 1⊥平面A 1BD ,A 1B ⊂平面A 1BD , ∴AC 1⊥A 1B .又∵AC 1⊂平面AB 1C 1,AB 1⊂平面AB 1C 1,AC 1∩AB 1=A ,∴A 1B ⊥平面AB 1C 1. 又∵B 1C 1⊂平面AB 1C 1, ∴A 1B ⊥B 1C 1.又∵A 1A ⊥平面A 1B 1C 1,B 1C 1⊂平面A 1B 1C 1, ∴A 1A ⊥B 1C 1.又∵A 1A ⊂平面ABB 1A 1,A 1B ⊂平面ABB 1A 1,A 1A ∩A 1B =A 1,∴B 1C 1⊥平面ABB 1A 1.n n n n 且m ≠-3.(1)求证:{a n }是等比数列;(2)若数列{a n }的公比q =f (m ),数列{b n }满足b 1=a 1,b n =32f (b n -1)(n ∈N *,n ≥2),求证:{1b n}为等差数列.【思路探究】 通过变形利用等差、等比数列的定义证明即可,在证明过程中,恰当处理递推关系是本题证明的关键.【自主解答】 (1)由(3-m )S n +2ma n =m +3得 (3-m )S n +1+2ma n +1=m +3.两式相减得(3+m )a n +1=2ma n (m ≠-3), ∴a n +1a n =2m m +3,且a 1=1, ∴{a n }是等比数列. (2)b 1=a 1=1,q =f (m )=2mm +3, ∴n ≥2,n ∈N *时,b n =32f (b n -1)=32·2b n -1b n -1+3⇒b n b n -1+3b n =3b n -1⇒1b n -1b n -1=13.∴数列{1b n }为首项为1,公差为13的等差数列.1.综合法的特点是从“已知”看“未知”,其逐步推理,实际上是寻找它的必要条件. 2.综合法不但是数学证明中的重要方法之一,也是其他解答题步骤书写的重要方法,其特点是“执因索果”.综合法在数学证明中的应用非常广泛,用它不但可以证明不等式、立体几何、解析几何问题,也可以证明三角恒等式、数列问题、函数问题等等.设数列{a n }的每一项都不为0,证明:数列{a n }为等差数列的充要条件是对任意n ∈N *,都有 1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1.【证明】 必要性: 设等差数列{a n }的公差为d . 若d =0,则所述等式显然成立; 若d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1=1d (a 2-a 1a 1a 2+a 3-a 2a 2a 3+…+a n +1-a n a n a n +1)=1d [(1a 1-1a 2)+(1a 2-1a 3)+…+(1a n -1a n +1)]=1d (1a 1-1a n +1)=1d ·a n +1-a 1a 1a n +1=n a 1a n +1.充分性: 依题意有 1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1,① 1a 1a 2+1a 2a 3+…+1a n a n +1+1a n +1a n +2=n +1a 1a n +2.② ②-①得 1a n +1a n +2=n +1a 1a n +2-na 1a n +1, 两端同乘a 1a n +1a n +2得a 1=(n +1)a n +1-na n +2.③ 同理可得:a 1=na n -(n -1)a n +1.④ ③-④得2na n +1=n (a n +2+a n ),即2a n +1=a n +2+a n ,所以数列{a n }为等差数列. 命题得证.综合法的简单应用(12分)在△ABC 中,三边a ,b ,c 成等比数列. 求证:a cos 2C 2+c cos 2A 2≥32b .【思路点拨】 利用二倍角公式及余弦定理,将三角形角的问题转化为边的问题进行证明.【规范解答】 ∵左边=a 1+cos C 2+c 1-cos A2=12(a +c )+12(a cos C +c cos A )4分 =12(a +c )+12(a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc )8分 =12(a +c )+12b ≥ac +b 2=b +b 2=32b =右边, ∴a cos 2C 2+c cos 2A 2≥32b .12分通过恒等变形、基本不等式等手段,可以从左证到右,也可以从右证到左,也可两边同时证到一个中间量,一般遵循“化繁为简”的原则.1.综合法证题是从条件出发,由因导果,从已知看可知,逐步推出未知.2.综合法适用的范围:(1)定义明确的题型,如证明函数单调性、奇偶性,求证无条件的等式或不等式问题等.(2)已知条件明确,且容易通过找已知条件的必要条件逼近欲得结论的题型.1.设P =1log 211+1log 311+1log 411+1log 511,则( )A .0<P <1B .1<P <2C .2<P <3D .3<P <4【解析】 P =log 112+log 113+log 114+log 115 即1<P <2. 【答案】 B2.A 、B 为△ABC 的内角,A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【解析】 若A >B ,则a >b ,又a sin A =bsin B ,∴sin A >sin B ,若sin A >sin B ,则由正弦定理得a >b ,∴A >B .【答案】 C3.