选修1 2第一章导学案
- 格式:doc
- 大小:394.00 KB
- 文档页数:4
§1.2.2 充要条件学习目标1. 理解充分条件、必要条件与充要条件的意义;2. 掌握充要条件的证明方法,既要证明充分性又要证明必要性.学习过程一、课前准备(预习教材P 11~ P 12,找出疑惑之处)复习1:什么是充分条件和必要条件、充要条件?复习2:p :一个四边形是矩形q :四边形的对角线相等.p 是q 的什么条件? q 又是p 的什么条件?二、新课导学※ 学习探究探究任务一:下列形如“若p ,则q ”的命题是真命题吗?它的逆命题是真命题吗?p 是q 的什么条件?(1)若平面α外一条直线a 与平面α内一条直线平行,则直线a 与平面α平行;(2)若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直.反思:充要条件的实质是原命题和逆命题均为真命题.※ 典型例题例1 下列各题中,判断p 是q 的什么条件?(1) p : 0b =,q :函数2()f x ax bx c =++是偶函数;(2) p : 0,0,x y >> q :0xy >(3) p : a b > , q :a c b c +>+变式:下列形如“若p ,则q ”的命题是真命题吗?它的逆命题是真命题吗?哪些p 是q 的充要条件?(1) p : 0b = ,q :函数2()f x ax bx c =++是偶函数;(2) p : 0,0,x y >> q :0xy >(3) p : a b > , q :a c b c +>+小结:判断是否充要条件两种方法(1)p q ⇒且q p ⇒;(2)原命题、逆命题均为真命题;(3) 用逆否命题转化.练习:在下列各题中, p 是q 的什么条件?(1) p :234x x =+ , q :x =(2) p : 30x -=, q :(3)(4)0x x --=(3) p : 240(0)b ac a -≥≠ ,q :20(0)ax bx c a ++=≠(4) p : 1x =是方程20ax bx c ++=的根q :0a b c ++=例2 已知0ab ≠,求证:1a b +=的充要条件是33220a b ab a b ++--=小结:证明充要条件既要证明充分性又要证明必要性.※ 动手试试练1. 下列各题中p 是q 的什么条件?(1)p :1x =,q :1x -(2)p :|2|3x -=,q :15x -≤≤ ;(3)p :2x =,q :3x -=;(4)p :三角形是等边三角形,q :三角形是等腰三角形.练2. 求圆222()()x a y b r -+-=经过原点的充要条件.三、总结提升※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展设A 、B 为两个集合,集合A B =是指x A x B ∈⇔∈,则“x A ∈”与“x B ∈”互为 条件.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列命题为真命题的是( ).A.a b >是22a b >的充分条件B.||||a b >是22a b >的充要条件C.21x =是1x =的充分条件D.αβ=是tan tan αβ= 的充要条件2.“x M N ∈”是“x M N ∈”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.设p :240(0)b ac a ->≠,q :关于x 的方程20(0)ax bx c a ++=≠有实根,则p 是q 的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.22530x x --<的一个必要不充分条件是( ). A.132x -<< B.102x -<< C.132x -<< D.16x -<< 5. 用充分条件、必要条件、充要条件填空.(1) 3x >是5x >的(2) 3x =是2230x x --=的(3) 两个三角形全等是两个三角形相似的课后作业1. 证明:20a b +=是直线230ax y ++=和直线20x by ++=垂直的充要条件.2.求证:ABC ∆是等边三角形的充要条件是222a b c ab ac bc ++=++,这里,,a b c 是ABC ∆的三边.。
第一章常用逻辑用语§1.1 命题及其关系1.1.1命题【课时目标】1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.【知识梳理】1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.【基础过关】一、选择题1.下列语句中是命题的是( )A.周期函数的和是周期函数吗 B.sin45°=1 C.x2+2x-1>0 D.梯形是不是平面图形呢?2.下列语句中,能作为命题的是( )A.3比5大 B.太阳和月亮 C.高年级的学生 D.x2+y2=03.下列命题中,是真命题的是( )A.{x∈R|x2+1=0}不是空集 B.若x2=1,则x=1C.空集是任何集合的真子集 D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为( )A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是( )A.这个数能被2整除 B.这个数能被3整除C.这个数既能被2整除,也能被3整除 D.这个数是6的倍数6.在空间中,下列命题正确的是( )A.平行直线的平行投影重合 B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行 D.垂直于同一平面的两条直线平行二、填空题7.下列命题:①若xy=1,则x,y互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac2>bc2,则a>b.其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p是__________________________,结论q是________________________________.9.下列语句是命题的是________.①求证3是无理数;②x2+4x+4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x∈R,则x2+4x+7>0.三、解答题10.把下列命题改写成“若p,则q”的形式,并判断真假.(1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根. 11.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】12.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0 B .1 C .2 D .313.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ?α,n ?α,m ∥β,n ∥β,则α∥β;③若α∥β,l ?α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数是( )A .1B .2C .3D .4【反思感悟】1.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一. 1.1.2 四种命题【课时目标】1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.【知识梳理】1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的结构:用p 和q 分别表示原命题的条件和结论,用非p ,非q 分别表示p 和q 的否定,四种形式就是: 原命题:若p 成立,则q 成立.即“若p ,则q ”.逆命题:________________________.即“若q ,则p ”.否命题:______________________.即“若非p ,则非q ”.逆否命题:________________________.即“若非q ,则非p ”.【基础过关】一、选择题1.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .1B .2C .3D .42.命题“若A∩B=A,则A?B”的逆否命题是( )A.若A∪B≠A,则A?B B.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠A D.若A?B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是( )A.它的逆命题是真命题 B.它的否命题是真命题C.它的逆否命题是假命题 D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A?B”的逆否命题.其中的真命题是( )A.①② B.②③ C.①③ D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是( )A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是( )A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是________________________;逆命题是______________________;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A?B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.【能力提升】12.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数13.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.【反思感悟】1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.3 四种命题间的相互关系【课时目标】1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.【知识梳理】1.四种命题的相互关系2.