设a =2,b =7-3,c =6-2,则a ,b ,c 的大小关系为________. 【解析】 ∵a 2-c 2=2-(8-43)=48-36>0,∴a >c , 又∵c b=6-27-3=7+36+2>1,∴c >b ,∴a >c >b . 【答案】 a >c >b4.已知函数f (x )=2x +1,g (x )=x ,x ∈R ,数列{a n },{b n }满足条件:a 1=1,a n =f (b n )=g (b n +1),n ∈N *.求证:数列{b n +1}为等比数列. 【证明】 由题意得2b n +1=b n +1, ∴b n +1+1=2b n +2=2(b n +1), ∴b n +1+1b n +1=2, 又∵a 1=2b 1+1=1, ∴b 1=0,b 1+1=1≠0. 故数列{b n +1}是以1为首项,2为公比的等比数列.一、选择题1.设a ,b ∈R ,且a ≠b ,a +b =2,则必有( ) A .1≤ab ≤a 2+b 22 B .ab <1<a 2+b 22C .ab <a 2+b 22<1D .a 2+b 22<ab <1【解析】 ∵a ≠b ,∴a 2+b 2>2ab ,即a 2+b 22>ab ,可排除A 、D. 又a 2+b 22=a 2+b 24+a 2+b 24>a 2+b 24+2ab 4=a +b 24=1.故B 正确. 【答案】 B2.l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3 B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3 C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面 D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面【解析】 在空间中,垂直于同一直线的两条直线不一定平行,故A 错;两平行线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B 正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C 错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D 错.【答案】 B3.已知y >x >0,且x +y =1,那么( ) A .x <x +y2<y <2xy B .2xy <x <x +y2<y C .x <x +y 2<2xy <yD .x <2xy <x +y2<y【解析】 ∵y >x >0,且x +y =1,∴设y =34,x =14,则x +y 2=12,2xy =38,∴x <2xy <x +y2<y ,故选D. 【答案】 D4.已知函数f (x )=lg 1-x 1+x ,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b【解析】 f (x )定义域为(-1,1),f (-a )=lg1+a 1-a =lg(1-a 1+a )-1=-lg 1-a1+a=-f (a )=-b . 【答案】 B5.已知直线l ∥平面α,P ∈α,那么过点P 且平行于直线l 的直线( ) A .只有一条,不在平面α内 B .有无数条,不一定在平面α内C .只有一条,且在平面α内D .有无数条,一定在平面α内【解析】 由直线l 与点P 可确定一个平面β,且平面α,β有公共点,因此它们有一条公共直线,设该公共直线为m ,因为l ∥α,所以l ∥m ,故过点P 且平行于直线l 的直线只有一条,且在平面α内.【答案】 C 二、填空题6.3-2________2-1.(填“>”或“<”) 【解析】 ∵13-2=3+23-2 3+2 =3+2, 12-1=2+1 2-1 2+1=2+1,显然3+2>2+1,∴3-2<2-1. 【答案】 < 7.已知sin x =55,x ∈(π2,3π2),则tan(x -π4)=________. 【解析】 ∵sin x =55,x ∈(π2,3π2),∴cos x =-45, ∴tan x =-12,∴tan(x -π4)=tan x -11+tan x =-3.【答案】 -38.已知α、β为实数,给出下列三个论断:①αβ>0;②|α+β|>5;③|α|>22,|β|>2 2.以其中的两个论断为条件,另一个论断为结论,写出你认为正确的命题是________.(用序号及“⇒”表示)【解析】 ∵αβ>0,|α|>22,|β|>2 2. ∴|α+β|2=α2+β2+2αβ>8+8+2×8=32>25. ∴|α+β|>5. 【答案】 ①③⇒② 三、解答题9.在△ABC 中,三个内角A 、B 、C 对应的边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列,求证:△ABC 为等边三角形.【证明】 由A 、B 、C 成等差数列,有2B =A +C .① 因为A 、B 、C 为△ABC 的内角,所以A +B +C =π.② 由①②,得B =π3.③由a 、b 、c 成等比数列,有b 2=ac .④ 由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac . 再由④,得a 2+c 2-ac =ac , 即(a -c )2=0,因此a =c , 从而有A =C .⑤由②③⑤,得A =B =C =π3,所以△ABC 为等边三角形.10.设a >0,f (x )=e xa +ae x 在R 上满足f (x )=f (-x ),(1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数.【解】 (1)依题意,对一切x ∈R 有f (x )=f (-x ),即exa +a e x =1a ex +a e x, 所以(a -1a )(e x -1e x )=0对一切x ∈R 成立.由此可得a -1a=0,即a 2=1.又因为a >0,所以a =1. (2)证明:设0<x 1<x 2,f (x 1)-f (x 2)=e x 1-e x 2+1e x 1-1e x 2=(e x 2-e x 1)(1e x 1+x 2-1)=(e x 2-e x 1)·1-e x 1+x 2e x 1+x 2.由x 1>0,x 2>0,得x 1+x 2>0, e x 2-e x 1>0,1-e x 1+x 2<0,所以f (x 1)-f (x 2)<0,即f (x )在(0,+∞)上是增函数.11.如图2-2-2,在四棱台ABCD -A 1B 1C 1D 1中,下底ABCD 是边长为2的正方形,上底A 1B 1C 1D 1是边长为1的正方形,侧棱DD 1⊥平面ABCD ,DD 1=2.图2-2-2(1)求证:B1B∥平面D1AC;(2)求证:平面D1AC⊥平面B1BDD1.【证明】(1)设AC∩BD=E,连接D1E,∵平面ABCD∥平面A1B1C1D1.∴B1D1∥BE,∵B1D1=BE=2,∴四边形B1D1EB是平行四边形,所以B1B∥D1E.又因为B1B⊄平面D1AC,D1E⊂平面D1AC,所以B1B∥平面D1AC(2)侧棱DD1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥DD1.∵下底ABCD是正方形,∴AC⊥BD.∵DD1与DB是平面B1BDD1内的两条相交直线,∴AC⊥平面B1BDD1,∵AC⊂平面D1AC,∴平面D1AC⊥平面B1BDD1.(教师用书独具)图1是由菱形BCDE和△ABC组成的五边形,其中P为AB的中点,现沿BC将菱形BCDE 折起,使得AD=AB,得到如图2所示的几何体.图1 图2证明:(1)AD∥平面PCE;(2)平面ABD⊥平面ACE.【思路探究】(1)由于P为AB的中点,故可考虑借助三角形的中位线定理证明;(2)要证平面ABD⊥平面ACE,可证明BD⊥平面ACE.【自主解答】(1)如图,设菱形BCDE的两条对角线交于点Q,连接AQ,PQ.在△ABD中,Q为BD的中点,P为AB的中点,则AD∥PQ.又∵PQ⊂平面PCE,AD⊄平面PCE,∴AD∥平面PCE.(2)∵四边形BCDE为菱形,∴BD⊥CE,且BQ=DQ.又在△ABD中,AB=AD,BQ=DQ,∴AQ⊥BD.又AQ∩CE=Q,∴BD⊥平面ACE.又BD⊂平面ABD,∴平面ABD⊥平面ACE.要正确解答本题,关键是要明确折叠前后的图形之间的关系.设a 、b 、c ∈R +,求证:a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ). 【证明】 ∵a 2+b 2≥2ab ,a 、b ∈R +, ∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2, ∴a 2+b 2≥ a +b22,∴a 2+b 2≥22(a +b ). 同理:b 2+c 2≥22(b +c ), c 2+a 2≥22(c +a ), ∴a 2+b 2+b 2+c 2+c 2+a 2≥22(2a +2b +2c ) =2(a +b +c ).(当且仅当a =b =c 时取等号) 故a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ).。
2.2.1 综合法和分析法(一)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教学过程:一、复习准备:1. 已知 “若12,a a R +∈,且121a a +=,则12114a a +≥”,试请此结论推广猜想. (答案:若12,.......n a a a R +∈,且12....1n a a a +++=,则12111....n a a a +++≥ 2n ) 2. 已知,,a b c R +∈,1a b c ++=,求证:1119a b c++≥. 先完成证明 → 讨论:证明过程有什么特点?二、讲授新课:1. 教学例题:① 出示例1:已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) > 6abc . 分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理) → 讨论:证明形式的特点② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示: 要点:顺推证法;由因导果. ③ 练习:已知a ,b ,c 是全不相等的正实数,求证3b c a a c b a b c a b c+-+-+-++>. ④ 出示例2:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系? → 板演证明过程 → 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2. 