四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假(2)四种命题的真假性之间的关系①两个命题互为逆否命题,它们有______的真假性.②两个命题为互逆命题或互否命题,它们的真假性______________.【基础过关】一、选择题1.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确2.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真3.与命题“能被6整除的整数,一定能被2整除”等价的命题是()A.能被2整除的整数,一定能被6整除B.不能被6整除的整数,一定不能被2整除C.不能被6整除的整数,不一定能被2整除D.不能被2整除的整数,一定不能被6整除4.命题:“若a2+b2=0 (a,b∈R),则a=b=0”的逆否命题是()A.若a≠b≠0 (a,b∈R),则a2+b2≠0 B.若a=b≠0 (a,b∈R),则a2+b2≠0C.若a≠0,且b≠0 (a,b∈R),则a2+b2≠0 D.若a≠0,或b≠0 (a,b∈R),则a2+b2≠0 5.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠?”的逆命题、否命题、逆否命题中结论成立的是()A.都真B.都假C.否命题真D.逆否命题真6.设α、β为两个不同的平面,l、m为两条不同的直线,且l?α,m?β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥m,则α⊥β.那么()A.①是真命题,②是假命题B.①是假命题,②是真命题C .①②都是真命题D .①②都是假命题二、填空题7.“已知a ∈U (U 为全集),若a ??U A ,则a ∈A ”的逆命题是______________________________________,它是______(填“真”“或”“假”)命题.8.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”或“假”)9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b, 则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________.三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.【能力提升】11.给出下列三个命题:①若a ≥b >-1,则a 1+a ≥b 1+b;②若正整数m 和n 满足m ≤n ,则m ?n -m ?≤n 2; ③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切.其中假命题的个数为( )A .0B .1C .2D .312.a 、b 、c 为三个人,命题A :“如果b 的年龄不是最大的,那么a 的年龄最小”和命题B :“如果c 的年龄不是最小的,那么a 的年龄最大”都是真命题,则a 、b 、c 的年龄的大小顺序是否 能确定?请说明理由.【反思感悟】1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.§1.2 充分条件与必要条件【课时目标】1.结合实例,理解充分条件、必要条件、充要条件的意义.2.会判断(证明)某些命题的条件关系.【知识梳理】1.如果已知“若p ,则q ”为真,即p ?q ,那么我们说p 是q 的____________,q 是p 的____________.2.如果既有p ?q ,又有q ?p ,就记作________.这时p 是q 的______________条件,简称________条件,实际上p 与q 互为________条件.如果p ⇒q 且q ⇒p ,则p 是q 的________________________条件.【基础过关】1.“x >0”是“x ≠0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设p :x <-1或x >1;q :x <-2或x >1,则非p 是非q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是“l ⊥m 且l ⊥n ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.“a <0”是“方程ax 2+2x +1=0至少有一个负数根”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.用符号“?”或“⇒”填空.(1)a >b ________ac 2>bc 2;(2)ab ≠0________a ≠0.8.不等式(a +x )(1+x )<0成立的一个充分而不必要条件是-2<x <-1,则a 的取值范围是________.9.函数y =ax 2+bx +c (a >0)在[1,+∞)上单调递增的充要条件是__________.10.下列命题中,判断条件p 是条件q 的什么条件:(1)p :|x |=|y |,q :x =y .(2)p :△ABC 是直角三角形,q :△ABC 是等腰三角形;(3)p :四边形的对角线互相平分,q :四边形是矩形.11.已知P ={x |a -4<x <a +4},Q ={x |x 2-4x +3<0},若x ∈P 是x ∈Q 的必要条件,求实数a 的取值范围.【能力提升】12.记实数x 1,x 2,…,x n 中的最大数为max {}x 1,x 2,…,x n ,最小数为min {}x 1,x 2,…,x n .已知△ABC 的三边边长为a ,b ,c (a ≤b ≤c ),定义它的倾斜度为l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a , 则“l =1”是“△ABC 为等边三角形”的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件【反思总结】1.判断p 是q 的什么条件,常用的方法是验证由p 能否推出q ,由q 能否推出p ,对于否定性命题,注意利用等价命题来判断.2.证明充要条件时,既要证明充分性,又要证明必要性,即证明原命题和逆命题都成立,但要分清必要性、充分性是证明怎样的一个式子成立.“A 的充要条件为B ”的命题的证明:A ?B 证明了必要性;B ?A 证明了充分性.“A 是B 的充要条件”的命题的证明:A ?B 证明了充分性;B ?A 证明了必要性.§1.3 简单的逻辑联结词【课时目标】1.了解逻辑联结词“或”、“且”、“非”的含义.2.会用逻辑联结词联结两个命题或改写某些数学命题,并能判断命题的真假.【知识梳理】1.用逻辑联结词构成新命题(1)用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作__________,读作__________.(2)用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.(3)对一个命题p全盘否定,就得到一个新命题,记作________,读作________或____________.2.含有逻辑联结词的命题的真假判断p q p∨q p∧q 非p真真真真假真假真假假假真真假真假假假假真【基础过关】一、选择题1.已知p:2+2=5;q:3>2,则下列判断错误的是( )A.“p∨q”为真,“非q”为假 B.“p∧q”为假,“非q”为真C.“p∧q”为假,“非q”为假 D.“p∨q”为真,“非q”为真2.已知p:?,q:{2}∈{1,2,3}.由它们构成的新命题“非 p”,“非q”,“p∧q”,“p∨q”中,真命题有( )A.1个 B.2个 C.3个 D.4个3.下列命题:①2010年2月14日既是春节,又是情人节;②10的倍数一定是5的倍数;③梯形不是矩形.其中使用逻辑联结词的命题有( )A.0个 B.1个 C.2个 D.3个4.设p、q是两个命题,则新命题“绨(p∨q)为假,p∧q为假”的充要条件是( )A.p、q中至少有一个为真 B.p、q中至少有一个为假C.p、q中有且只有一个为假 D.p为真,q为假5.命题p:在△ABC中,∠C>∠B是sin C>sin B的充分不必要条件;命题q:a>b是ac2>bc2的充分不必要条件.则( )A.p假q真 B.p真q假 C.p∨q为假 D.p∧q为真6.下列命题中既是p∧q形式的命题,又是真命题的是( )A.10或15是5的倍数 B.方程x2-3x-4=0的两根是-4和1C.方程x2+1=0没有实数根 D.有两个角为45°的三角形是等腰直角三角形二、填空题7.“2≤3”中的逻辑联结词是________,它是________(填“真”,“假”)命题.8.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的范围是____________.9.已知a、b∈R,设p:|a|+|b|>|a+b|,q:函数y=x2-x+1在(0,+∞)上是增函数,那么命题:p∨q、p∧q、非p中的真命题是________.三、解答题10.写出由下列各组命题构成的“p或q”、“p且q”、“非p”形式的复合命题,并判断真假.(1)p:1是质数;q:1是方程x2+2x-3=0的根;(2)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;(3)p:0∈?;q:{x|x2-3x-5<0}?R;(4)p:5≤5;q:27不是质数.11.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.【能力提升】12.命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=|x-1|-2 的定义域是(-∞,-1]∪[3,+∞),则( )A.“p或q”为假 B.“p且q”为真C.p真q假 D.p假q真13.设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是?;命题q:函数f(x)=(a+ 1)x 在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.【反思感悟】1.从集合的角度理解“且”“或”“非”.设命题p:x∈A.命题q:x∈B.则p∧q?x∈A且x∈B?x∈A∩B;p∨q?x∈A或x∈B?x∈A∪B;非p?x?A?x∈?U A.2.