练习:① ,A B 为锐角,且tan tan 3tan 3A B A B ++=,求证:60A B +=o . (提示:算tan()A B +)② 已知,a b c >> 求证:114.a b b c a c+≥--- 3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:1. 求证:对于任意角θ,44cos sin cos2θθθ-=. (教材P 52 练习 1题) (两人板演 → 订正 → 小结:运用三角公式进行三角变换、思维过程)2. ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c+=++++. 3. 作业:教材P 54 A 组 1题.2.2.1 综合法和分析法(二)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用分析法证明问题;了解分析法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 提问:基本不等式的形式?2. 讨论:如何证明基本不等式(0,0)2a b ab a b +≥>>. (讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件)二、讲授新课:1. 教学例题:① 出示例1:求证3526+>+.讨论:能用综合法证明吗? → 如何从结论出发,寻找结论成立的充分条件? → 板演证明过程 (注意格式)→ 再讨论:能用综合法证明吗? → 比较:两种证法② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止. 框图表示:要点:逆推证法;执果索因. ③ 练习:设x > 0,y > 0,证明不等式:11223332()()x y x y +>+.先讨论方法 → 分别运用分析法、综合法证明.④ 出示例4:见教材P 48. 讨论:如何寻找证明思路?(从结论出发,逐步反推) ⑤ 出示例5:见教材P 49. 讨论:如何寻找证明思路?(从结论与已知出发,逐步探求)2. 练习:证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.提示:设截面周长为l ,则周长为l 的圆的半径为2l π,截面积为2()2l ππ,周长为l 的正方形边长为4l ,截面积为2()4l ,问题只需证:2()2l ππ> 2()4l . 3. 小结:分析法由要证明的结论Q 思考,一步步探求得到Q 所需要的已知12,,P P ⋅⋅⋅,直到所有的已知P 都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. (框图示意)三、巩固练习:1. 设a , b , c 是的△ABC 三边,S 是三角形的面积,求证:222443c a b ab S --+≥. 略证:正弦、余弦定理代入得:2cos 423sin ab C ab ab C -+≥,即证:2cos 23sin C C -≥3sin cos 2C C +≤,即证:sin()16C π+≤(成立). 2. 作业:教材P 52 练习 2、3题.。
《综合法和分析法》◆教材分析证明对高中生来说并不陌生,在上一节学习的合情推理中,所得的结论的正确就是要证明的,并且在之前的数学学习中,积累了相对较多的证明数学问题的经验,但这些经验是零散的、不系统的,这一节通过熟悉的数学实例,对证明数学问题的方法形成完整的认识。
◆教学目标【知识与能力目标】1.了解直接证明的了两种基本方法:综合法和分析法;2.了解综合法和分析法的思想过程和特点。
【过程与方法目标】1.通过对实例的分析、归纳和总结,增强学生的理性思维能力;2.通过实际演戏,使学生体会证明的必要性,并增强他们的分析问题、解决问题的能力。
【情感与态度目标】通过本节课的学习,了解直接证明的两种基本方法,感受逻辑证明在数学及日常生活中的作用,养成言之有理、论之有据的好习惯,提高学生的思维能力。
【教学重点】 综合法和分析法的思维过程及特点。
【教学难点】综合法和分析法的应用。
多媒体课件。
复习导入回顾基本不等式:a+b2≥√ab (a >0,b >0)的证明过程:法一:因为(√a −√b)2≥0所以a+b-2√ab ≥0所以a+b ≥2√ab所以:a+b2≥√ab法二:验证a+b2≥√ab只需证:a+b ≥2√ab只需证:a+b-2√ab ≥0只需证:(√a −√b)2≥0因为:(√a −√b)2≥0成立所以a+b2≥√ab 成立新课讲授1.综合法:(1)定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫做综合法。
综合法又叫因果导发或顺推证法。
特点:“执因索果”(2)特点:◆教学重难点◆ ◆课前准备◆◆教学过程从“已知”看“可知”,逐步推向“未知”,其逐步推理,是由因导果,实际上是寻找“已知”的必要条件。
用综合法证明数学问题,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹,并且综合法的推理过程属于演绎推理,它的每一步推理得出的结论都是正确的,不同于合情推理.使用综合法证明问题,有时从条件可得出几个结论,哪个结论才可作为下一步的条件是分析的要点,所以如何找到“切入点”和有效的推理途径是有效利用综合法证明数学问题的关键。
第二章第2节直接证明与间接证明一、综合法与分析法课前预习学案一、预习目标:了解综合法与分析法的概念,并能简单应用。
二、预习内容:证明方法可以分为直接证明和间接证明1.直接证明分为和2.直接证明是从命题的或出发,根据以知的定义,公里,定理,推证结论的真实性。
3.综合法是从推导到的方法。
而分析法是一种从追溯到的思维方法,具体的说,综合法是从已知的条件出发,经过逐步的推理,最后达到待证结论,分析法则是从待证的结论出发,一步一步寻求结论成立的条件,最后达到题设的以知条件或以被证明的事实。
综合法是由导,分析法是执索。
三、提出疑惑课内探究学案一、学习目标让学生理解分析法与综合法的概念并能够应用二、学习过程:例1.已知a,b∈R+,求证:例2.已知a,b∈R+,求证:例3.已知a,b,c∈R,求证(I)课后练习与提高1.(A 级)函数⎩⎨⎧≥<<-=-0,;01,sin )(12x e x x x f x π,若,2)()1(=+a f f则a 的所有可能值为 ( )A .1B .22-C .1,2-或D .1,2或 2.(A 级)函数x x x y sin cos -=在下列哪个区间内是增函数 ( )A .)23,2(ππ B .)2,(ππC .)25,23(ππ D .)3,2(ππ3.(A 级)设b a b a b a +=+∈则,62,,22R 的最小值是 ( ) A .22- B .335-C .-3D .27- 4.(A 级)下列函数中,在),0(+∞上为增函数的是 ( ) A .x y 2sin = B .x xe y =C .x x y -=3D .x x y -+=)1ln(5.(A 级)设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则=+ycx a ( )A .1B .2C .3D .不确定6.(A 级)已知实数0≠a ,且函数)12()1()(2ax x a x f +-+=有最小值1-,则a =__________。
高中数学新课标人教A版选修1-2直接证明——综合法和分析法执教教师:蔡苗苗洛阳市第二实验中学电教中心录制一、教学目标:1、知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;2、过程与方法: 通过学生分组自己讲练,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣二、教学重点、难点:重点:了解分析法和综合法的思考过程、特点,书写证明格式规范;难点:分析法和综合法的思考过程、特点三、教学方法:启发式教学法,分组讨论法四、教学准备与设想:抓住分析法和综合法的思考过程、特点,联系生活,渗透思想“变形”是解题的关键,是最重一步,在教学引导时要多启发,因式分解、配方、凑成若干个平方和等是“变形”的常用方法五、教学过程:(一)创设情景,引出课题逻辑结构编织着中学数学,这种潜移默化的逻辑结构的熏陶是中学数学的“灵魂”,今天,让我们共同步入“直接证明”的逻辑之旅吧!(板书直接证明)1、请看图片:主角——葫芦,“瞎子摘葫芦”,打一歇后语生答“顺藤摸瓜”,蕴含一种顺序思维,为综合法引入加深印象2、第二幅图片:白云山九龙瀑布,诗句:问渠哪得清如许,为有源头活水来,蕴含一种溯源(逆推)思维,为分析法做好铺垫板书副标题:综合法与分析法(二)抽象思维,形成概念1、观察以下不等式证明讲解思维过程,师生共同分析问题1 已知a,b>0,求证2222()()4a b c b c a abc +++≥法一:证明:因为222,0b c bc a +≥>,所以22()2a b c abc +≥,因为222,0c a ac b +≥>,所以22()2b c a abc +≥因此, 2222()()4a b c b c a abc +++≥法二:要证:2222()()4≥a b c b c a abc +++ 只要证:2222()2,()2≥≥a b c abc b c a abc ++ ∵0,0a b >>∴只要证:22222,2≥≥b c bc c a ac ++ 又∵0,0,0a b c >>>,∴22222,2≥≥b c bc c a ac ++∴得证 2、对比得出概念及特点(1)综合法定义:象这种利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫综合法又称顺推证法用综合法证明不等式的逻辑流程图是:()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法(2) 分析法定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、公理等)为止这种证明方法叫做分析法 又称倒推证法用分析法证明不等式的逻辑框图是:()()1121().....()n n n Q P P P P P P P -⇐←⇐←⇐←⇐分析法的思维特点是:执果索因分析法的书写格式:要证明命题B 为真,只需要证明命题为真,从而有……这只需要证明命题为真,从而又有…………这只需要证明命题A 为真而已知A 为真,故命题B 必为真3、进步设疑,理解新知问题2:在《数学5(0,0)?2a b a b +>>指出其中的证明方法的特点证法1:对于正数a,b, 有只要证b a ab +≤2 只要证ab b a 20-+≤ 只要证()20b a -≤ 证法2:要证2002≥≥≥a a b a b a b -∴+-∴++∴(2a b+因为最后一个不等式成立,故结论成立总结:综合法,表达简洁;分析法,目的性强,易于探索(三)初步应用,巩固概念1、讲一讲在△ABC 中,设求证:,,b CA a BC ==ABC S ∆ 