对有逻辑联结词的命题真假性的判断当p、q都为真,p∧q才为真;当p、q有一个为真,p∨q即为真;非p与p的真假性相反且一定有一个为真.3.含有逻辑联结词的命题否定“或”“且”联结词的否定形式:“p或q”的否定形式“非p且非q”,“p且q”的否定形式是“非p或非q”,它类似于集合中的“?U(A∪B)=(?U A)∩(?U B),?U(A∩B)=(?U A)∪(?U B)”.§1.4全称量词与存在量词【课时目标】1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.2.会判定全称命题和特称命题的真假.3.能正确的对含有一个量词的命题进行否定.4.知道全称命题的否定是特称命题,特称命题的否定是全称命题.【知识梳理】1.全称量词和全称命题(1)短语“______________”“____________”在逻辑中通常叫做全称量词,并用符号“______”表示,常见的全称量词还有“对一切”“对每一个”“任给”“所有的”等.(2)含有______________的命题,叫做全称命题.(3)全称命题:“对M中任意一个x,有p(x)成立”,可用符号简记为____________.2.存在量词和特称命题(1)短语“______________”“________________”在逻辑中通常叫做存在量词,并用符号“________”表示,常见的存在量词还有“有些”“有一个”“对某个”“有的”等.(2)含有______________的命题,叫做特称命题.(3)特称命题:“存在M中的一个x0,有p(x0)成立”,可用符号简记为 ____________.3.含有一个量词的命题的否定(1)全称命题p:?x∈M,p(x),它的否定:____________;(2)特称命题p:?x0∈M,p(x0),它的否定____________.4.命题的否定与否命题命题的否定只否定________,否命题既否定______,又否定________.【基础过关】1.下列语句不是全称命题的是( )A.任何一个实数乘以零都等于零 B.自然数都是正整数C.高二(一)班绝大多数同学是团员 D.每一个向量都有大小2.下列命题是特称命题的是( )A.偶函数的图象关于y轴对称 B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线 D.存在实数大于等于33.下列是全称命题且是真命题的是( )A.?x∈R,x2>0 B.?x∈Q,x2∈Q C.?x0∈Z,x20>1 D.?x,y∈R,x2+y2>0 4.下列四个命题中,既是特称命题又是真命题的是( )A.斜三角形的内角是锐角或钝角 B.至少有一个实数x0,使x20>0C.任一无理数的平方必是无理数 D.存在一个负数x0,使1x0>2 5.已知命题p:?x∈R,sin x≤1,则它的否定( )A. ?x0∈R,sin x0≥1 B. ?x∈R,sin x≥1 C.?x0∈R,sin x0>1 D. ?x∈R,sin x>1 6.“存在整数m0,n0,使得m20=n20+2 011”的否定是( )A.任意整数m,n,使得m2=n2+2 011 B.存在整数m0,n0,使得m20≠n20+2 011C.任意整数m,n,使得m2≠n2+2 011 D.以上都不对7.命题“有些负数满足不等式(1+x)(1-9x)>0”用“?”或“?”可表述为________________.8.写出命题:“对任意实数m,关于x的方程x2+x+m=0有实根”的否定为:________________________________________________________________________.9.下列四个命题:①?x∈R,x2+2x+3>0;②若命题“p∧q”为真命题,则命题p、q都是真命题;③若p是q的充分而不必要条件,则非p是q的必要而不充分条件.其中真命题的序号为________.(将符合条件的命题序号全填上)10.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假.(1)若a>0,且a≠1,则对任意实数x,a x>0.(2)对任意实数x1,x2,若x1<x2,则tan x1<tan x2.(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.11.写出下列命题的否定,并判断其真假.(1)有些质数是奇数;(2)所有二次函数的图象都开口向上;(3)?x0∈Q,x20=5;(4)不论m取何实数,方程x2+2x-m=0都有实数根.【能力提升】12.命题“对任何x∈R,|x-2|+|x-4|>3”的否定是____________________________.13.给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为?,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.【反思感悟】1.判定一个命题是全称命题还是特称命题时,主要方法是看命题中是否含有全称量词或存在量词,要注意的是有些全称命题中并不含有全称量词,这时我们就要根据命题所涉及的意义去判断.2.要判定一个全称命题是真命题,必须对限定集合M中的每一个元素x验证p(x)成立;但要判定一个全称命题是假命题,却只需找出集合M中的一个x=x0,使得p(x0)不成立即可(这就是我们常说的“举出一个反例”).要判定一个特称命题为真命题,只要在限定集合M中,至少能找到一个x=x0,使得p(x0)成立即可;否则,这一特称命题就是假命题.3.全称命题的否定,其模式是固定的,即相应的全称量词变为存在量词,存在量词变为全称量词.具有性质p变为具有性质绨p.全称命题的否定是特称命题,特称命题的否定是全称命题.章末检测一、选择题1.下列语句中,是命题的个数是( )①|x+2|;②-5∈Z;③π?R;④{0}∈N.A.1B.2C.3D.42.若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是( )A.p且qB.p或qC.非pD.非p且非q3.已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是 ( ) A.命题“p且q”为真 B.命题“p或非q”为假 C.命题“p或q”为假D.命题“非p且非q”为假4.下列命题,其中说法错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x2-3x-4=0”是“x=4”的必要不充分条件C.若p∧q是假命题,则p,q都是假命题D.命题p:?x∈R,使得x2+x+1<0,则非p:?x∈R,都有x2+x+1≥05.等比数列{a n}的公比为q,则“a1>0且q>1”是“?n∈N+,都有a n+1>a n”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.若命题p:x=2且y=3,则非p为( )A.x≠2或y≠3B.x≠2且y≠3C.x=2或y≠3D.x≠2或y=37.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.已知命题p:?x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则非p是( )A.?x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0B.?x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0C.?x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0D.?x1,x2∈R,(f(x2)-f(x1))(x2-x1)<09.一元二次方程ax2+4x+3=0 (a≠0)有一个正根和一个负根的充分不必要条件是( )A.a<0B.a>0C.a<-1D.a>110.已知a、b∈R,那么“0<a<1且0<b<1”是“ab+1>a+b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.有金盒、银盒、铅盒各一个,只有一个盒子里有肖像.金盒上写有命题p :肖像在这个盒子里;银盒上写有命题q :肖像不在这个盒子里;铅盒上写有命题r :肖像不在金盒里.p 、q 、r 中有且只有一个是真命题,则肖像在( )A.金盒B.银盒C.铅盒D.无法判断 12.设集合U ={(x ,y )|x ∈R,y ∈R},若A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},则点P (2,3)∈A ∩(?U B )的充要条件是( )A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >5二、填空题13.命题“对任何x ∈R,|x -2|+|x -4|>3”的否定是__________________________________. 14.命题“若a >b ,则2a>2b-1”的否命题为__________________. 15.设A =⎩⎨⎧⎭⎬⎫x |x -1x +1<0,B ={x ||x -b |<a },若“a =1”是“A ∩B ≠?”的充分条件,则实数b 的取值范围是__________.16.在下列四个命题中,真命题的个数是________. ①?x ∈R,x 2+x +3>0;②?x ∈Q,13x 2+12x +1是有理数;③?α,β∈R,使sin(α+β)=sin α+sin β; ④?x 0,y 0∈Z,使3x 0-2y 0=10. 三、解答题17.写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命题,并判断它们的真假.18.写出下列命题的“非p ”命题,并判断它们的真假. (1)p :?x ,x 2+4x +4≥0. (2)p :?x 0,x 20-4=0.19.求证:“a +2b =0”是“直线ax +2y +3=0和直线x +by +2=0互相垂直”的充要条件. 20.设p :关于x 的不等式a x >1 (a >0且a ≠1)的解集为{x |x <0},q :函数y =lg(ax 2-x +a )的定义域为R.如果p 和q 有且仅有一个正确,求a 的取值范围.21.(1)设集合M ={x |x >2},P ={x |x <3},则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么条件? (2)求使不等式4mx 2-2mx -1<0恒成立的充要条件.22.设p :实数x 满足x 2-4ax +3a 2<0,其中a <0,q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且非p 是非q 的必要非充分条件,求a 的取值范围.第二章 圆锥曲线与方程§2.1 椭圆2.1.1 椭圆及其标准方程【课时目标】1.能理解椭圆的定义,明确焦点、焦距的概念。