请同学们前后四人一组分组讨论,合作交流,引导试图找出两种证法并请代表上台2、练一练2)求证:5273<+请同桌交流,两人合作分工把两个题的步骤给顺出来,并请代表演板3、说一说请对综合法与分析法进行比较,说说它们各自特点,回顾以往数学学习,说说你对这两种证明方法的新认识综合法的特点:由因导果;分析法的特点:执果索因教师展示一副对联,说一说二者比较:由因导果,顺藤摸瓜;执果索因,逆推破案;横批——直接证明(门心为“蜡烛迷宫”)四深入探究,感受方法1、研一研(1)△ABC 三边长 的倒数成等差数列,求证: (综合法)分析:成等比数列,求证△ ABC 为等边三角形,,a b c ,,a b c 1)在△ABC 中,三个内角A,B,C 的对边分别为 ,且A,B,C 成等差数列, ,,a b c ︒<∠90B因为a,b,c 为△ABC 三边 ,所以 a c > b 所以 coB>0 因此 .11,1,1.2<++<<abb a b a 求证:若 (分析法)证明:要证 只需证明 只需证明 只需证明 所以原命题成立2、思考小结(1)综合法──联想尝试浮想联翩,尝试前进!其格式为: 由因导果已知1n A B B B ⇒⇒⇒⇒结论(2)分析法──转化尝试执果索因,妙在转化!其格式为: 不断转化结论1n B B ⇐⇐已知 ac b ac 222-≥acb 212-=)(12c a b b +-=ac b c a B 2222cos -+=01>+-ca b ︒<∠90B 11<++ab b a 112<⎪⎭⎫ ⎝⎛++ab b a ()22)1(ab b a +<+0)1)(1(22>--b a 11<<b a 1122<<∴b a ()()01,0122<-<-∴b a 0)1)(1(22>--b a 因此注:分析法被认为是解数学题的“绝招”,因为它能把问题化繁为简,化难为易,化陌生为熟悉当然,为了表述的简洁,我们常用综合法写出分析的成果作为证明3、教师点拨从概念,特点和二者关系上进一步点拨六、作业布置:1、P44 A组 T1,2;2、进一步“研一研”专题的两个题目,下节展讲七、板书设计:直接证明——综合法和分析法教师板书区学生展讲区学生练习区。
最新人教版高中数学选修1 2《综合法和分析法》示范教案1最新人教版高中数学选修1-2《综合法和分析法》示范教案12.2.1综合法和分析法教材分析《直接证明与间接证明》是在学习了推理方法的基础上学习的,研究的是如何正确利用演绎推理来证明问题.本节课是《直接证明与间接证明》的第一节,主要介绍了两种证明方法的定义和逻辑特点,并引导学生比较两种证明方法的优点,进而灵活选择证明方法,规范证明步骤.本节课的学习需要学生具有一定的认知基础,应尽量选择学生熟悉的例子.教学目标1。
知识和技能目标(1)了解直接证明的两种基本方法:分析法和综合法.(2)了解分析法和综合法的思维过程和特点.2.过程与方法目标(1)通过对实例的分析、归纳和总结,可以提高学生的理性思维能力(2)通过实际演练,使学生体会证明的必要性,并增强他们分析问题、解决问题的能力.3.情感、态度及价值观通过本节课的学习,了解直接证明的两种基本方法,感受逻辑证明在数学及日常生活中的作用,养成言之有理、论之有据的好习惯,提高学生的思维能力.重点和难点重点:分析法和综合法的思维过程及特点.难点:分析法和综合法的应用.教学过程创设情境、引入新课问题1:我们学习了两种重要的推理方法。
请回忆一下我们学习的推理方法,它们各自的特点和功能是什么?活动设计:学生思考并举手回答,教师提问.活动成果:前面已经学习了合情推理和演绎推理.合理推理是提出新问题、获取新知识的主要推理方式,其特点是结论不可靠;演绎推理是证明结论的主要推理方式,其特点是只要大前提正确,推理形式正确,结论就必须正确提出问题2:使用演绎推理证明,怎样才能保证推理形式正确?活动设计:设问引出将要学习的内容是证明方法.问题3:让我们先看看我们已经证明的两个问题,并试图找出证明过程中的差异。
1.在立方体ABCD-A'B'C'd中,验证:A'C⊥ BD.证明:连接AC∵abcd―a′b′c′d′是正方体,∴aa′⊥平面abcd.又∵bd?平面abcd,∴aa′⊥bd.∵ 自动控制⊥ BD,AA′∩ AC=a,∩ 屋宇署⊥ 飞机a′AC。
2.2.1 综合法和分析法教学目标:1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2.通过本节内容的学习了解分析法和综合法的思考过程、特点;3.增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度.教学重点:分析法和综合法的思考过程;教学难点:分析法和综合法的思考过程、特点.教学过程设计(一)、情景引入,激发兴趣.教师引入 合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的.数学结论的正确性必须通过逻辑推理的方式加以证明.本节我们将学习两类基本的证明方法:直接证明与间接证明.(二)、探究新知,揭示概念探究一:在数学证明中,我们经常从已知条件和某些数学定义、公理、定理等出发,通过推理推导出所要的结论.例如:已知a ,b >0,求证.教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明.教师最后归结证明方法.学生活动:充分讨论,思考,找出以上问题的证明方法证明:因为,所以.因为,所以.因此 .一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫做综合法.2222()()4a b c b c a abc +++≥222,0b c bc a +≥>22()2a b c abc +≥222,0c a ac b +≥>22()2b c a abc +≥2222()()4a b c b c a abc +++≥探究二:证明数学命题时,还经常从要证的结论 Q 出发,反推回去,寻求保证 Q 成立的条件,即使Q 成立的充分条件P 1,为了证明P 1成立,再去寻求P 1成立的充分条件P 2,为了证明P 2成立,再去寻求P 2成立的充分条件P 3,…… 直到找到一个明显成立的条件(已知条件、定理、定义、公理等)为止.