高中数学人教版选修2-1全套教案第一章常用逻辑用语课题:1.1命题及其关系1.1.1 命题一、教学目标1、理解命题的概念和命题的构成。
2、能判断给定陈述句是否为命题,能判断命题的真假;3、能把命题改写成“若p,则q”的形式;重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假。
二、问题导学1.指出下列语句的表述形式特点,并判断他们的真假。
(1)若直线a∥b,则直线a与直线b没有公共点.________________________(2)2+4=7.________________________(3)垂直于同一条直线的两个平面平行________________________.(4)若x2=1,则x=1.________________________(5)两个全等三角形的面积相等.________________________(6)3能被2整除.2、定义:________________________叫做命题.命题的定义的要点:________________________ .3、命题的构成――条件和结论定义:________________________叫做命题的条件,________________________叫做命题结论.4、命题的分类――真命题、假命题的定义.真命题:________________________假命题:________________________5、判断一个数学命题的真假方法________________________三、问题探究例1、判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.例2、指出下列命题中的条件p和结论q,并判断各命题的真假.(1)若整数a能被2整除,则a是偶数.(2)若四边行是菱形,则它的对角线互相垂直平分.(3)若a>0,b>0,则a+b>0.(4)若a>0,b>0,则a+b<0.(5)垂直于同一条直线的两个平面平行.例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:(1)面积相等的两个三角形全等。
高二数学选修1-2第一章《统计案例》学案1.1.1 回归分析的基本思想及其初步应用课标转述:①通过对典型案例(如“人的体重与身高的关系”等)的探究,了解回归的基本思想、方法及初步应用 ②通过对现行案例(如“质量控制”“新药是否有效”等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用。
③通过对典型案例(如“昆虫分类”等)的探究,了解聚类分析的基本思想、方法及初步应用。
④通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验的基本思想、方法及初步应用。
学习目标:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.学习重、难点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 学习过程: 一、复习准备:1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. {⎧⎨⎩确定关系两个变量间的关系相关不确定关系不相关复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤: → → →3.最小二乘法:线性回归模型ˆy bx a=+,其中 ˆb=ˆa=二、学习新知: 1.例题分析:① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:. 解:由于问题中要求根据身高预报体重,因此选取身高为自变量x,体重为因变量y,做散点图: y40150 155 160 165 170 175 180 x由图可知,样本点呈条状分布,身高和体重有比较好的线性相关关系,可以用线性回归模型ˆy bx a=+来刻画。
由最小二乘法计算:121()()ˆ()niii nii x x y y b x x ==--=-∑∑,ˆa y bx =-其中1111,n ni ii i x x y y n n ====∑∑经计算得:ˆ0.849,85.712ba==- 于是得线性回归方程得:0.84985.712y x =-所以,对于身高为172cm 得女大学生,由回归方程可以预报其体重为ˆ0.84917285.71260.316()ykg =⨯-=0.849b =得意义是什么?②身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解释以下原因么?2.随机误差和残差⑴引入线性回归模型:Y=bx+a+e解释变量x ,预报变量y,随机误差 e产生随机误差的项e的原因是什么?练习反馈研究某灌溉渠道水的流速y与水深x之间的关系,测得一组数据如下:水深xm 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.101.70 1.79 1.88 1.952.03 2.10 2.16 2.21流速ym/s(1)求y对x的回归直线方程;(2)预测水深为1.95m 时水的流速是多少?三、课后小结:四、课后作业:p9 习题1.1 第1题高二数学选修1-2第一章《统计案例》学案1.1.2 回归分析的基本思想及其初步应用课标转述:①通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验的基本思想、方法及初步应用。
1.3可线性化的回归分析讲练学案一、学习目标:会将非线性回归模型经过变换转化为线性回归模型,进而进行回归分析. 二、自主探究导引:1. 非线性回归模型幂函数曲线by ax =经过变换 , , ,得到线性函数 .2. 非线性回归模型指数曲线bx y ae =经过变换 , ,得到线性函数 .3. 非线性回归模型倒指数曲线b x y ae =经过变换 , , ,得到线性函数 .4. 非线性回归模型对数曲线ln y a b x =+经过变换 , ,得到线性函数 . 三、知识点讲练:例1.将指数函数2210xy =•化为线性函数,并作图。
例2.变式训练:某种书每册成本费y (元)与印刷册书x (千册)有关,经统计得到数据如下:检验每册的成本费y 与印刷册数的导数x之间是否具有线性相关关系?如有,求出y 对x 的回归方程。
学生自主学习课本,巩固理解本节课内容四、课堂小结:五、课堂练习: 1.有下列说法:①线性回归分析就是由样本点去寻找一条直线,贴近这些样本店的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示; ③通过回归方程y bx a =+及其回归系数b ,可以估计和观测变量的取值和变化趋势; ④因为由任何一组观测值都可以求得一个回归直线方程,所以没必要进行相关性检验。
其中正确命题的个数是 ( ) A.1 B.2 C.3 D.42.已知一个回归方程为 1.545y x =+,{}1,7,5,13,19i x ∈,则y = 。
3. 已知x 与y 之间的一组数据:则y 与x 的线性回归方程为y bx a =+必过 ( ) A.点(2,2) B. 点(1.5,0) C. 点(1,2) D. 点(1.5,4)4.通过相关系数来描述两个变量相关关系的强弱时,相关系数的绝对值越大,用线性回归模型拟合样本数据效果就越好,如果相关系数[]0.75,1r ∈,则两个变量 ( ) A.负相关很强 B. 相关性一般 C. 负相关很强 D. 两边量之间几乎没有关系5.在彩色显像中,有经验知:形成燃料光学密度y 与析出银光的光学密度x 由公式(0)b xy Ae b =<表示.现测得试验数据如下:六、学后反思:。
安阳县二中分校“四步教学法”导学案
A nya ngxian erzhong fenxiao sibujiaoxuefa daoxuean
课题:第一章常用逻辑用语(复习)
设计人:审核人:
班级:________ 组名:________姓名:________ 时间:________
一、自主学习:(10分钟完成)
1 学习目标
1. 命题及其关系
(1)了解命题的逆命题、否命题与逆否命题,会分析四种命题间的相互关系;
(2)理解必要条件、充分条件与充要条件的意义.
一、课前准备
复习1:
复习2:
1.什么是命题?其常见的形式是什么?什么是真命题?什么是假命题?
2.有哪四种命题?他们之间的关系是怎样的?
3.什么是充分条件、必要条件和充要条件?
4你学过哪些逻辑联结词?四逻辑联结词联结而成的命题的真假性怎样?
5.否命题与命题的否定有什么不同?
6.什么是全称量词和存在量词?。
高中数学 第1章《统计案例》1.2.1条件概率与独立事件习题导学案北师大版选修1-2 学习目标 1.理解条件概率和独立事件的概念. 2.会计算简单的条件概率和独立事件同时发生的概率.学习过程一、基础过关3. 某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为( ) A .0.02B .0.08C .0.18D .0.724. 甲,乙,丙3人投篮,投进的概率分别是13,25,12.现3人各投篮1次,求3人都没有投进的概率为( ) A.115 B.215 C.15D.110 5. 如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,灯亮 的概率为 ( )A.316B.34C.1316D.146. 设某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它能活到25岁的概率是________.二、能力提升7. 在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配在A 型螺栓的概率为________.8. 甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,则取得同色球的概率为________.9. 抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子的点数为3或6时,问两颗骰子的点数之和大于8的概率为多少?10.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率是12,两次闭合都出现红灯的概率为16.求在第一次闭合出现红灯的条件下第二次出现红灯的概率.。
§1.2.1 充分条件、必要条件与充要条件学习目标1. 理解必要条件和充分条件的意义;2. 理解充要条件的概念;3. 能判断两个命题之间的关系.学习过程一、课前准备复习1:请同学们画出四种命题的相互关系图.复习2:将命题“线段的垂直平分线上的点到这条线段两个端点的距离相等”改写为“若p ,则q ”的形式,并写出它的逆命题、否命题、逆否命题并判断它们的真假.二、新课导学※ 学习探究探究任务:充分条件和必要条件的概念问题:1. 命题“若22x a b >+,则2x ab >”(1)判断该命题的真假;(2)改写成“若p ,则q ”的形式,则P :q :(3)如果该命题是真命题,则该命题可记为:读着:2. 1.命题“若0ab =,则0a =”(1)判断该命题的真假;(2)改写成“若p ,则q ”的形式,则P :q :(3)如果该命题是真命题,则该命题可记为:读着:新知:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .我们就说,由p 推出q ,记作p q ⇒,并且说p 是q 的 ,q 是p 的 试试:用符号“⇒”与“”填空:(1) 22x y = x y =;(2) 内错角相等 两直线平行;(3) 整数a 能被6整除 a 的个位数字为偶数;(4) ac bc = a b =.※ 典型例题例1 下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?q 是p 必要条件?(1)若1x =,则2430x x -+=;(2)若()f x x =,则()f x 在(,)-∞+∞上为增函数;(3)若x 为无理数,则2x 为无理数.练习:下列“若P ,则q ”的形式的命题中,哪些命题中的p 是q 的充分条件?q 是p 必要条件?(1)若两条直线的斜率相等,则这两条直线平行;(2)若5x >,则10x >探究任务:充要条件概念已知p :整数a 是6的倍数,q :整数a 是2 和3的倍数.那么p 是q 的什么条件?q 又是p的什么条件?新知:如果p q ⇔,那么p 与q 互为例2 下列“若p ,则q ”形式的命题中p 是q 的什么条件?q 是p 的什么条件?(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分又不必要条件”中选出一种)(1)若x y =,则22x y =;(2)若两个三角形全等,则这两个三角形面积相等;(3)若a b >,则ac bc >(4)p : a b > , q :a c b c +>+练习:下列“若p ,则q ”形式的命题中p 是q 的什么条件?q 是p 的什么条件?(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分又不必要条件”中选出一种)(1)若5a +是无理数,则a 是无理数;(2)若()()0x a x b --=,则x a =.(3)p : 0b =, q :函数2()f x ax bx c =++是偶函数.小结:判断命题的真假是解题的关键.※ 动手试试练1. 判断下列命题的真假.(1)2x =是2440x x -+=的必要条件;(2)圆心到直线的距离等于半径是这条直线为圆的切线的必要条件;(3)sin sin αβ=是αβ=的充分条件;(4)0ab ≠是0a ≠的充分条件.练2. 下列各题中,p 是q 的什么条件?(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分又不必要条件”中选出一种)(1)p :1x =,q :1x -(2)p :|2|3x -≤,q :15x -≤≤;(3)p :2x =,q :3x -=(4)p :三角形是等边三角形,q :三角形是等腰三角形.三、总结提升※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展设,A B 为两个集合,集合A B ⊆,那么x A ∈是x B ∈的 条件,x B ∈是x A ∈的 条件.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在平面内,下列哪个是“四边形是矩形”的充分条件?( ).A.平行四边形对角线相等B.四边形两组对边相等C.四边形的对角线互相平分D.四边形的对角线垂直 2.,x y R ∈,下列各式中哪个是“0xy ≠”的必要条件?( ).A.0x y +=B.220x y +>C.0x y -=D.330x y +≠3.平面//α平面β的一个充分条件是( ).A.存在一条直线,//,//a a a αβB.存在一条直线,,//a a a αβ⊂C.存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂D.存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂4.p :20x -=,q :(2)(3)0x x --=,p 是q 的 条件.5. p :两个三角形相似;q :两个三角形全等,p 是q 的 条件. 课后作业1. 判断下列命题的真假(1)“a b >”是“22a b >”的充分条件;(2)“||||ab >”是“22a b >”的必要条件.2. 已知{|A x x =满足条件}p ,{|B x x =满足条件}q .(1)如果A B ⊆,那么p 是q 的什么条件?(2)如果B A ⊆,那么p 是q 的什么条件?。
§1.1 命题及四种命题班级:组名:姓名:设计人:李洪涛审核人:魏帅举领导审批:1. 掌握命题、真命题及假命题的概念;2. 四种命题的内在联系,能根据一个命题来构造它的逆命题、否命题和逆否命题..复习2:什么是定理?什么是公理?.二、新课导学※学习探究1.在数学中,我们把用、、或表达的,可以的叫做命题.其中的语句叫做真命题,的语句叫做假命题练习:下列语句中:(1)若直线//a b,则直线a和直线b无公共点;(2)247+=(3)垂直于同一条直线的两个平面平行;(4)若21x=,则1x=;(5)两个全等三角形的面积相等;(6)3能被2整除.其中真命题有,假命题有2.命题的数学形式:“若p,则q”,命题中的p叫做命题的,q叫做命题的.※典型例题例1:下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间有两条直线不相交,则这两条直线平行;(52=;(6)15x>.命题有,真命题有假命题有.例2 指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直平分.解:(1)条件p:结论q:(2)条件p:结论q:变式:将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等.※动手试试1.判断下列命题的真假:(1)能被6整除的整数一定能被3整除;(2)若一个四边形的四条边相等,则这个四边形是正方形;(3)二次函数的图象是一条抛物线;(4)两个内角等于45︒的三角形是等腰直角三角形.2.把下列命题改写成“若p,则q”的形式,并判断它们的真假.(1)等腰三角形两腰的中线相等;(2)偶函数的图象关于y轴对称;(3)垂直于同一个平面的两个平面平行.小结:判断一个语句是不是命题注意两点:(1)是否是陈述句;(2)是否可以判断真假.3.四种命题的概念(1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若p,则q”,则逆命题为:“”.(2) 一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”练习:下列四个命题:(1)若()f x是周期函数;f x是正弦函数,则()(2)若()f x是正弦函数;f x是周期函数,则()(3)若()f x不是正弦函数,则()f x不是周期函数;(4)若()f x不是正弦函数.f x不是周期函数,则()(1)(2)互为(1)(3)互为(1)(4)互为(2)(3)互为例3 命题:“已知a、b、c、d是实数,若子,==,则a c b da b c d+=+”.写出逆命题、否命题、逆否命题.变式:设原命题为“已知a、b是实数,若a b+是无理数,则a、b都是无理数”,写出它的逆命题、否命题、逆否命题.※ 动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假: (1)若一个整数的末位数是0,则这个整数能被5整除;(2)若一个三角形的两条边相等,则这个三角形的两个角相等; (3)奇函数的图像关于原点对称.三、总结提升: ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列语名中不是命题的是( ). A.20x > B.正弦函数是周期函数 C.{1,2,3,4,5}x ∈ D.125>2.设M 、N 是两个集合,则下列命题是真命题的是( ). A.如果M N ⊆,那么M N M ⋂= B.如果M N N ⋂=,那么M N ⊆ C.如果M N ⊆,那么M N M ⋃= D.M N N ⋃=,那么N M ⊆3.下面命题已写成“若p ,则q ”的形式的是( ). A.能被5整除的数的末位是5B.到线段两个端点距离相等的点在线段的垂直平分线上C.若一个等式的两边都乘以同一个数,则所得的结果仍是等式D.圆心到圆的切线的距离等于半径 4.下列语句中:(1)2+2)1002是个大数(3)好人一生平安(4)968能被11整除,其中是命题的序号是 5.将“偶函数的图象关于y 轴对称”写成“若p ,则q ”的形式,则p : ,q :1.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假(1)若,a b 都是偶数,则a b +是偶数; (2)若0m >,则方程20x x m +-=有实数根.2.把下列命题改写成“若p ,则q ”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等; (2)矩形的对角线相等.