例如:基本不等式(a >0,b >0)的证明就用了上述方法. 要证 , 只需证,只需证,只需证由于显然成立,因此原不等式成立.一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种方法叫做分析法.(三)、分析归纳,抽象概括用P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论,则综合法可表示为:综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法.分析法可表示为:分析法的特点是:执果索因(四)、知识应用,深化理解ab b a ≥+2ab b a ≥+2ab b a 2≥+02≥-+ab b a 0)(2≥-b a 0)(2≥-b a ()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒()()1121().....()n n n Q P P P P P P P -⇐←⇐←⇐←⇐例1 在△ABC 中,三个内角A ,B ,C 的对边分别为,且A ,B ,C 成等差数列, 成等比数列,求证△ABC 为等边三角形.分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C ; A , B , C 为△ABC 的内角,这是一个隐含条件,明确表示出来是A + B + C =π; a , b ,c 成等比数列,转化为符号语言就是.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.证明:由 A , B , C 成等差数列,有 2B =A + C . ①因为A ,B ,C 为△ABC 的内角,所以 A + B + C =π. ②由①② ,得 B =π3. ③由a , b ,c 成等比数列,有 . ④由余弦定理及③,可得 .再由④,得 .即 ,因此 .从而 A =C .由②③⑤,得A =B =C =π3.所以△ABC 为等边三角形.注:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来. 例2 求证.分析:从待证不等式不易发现证明的出发点,因此我们直接从待证不等式出发,分析其成立的充分条件. 证明:因为都是正数,所以为了证明 ,,a b c ,,a b c 2b ac =2b ac =222222cos b a c ac B a c ac =+-=+-22a c ac ac +-=2()0a c -=a c =5273<+5273和+,只需明,展开得,只需证,因为成立,所以成立.在本例中,如果我们从“21〈25”出发,逐步倒推回去,就可以用综合法证出结论.但由于我们很难想到从“21<25”入手,所以用综合法比较困难.事实上,在解决问题时,我们经常把综合法和分析法结合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ‘;根据结论的结构特点去转化条件,得到中间结论 P ‘.若由P ‘可以推出Q ‘成立,就可以证明结论成立.下面来看一个例子.例4 已知,且①②求证:. 分析:比较已知条件和结论,发现结论中没有出现角,因此第一步工作可以从已知条件中消去.观察已知条件的结构特点,发现其中蕴含数量关系,于是,由 ①2一2×② 得.把与结论相比较,发现角相同,但函数名称不同,于是尝试转化结论:统一函数名称,即把正切函数化为正(余)弦函数.把结论转化为5273<+22)52()73(<+2021210<+521<2521<22)52()73(<+,()2k k Z παβπ≠+∈sin cos 2sin θθα+=2sin cos sin θθβ=22221tan 1tan 1tan 2(1tan )αβαβ--=++θθ2(sin cos )2sin cos 1θθθθ+-=224sin 2sin 1αβ-=224sin 2sin 1αβ-=,再与比较,发现只要把中的角的余弦转化为正弦,就能达到目的. 证明:因为,所以将 ① ② 代入,可得 . ③另一方面,要证, 即证 , 即证, 即证, 即证 .由于上式与③相同,于是问题得证.课堂练习:1.课本练习1、2、3.(五)、归纳小结、布置作业综合法和分析法的特点布置作业:课本1、2、3. 22221s sin (s sin )2co co ααββ-=-224sin 2sin 1αβ-=22221s sin (s sin )2co co ααββ-=-2(sin cos )2sin cos 1θθθθ+-=224sin 2sin 1αβ-=22221tan 1tan 1tan 2(1tan )αβαβ--=++22222222sin sin 11cos cos sin sin 12(1)cos cos βαβααβαβ--=++22221s sin (s sin )2co co ααββ-=-22112sin (12sin )2αβ-=-224sin 2sin 1αβ-=。
2.2.综合法和分析法-人教A版选修1-2教案一、教学目标1.了解什么是综合法和分析法。
2.掌握综合法和分析法的基本概念。
3.能够应用综合法和分析法解决实际问题。