§1.1 四种命题间的相互关系班级: 组名: 姓名: 设计人:李洪涛 审核人:魏帅举 领导审批:1.掌握四种命题的内在联系;2. 能分析逆命题、否命题和逆否命题的相互关系,并能利用等价关系转化.复习2:判断命题“若0a ≥,则20x x a +-=有实根”的逆命题的真假.二、新课导学 ※ 学习探究1:分析下列四个命题之间的关系(1)若()f x 是正弦函数,则()f x 是周期函数; (2)若()f x 是周期函数,则()f x 是正弦函数; (3)若()f x 不是正弦函数,则()f x 不是周期函数; (4)若()f x 不是周期函数,则()f x 不是正弦函数. (1)(2)互为 (1)(3)互为 (1)(4)互为 (2)(3)互为通过上例分析我们可以得出四种命题之间有如下关系:2、四种命题的真假性例1 以“若2320x x -+=,则2x =”为原命题,写出它的逆命题、否命题、逆否命题,并判断这些命题的真假并总结其规律性.通过上例真假性可总结如:(1) . (2) . 练习:判断下列命题的真假.(1)命题“在A B C ∆中,若A B A C >,则C B ∠>∠”的逆命题; (2)命题“若0ab ≠,则0a ≠且0b ≠”的否命题; (3)命题“若0a ≠且0b ≠,则0ab ≠”的逆否命题; (4)命题“若0a ≠且0b ≠,则220a b +>”的逆命题.反思:(1)直接判断(2)互为逆否命题的两个命题等价来判断. ※ 典型例题例1 证明:若220x y +=,则0x y ==.变式:判断命题“若220x y +=,则0x y ==”是真命题还是假命题?练习:证明:若222430a b a b -+--≠,则1a b -≠.例2 已知函数()f x 在(,)-∞+∞上是增函数,,a b R ∈,对于命题“若0a b +≥,则()()()()f a f b f a f b +≥-+-.”(1) 写出逆命题,判断其真假,并证明你的结论. (2) 写出其逆否命题,并证明你的结论. ※ 动手试试1.求证:若一个三角形的两条边不等,这两条边所对的角也不相等.2.命题“如果22x a b ≥+,那么2x ab ≥”的逆否命题是( ) A.如果22x a b <+,那么2x ab < B.如果2x ab ≥,那么22x a b ≥+ C.如果2x ab <,那么22x a b <+ D.如果22x a b ≥+,那么2x ab <三、总结提升: ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 命题“若0x >且0y >,则0xy >”的否命题是( ). A.若0,0x y ≤≤,则0xy ≤ B.若0,0x y >>,则0xy ≤C.若,x y 至少有一个不大于0,则0xy <D.若,x y 至少有一个小于0,或等于0,则0xy ≤2. 命题“正数a 的平方根不等于0”是命题“若a 不是正数,则它的平方根等于0”的( ).A.逆命题B.否命题C.逆否命题D.等价命题3.). A.B. C.D.+4. 若1x >,则21x >的逆命题是 否命题是 5.命题“若a b >,则221ab≥-”的否命题为1. 已知,a b 是实数,若20x ax b ++≤有非空解集,则240a b -≥,写出该命题的逆命题、否命题、逆否命题并判断其真假.2.证明:在四边形ABC D 中,若AB C D AC C D +<+,则A B A C <.§1.2.1 充分条件与必要条件班级:组名:姓名:设计人:李洪涛审核人:魏帅举领导审批:1. 理解必要条件和充分条件的意义;2. 能判断两个命题之间的关系..复习2:将命题“线段的垂直平分线上的点到这条线段两个端点的距离相等”改写为“若p,则q”的形式,并写出它的逆命题、否命题、逆否命题并判断它们的真假.二、新课导学※学习探究探究任务:充分条件和必要条件的概念问题:1. 命题“若22x a b>+,则2>”x ab(1)判断该命题的真假;(2)改写成“若p,则q”的形式,则P:q:(3)如果该命题是真命题,则该命题可记为:读着:2. 1.命题“若0ab=,则0a=”(1)判断该命题的真假;(2)改写成“若p ,则q ”的形式,则P : q : (3)如果该命题是真命题,则该命题可记为: 读着: 新知:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .我们就说,由p 推出q ,记作p q ⇒,并且说p 是q 的 ,q 是p 的 试试:用符号“⇒”与“”填空: (1) 22x y = x y =;(2) 内错角相等 两直线平行;(3) 整数a 能被6整除 a 的个位数字为偶数; (4) ac bc = a b =. ※ 典型例题例1 下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若1x =,则2430x x -+=;(2)若()f x x =,则()f x 在(,)-∞+∞上为增函数; (3)若x 为无理数,则2x 为无理数.练习:下列“若P ,则q ”的形式的命题中,哪些命题中的p 是q 的充分条件?(1)若两条直线的斜率相等,则这两条直线平行; (2)若5x >,则10x >例2 下列“若p ,则q ”形式的命题中哪些命题中的q 是p 必要条件? (1)若x y =,则22x y =;(2)若两个三角形全等,则这两个三角形面积相等;(3)若a b >,则ac bc >练习:下列“若p ,则q ”形式的命题中哪些命题中的q 是p 必要条件? (1)若5a +是无理数,则a 是无理数; (2)若()()0x a x b --=,则x a =.小结:判断命题的真假是解题的关键.※ 动手试试练1. 判断下列命题的真假.(1)2x =是2440x x -+=的必要条件; (2)圆心到直线的距离等于半径是这条直线为圆的切线的必要条件; (3)sin sin αβ=是αβ=的充分条件; (4)0ab ≠是0a ≠的充分条件.练2. 下列各题中,p 是q 的什么条件? (1)p :1x =,q :1x -= (2)p :|2|3x -≤,q :15x -≤≤; (3)p :2x =,q :3x -=;(4)p :三角形是等边三角形,q :三角形是等腰三角形.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展设,A B 为两个集合,集合A B ⊆,那么x A ∈是x B ∈的 条件,.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在平面内,下列哪个是“四边形是矩形”的充分条件?( ). A.平行四边形对角线相等 B.四边形两组对边相等 C.四边形的对角线互相平分 D.四边形的对角线垂直2.,x y R ∈,下列各式中哪个是“0xy ≠”的必要条件?( ). A.0x y += B.220x y +> C.0x y -= D.330x y +≠3.平面//α平面β的一个充分条件是( ). A.存在一条直线,//,//a a a αβ B.存在一条直线,,//a a a αβ⊂C.存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂D.存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂ 4.p :20x -=,q :(2)(3)0x x --=,p 是q 的 条件.5. p :两个三角形相似;q :两个三角形全等,p 是q 的 条件.1. 判断下列命题的真假 (1)“a b >”是“22a b >”的充分条件; (2)“|||a b >”是“22a b >”的必要条件.2. 已知{|A x x =满足条件}p ,{|B x x =满足条件}q . (1)如果A B ⊆,那么p 是q 的什么条件? (2)如果B A ⊆,那么p 是q 的什么条件?§1.2.2 充要条件班级:组名:姓名:设计人:李洪涛审核人:魏帅举领导审批:1. 理解充要条件的概念;2. 掌握充要条件的证明方法,既要证明充分性又要证明必要性.,找出疑惑之处)1112复习1:什么是充分条件和必要条件?复习2:p:一个四边形是矩形q:四边形的对角线相等.p是q的什么条件?二、新课导学※学习探究探究任务一:充要条件概念问题:已知p:整数a是6的倍数,q:整数a是2 和3的倍数.那么p 是q的什么条件?q又是p的什么条件?新知:如果p q⇔,那么p与q互为试试:下列形如“若p,则q”的命题是真命题吗?它的逆命题是真命题吗?p是q的什么条件?(1)若平面α外一条直线a与平面α内一条直线平行,则直线a与平面α平行;(2)若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直.反思:充要条件的实质是原命题和逆命题均为真命题.※ 典型例题例1 下列各题中,哪些p 是q 的充要条件?(1) p : 0b =,q :函数2()f x ax bx c =++是偶函数; (2) p : 0,0,x y >> q :0xy > (3) p : a b > , q :a c b c +>+变式:下列形如“若p ,则q ”的命题是真命题吗?它的逆命题是真命题吗?哪些p 是q 的充要条件?(1) p : 0b = ,q :函数2()f x ax bx c =++是偶函数; (2) p : 0,0,x y >> q :0xy > (3) p : a b > , q :a c b c +>+小结:判断是否充要条件两种方法 (1)p q ⇒且q p ⇒;(2)原命题、逆命题均为真命题; (3) 用逆否命题转化.练习:在下列各题中, p 是q 的充要条件? (1)p :234x x =+ , q :x =(2) p : 30x -=, q :(3)(4)0x x --=(3)p: 240(0)b ac a -≥≠ , q :20(0)ax bx c a ++=≠(4) p : 1x =是方程20ax bx c ++=的根 q :0a b c ++=例2 已知:O 的半径为r ,圆心O 到直线的距离为d .求证:d r =是直线l 与O 相切的充要条件.变式:已知:O 的半径为r ,圆心O 到直线的距离为d ,证明: (1)若d r =,则直线l 与O 相切. (2)若直线l 与O 相切,则d r =小结:证明充要条件既要证明充分性又要证明必要性.※ 动手试试练1. 下列各题中p 是q 的什么条件? (1)p :1x =,q :1x -= (2)p :|2|3x -=,q :15x -≤≤ ; (3)p :2x =,q :3x -= ;(4)p :三角形是等边三角形,q :三角形是等腰三角形.练2. 求圆222()()x a y b r -+-=经过原点的充要条件.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展设A 、B 为两个集合,集合A B =是指x A x B ∈⇔∈,则“x A ∈”与“x B ∈”互为.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列命题为真命题的是( ). A.a b >是22a b >的充分条件 B.||||a b >是22a b >的充要条件 C.21x =是1x =的充分条件D.αβ=是tan tan αβ= 的充要条件2.“x M N ∈ ”是“x M N ∈ ”的( ). A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.设p :240(0)b ac a ->≠,q :关于x 的方程20(0)ax bx c a ++=≠有实根,则p 是q 的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.22530x x --<的一个必要不充分条件是( ).A.132x -<< B.102x -<<C.132x -<< D.16x -<<5. 用充分条件、必要条件、充要条件填空. (1).3x >是5x >的(2).3x =是2230x x --=的( 3).两个三角形全等是两个三角形相似的1. 证明:20a b +=是直线230ax y ++=和直线20x by ++=垂直的充要条件.2.求证:A B C ∆是等边三角形的充要条件是222a b c ab ac bc ++=++,这里,,a b c 是A B C ∆的三边.§1.3简单的逻辑联结词姓名:设计人:李洪涛审核人:魏帅举领导审批:1. 了解“或”“且”“非”逻辑联结词的含义;2. 掌握,,∧∨⌝的真假性的判断;p q p q p3. 正确理解p⌝的意义,区别p⌝与p的否命题;p的真假性的判断,关键在于p与q的真假的判断.,找出疑惑之处)1416复习1:什么是充要条件?复习2:已知{|=满足条件}qB x x=满足条件}p,{|A x x(1)如果A B⊆,那么p是q的什么条件;(2) 如果B A⊆,那么p是q的什么条件;(3) 如果A B=,那么p是q的什么条件.二、新课导学※学习探究探究任务一:“且“的意义问题:下列三个命题有什么关系?(1)12能被3整除;(2)12能被4整除;(3)12能被3整除且能被4整除.新知:1.一般地,用逻辑联结词“且”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.试试:判断下列命题的真假:(1)12是48且是36的约数;(2)矩形的对角线互相垂直且平分.反思:p q∧的真假性的判断,关键在于p与q的真假的判断.探究任务二:“或“的意义问题:下列三个命题有什么关系?(1) 27是7的倍数;(2)27是9的倍数;(3)27是7的倍数或是9的倍数.新知:1.一般地,用逻辑联结词“或”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.(1)47是7的倍数或49是7的倍数;(2)等腰梯形的对角线互相平分或互相垂直.反思:p q∨的真假性的判断,关键在于p与q的真假的判断.探究任务三:“非“的意义问题:下列两个命题有什么关系?(1) 35能被5整除;(2)35不能被5整除;新知:1.一般地,对一个命题的全盘否定就得到一个新命题,记作“”,读作“”或“”.试试:写出下列命题的否定并判断他们的真假:(1)2+2=5;(2)3是方程290x-=的根;(3=-1反思:p⌝的真假性的判断,关键在于p的真假的判断.※典型例题例1 将下列命题用“且”联结成新命题并判断他们的真假:(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等;(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数变式:用逻辑联结词“且”改写下列命题,并判断他们的真假:(1)1既是奇数,又是素数;(2)2和3都是素数.小结:p q∧的真假性的判断,关键在于p与q的真假的判断.例2 判断下列命题的真假(1) 22≤;(2) 集合A是A B 的子集或是A B 的子集;(3) 周长相等的两个三角形全等或面积相等的两个三角形全等.变式:如果p q∧为真命题,那么p q∨一定是真命题吗?反之,p q∨为真命题,那么p q∧一定是真命题吗?小结:p q∨的真假性的判断,关键在于p与q的真假的判断.例3 写出下列命题的否定,并判断他们的真假:(1)p:siny x=是周期函数;(2)p:32<(3)空集是集合A的子集.小结:p⌝的真假性的判断,关键在于p的真假的判断.三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展阅读教材第18页,理解逻辑联结词“且”“或”“非”与集合运算.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. “p或q为真命题”是“p且q为真命题”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题P:在A B C>的充要条件;命题q:a b>是C B∆中,C B∠>∠是sin sin22ac bc>的充分不必要条件,则().A.p真q假B.p假q假C.“p或q”为假D.“p且q”为真3.命题:(1)平行四边形对角线相等;(2)三角形两边的和大于或等于第三边;(3)三角形中最小角不大于60︒;(4)对角线相等的菱形为正方形.其中真命题有().A.1B.2C.3D.44.命题p:0不是自然数,命题q:π是无理数,在命题“p或q”“p且q”“非p”“非q”中假命题是,真命题是.5. 已知p:2||6-≥,q:,,x x∈∧⌝都是假命题,则x的值组成的集x Z p q q1. 写出下列命题,并判断他们的真假:(1)p q∨,这里p:4{2,3}∈;∈,q:2{2,3}(2)p q∧,这里p:4{2,3}∈;∈,q:2{2,3}(3) p q∨,这里p:2是偶数,q:3不是素数;(4) p q∧,这里p:2是偶数,q:3不是素数.2.判断下列命题的真假:(1)52>且73>(2)78≥(3)34>或34<§1.4 全称量词与存在量词班级:组名:姓名:设计人:李洪涛审核人:魏帅举领导审批:1. 掌握全称量词与存在量词的的意义;2. 掌握含有量词的命题:全称命题和特称命题真假的判断.,找出疑惑之处)2123复习1:写出下列命题的否定,并判断他们的真假:(1(2)5不是15的约数(3)8715+≠(4)空集是任何集合的真子集复习2:判断下列命题的真假,并说明理由:(1)p q∨,这里p:π是无理数,q:π是实数;(2)p q∧,这里p:π是无理数,q:π是实数;(3) p q∨,这里p:23>,q:8715+≠;(4) p q∧,这里p:23>,q:8715+≠.二、新课导学※学习探究探究任务一:全称量词的意义问题:1.下列语名是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)3x>;(2)21x+是整数;(3)对所有的,3x R x∈>;(4)对任意一个x Z∈,21x+是整数.2. 下列语名是命题吗?(1)与(3),(2)与(4)之间有什么关系? (1)213x +=;(2)x 能被2和3整除;(3)存在一个0x R ∈,使0213x +=;(4)至少有一个0x Z ∈,0x 能被2和3整除. 新知:1.短语“ ”“ ”在逻辑中通常叫做全称量词,并用符号“ ”表示,含有 的命题,叫做全称命题.其基本形式为:,()x M p x ∀∈,读作:2. 短语“ ”“ ”在逻辑中通常叫做存在量词,并用符号“ ”表示,含有 的命题,叫做特称称命题.其基本形式0,()x M p x ∃∈,读作:试试:判断下列命题是不是全称命题或者存在命题,如果是,用量词符号表示出来.(1)中国所有的江河都流入大海; (2)0不能作为除数;(3)任何一个实数除以1,仍等于这个实数; (4)每一个非零向量都有方向.反思:注意哪些词是量词是解决本题的关键,还应注意全称命题和存在命题的结构形式. ※ 典型例题例1 判断下列全称命题的真假: (1)所有的素数都是奇数; (2)2,11x R x ∀∈+≥;(3)对每一个无理数x ,2x 也是无理数.变式:判断下列命题的真假: (1)2(5,8),()420x f x x x ∀∈=--> (2)2(3,),()420x f x x x ∀∈+∞=-->小结:要判定一个全称命题是真命题,必须对限定集合M 中每一个元素x 验证()p x 成立;但要判定全称命题是假命题,却只要能举出集合M 中的一个0x x =,使得0()p x 不成立即可. 例2 判断下列特称命题的真假: (1) 有一个实数0x ,使200230x x ++=; (2) 存在两个相交平面垂直于同一条直线; (3) 有些整数只有两个正因数.变式:判断下列命题的真假: (1)2,32a Z a a ∃∈=- (2)23,32a a a ∃≥=-小结:要判定特称命题“00,()x M p x ∃∈” 是真命题只要在集合M 中找一个元素0x ,使0()p x 成立即可;如果集合M 中,使()P x 成立的元素x 不存在,那么这个特称命题是假命题. ※ 动手试试练1. 判断下列全称命题的真假: (1)每个指数都是单调函数; (2)任何实数都有算术平方根; (3){|x x x ∀∈是无理数},2x 是无理数.练2. 判定下列特称命题的真假: (1)0,0x R x ∃∈≤;(2)至少有一个整数,它既不是合数,也不是素数; (3)0{|x x x ∃∈是无理数},2x 是无理数.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展数理逻辑又称符号逻辑,是用数学的方法研究推理过程的一门学 莱布尼茨(1646—1716)是数理逻辑的创始人。
§1.1.1回归分析的基本思想及其初步应用(一)
☞学习目标
1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;
2. 了解线性回归模型与函数模型的差异,了解衡量两个变量之间线性相关关系得方法---相关系数.