二、教学重难点1.综合法和分析法的基本概念及其应用。
2.综合法和分析法的区别和联系。
3.如何在实际问题中选择合适的方法。
三、教学内容3.1 综合法综合法是将两种或两种以上方法综合运用,以利用各自的优点,而消除各自的缺点,以达到更为有效的结果。
在实际工作或研究中,有些问题只采用单一的方法是无法解决的,或者采用单一的方法结果不够令人满意,此时就需要采用综合法。
综合法的主要优点是能够更全面、更充分地揭示和解决问题,但由于需要较高的技术水平和经验,所以在实践中的应用还比较有限。
3.2 分析法分析法是将复杂的问题分解为若干个简单的子问题,分别进行研究和解决,最后再将各个子问题的解汇总成为原问题的解。
分析法的主要优点是能够将复杂的问题化繁为简,易于理解和掌握,同时也便于应用计算机模拟等方法进行研究。
分析法的应用范围广泛,如在生产管理、战略决策、工程设计、统计预测等领域中均有广泛应用。
3.3 综合法和分析法的区别和联系综合法和分析法的区别在于,综合法是将两种或两种以上方法综合运用,以达到更为有效的结果;而分析法则是将问题分解为若干个简单的子问题,分别进行研究和解决。
它们的联系在于,都是应用多种方法来解决问题,但是综合法强调的是方法之间的互补性,而分析法则强调的是问题的分解和综合。
3.4 实例分析以企业生产计划为例,如果采用单一的方法很难解决问题,可能需要综合使用多种方法。
比如,可以采用分析法将生产计划分解为具体的生产任务,再利用线性规划等方法进行求解;也可以采用模拟和试验相结合的方法,对生产过程进行优化。
这样就可以更好地解决生产计划中所涉及的复杂问题。
四、教学方法本节课采用“讲授结合案例分析”的教学方法。
通过讲述和讨论实际问题,既能深入理解综合法和分析法的基本概念和应用,又能提高学生的实际应用能力。
§2.2.1 综合法和分析法(1)
1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;
2. 会用综合法证明问题;了解综合法的思考过程. .
重点:会用综合法证明问题;了解综合法的思考过程. 难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.
【知识链接】
(预习教材P 45~ P 47,找出疑惑之处)
复习1:两类基本的证明方法: 和 .
复习2:直接证明的两中方法: 和 .
【学习过程】
※ 学习探究
探究任务一:综合法的应用
问题:已知,0a b >,
求证:2222()()4a b c b c a abc +++≥.
新知:一般地,利用
,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法.
反思: 框图表示:
要点:顺推证法;由因导果.
※ 典型例题
例1已知,,a b c R +∈,1a b c ++=,求证:1119a b c
++≥
变式:已知,,a b c R +∈,1a b c ++=,求证:
111(1)(1)(1)8a b c
---≥.
小结:用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明.
例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.
变式:设在四面体P ABC -中,
90,,ABC PA PB PC ∠=︒==D 是AC 的中点.求证:PD 垂直于ABC ∆所在的平面.
小结:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来.
※ 动手试试
练1. 求证:对于任意角θ,44cos sin cos 2θθθ-=
练2. ,A B 为锐角,
且tan tan tan A B A B ++=,
求证:60A B +=. (提示:算tan()A B +)
【学习反思】
※ 学习小结
综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.
※ 知识拓展
综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题,综合法是一种由因索果的证明方法.
).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 已知22,,"1""1"x y R xy x y ∈≤+≤则是的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2. 如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( )
A .5481a a a a >
B .5481a a a a <
C .5481a a a a +>+
D .5481a a a a =
3. 设23451111log 11log 11log 11log 11
P =+++,则( ) A .01P << B .12P <<
C .23P <<
D .34P <<
4.若关于x 的不等式
22133(2)(2)22x x k k k k --+<-+的解集为1(,)
+∞,则k 的范围是
____ . 5. 已知b a ,是不相等的正数,x y ==,x y 的大小关系是_________.
1. 已知,,是全不相等的正实数,
求证:3b c a a c b a b c a b c +-+-+-++>
2. 在△ABC 中,
证明:
2222112cos 2cos b a b B a A -=-。