☞课前导学一、课前准备
(预习教材P 2~ P 4,找出疑惑之处) 问题1:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?
复习1:函数关系是一种 关系,而相关关系是一种 关系.
复习2:回归分析是对具有 关系的两个变量进行统计分析的一种常用方法,其步骤: → →
→ .
☞学情反馈
我的疑惑 。
☞课中导学 首先独立思考探究,然后合作交流展示
探究点一:
问题:画出散点图,的女大学生的体重. 解:由于问题中要求根据身高预报体重,因此 选 自变量x , 为因变量. (1)做散点图:
从散点图可以看出 和 有比较好的 相关关系.
(2) x = y =
8
1
i i
i x y
==∑ 8
21
i i x ==∑
所以8
18
2
2
1
88i i
i i
i x y
x y b x
x
==-=
=-∑∑ a y bx =-≈
于是得到回归直线的方程为
(3)身高为172cm 的女大学生,由回归方程可以预报其体重为y = 问题:身高为172cm 的女大学生,体重一定是上述预报值吗?
思考:线性回归模型与一次函数有何不同?
新知:用相关系数r 可衡量两个变量之间 关系.计算公式为 r = r >0, 相关, r <0 相关;
相关系数的绝对值越接近于1,两个变量的线性相关关系 ,它们的散点图越接近 ; r > ,两个变量有 关系.
探究点二:某班5名学生的数学和物理成绩如下表:
(2) 求物理成绩y 对数学成绩x 的回归直线方程; (3) 该班某学生数学成绩为96,试预测其物理成绩; 变式:该班某学生数学成绩为55,试预测其物理成绩; 小结:求线性回归方程的步骤:
变式训练1:★.(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出
y 关于x 的线性回归方程y bx a =+;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值3 2.543546 4.566.5⨯+⨯+⨯+⨯=)
☞学情反馈
我的疑惑 。
☞课堂达标
1. 下列两个变量具有相关关系的是( )
A. 正方体的体积与边长
B. 人的身高与视力
C.人的身高与体重
D.匀速直线运动中的位移与时间 2. 在画两个变量的散点图时,下面哪个叙述是正确的( )
A. 预报变量在x 轴上,解释变量在 y 轴上
B. 解释变量在x 轴上,预报变量在 y 轴上
C. 可以选择两个变量中任意一个变量在x 轴上
D. 可选择两个变量中任意一个变量在 y 轴上 3. ★ 回归直线y bx a =+必过( )
A. (0,0)
B. (,0)x
C. (0,)y
D. (,)x y 4.r 越接近于1,两个变量的线性相关关系 .
5. 已知回归直线方程0.50.81y x =-,则25x =时,y 的估计值为 .
☞学后反思
① 基础知识 _________________________________。
② 学习方法 _________________________________。
§1.1.1回归分析的基本思想及其初步应用(二)
☞学习目标
1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;
2. 了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
3. 会用相关指数,残差图评价回归效果.
☞课前导学 (预习教材P 4~ P 7,找出疑惑之处)
复习1:用相关系数r 可衡量两个变量之间 关系.r >0, 相关, r <0 相关; r 越接近于1,两个变量的线性相关关系 ,它们的散点图越接近 ;r > ,两个变量有
关系.
复习2:评价回归效果的三个统计量: 总偏差平方和;残差平方和;回归平方和.
☞学情反馈
我的疑惑 。
☞课中导学 首先独立思考探究,然后合作交流展示 探究点一:如何评价回归效果? 1、评价回归效果的三个统计量 (1)总偏差平方和:
(2)残差平方和:
(3)回归平方和:
2、相关指数:2R 表示 对 的贡献,公式为: 2
R = 2R 的值越大,说明残差平方和 ,说明模型拟合效果 .
3、残差分析:通过 来判断拟合效果.通常借助 图实现.
残差图:横坐标表示 ,纵坐标表示 .
残差点比较均匀地落在 的区的区域中,说明选用的模型 ,带状区域的宽度越 ,说明拟合精度越 ,回归方程的预报精度越 .
为了对x 、y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型
拟合的效果更好?
小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏. 【典题共研2】 假定小麦基本苗数x 与成熟期有效苗穗y 之间存在相关关系,今测得5组数据如下:
(2)求回归方程并对于基本苗数56.7预报期有效穗数; (3)求2
R ,并说明残差变量对有效穗数的影响占百分之几. (参考数据:
2
1
1
5101.51,6746.76,n
n
i
i i i i x
x y ====∑∑
5
2
1
()50.18i
i y
y =-=∑, 5
21
()9.117i i i y y =-=∑)
变式训练1:★某班5名学生的数学和物理成绩如下表:
(5) 求物理成绩y 对数学成绩x 的回归直线方程; (6) 该班某学生数学成绩为96,试预测其物理成绩;
(7) 求学生A,B,C,D,E 的物理成绩的实际成绩和回归直线方程预报成绩的差2i i e y y =-.并作出残差图评价拟合效果. 小结:
1. 评价回归效果的三个统计量:
2. 相关指数评价拟合效果:
3. 残差分析评价拟合效果:
学习小结
一般地,建立回归模型的基本步骤:
1、确定研究对象,明确解释、预报变量;
2、画散点图;
3、确定回归方程类型(用r 判定是否为线性);
4、求回归方程;
5、评价拟合效果.
※ 知识拓展
在现行回归模型中,相关指数2R 表示解释变量对预报变量的贡献率,2R 越接近于1,表示回归效果越好.如果某组
数据可以采取几种不同的回归方程进行回归分析,则可以通过比较2R 作出选择,即选择2
R 大的模型.
☞学情反馈
我的疑惑 。
☞课堂达标
1. 两个变量 y 与x 的回归模型中,分别选择了 4 个不同模型,它们的相关指数 2
R 如下 ,其中拟合 效果最好的模型是( ).
A. 模型 1 的相关指数2R 为 0.98
B. 模型 2 的相关指数2R 为 0.80
C. 模型 3 的相关指数2
R 为 0.50 D. 模型 4 的相关指数2
R 为 0.25 2. 在回归分析中,残差图中纵坐标为( ). A. 残差 B. 样本编号 C. x D. n e 3. 通过12,,
,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分工称为( ).
A.回归分析
B.独立性检验分析
C.残差分析
D. 散点图分析 4.2
R 越接近1,回归的效果 .
5. ★ 在研究身高与体重的关系时,求得相关指数
2R = ,可以叙述为“身高解释了69%的体重变化,而随机误差贡献了剩余 ”所以身高对体重的效应比
随机误差的 .
☞学后反思
① 基础知识 _________________________________。
② 学习方法 _____________________。