2018年七年级下册数学期末分章复习
- 格式:doc
- 大小:1.05 MB
- 文档页数:18
章节测试题1.【题文】已知关于的方程组(1)若求方程组的解;(2)若方程组的解满足求的取值范围.【答案】(1) ;(2) a>-.【分析】(1)将a=2代入方程组计算即可求出解;(2)将a看做已知数求出x与y,根据x大于y得到a的范围. 【解答】解:(1)当a=2时,方程组为,①-②得:3y=6,即y=2,将y=2代入①得:x=9,则方程组的解为;(2)方程组两方程相减得:3y=10-2a,即y=,将y=代入第一个方程得:x=,根据题意得:>,解得:a>-.2.【题文】为了了解某地区“雾霾天气的主要成因”,随机调查了该地区部分市民,并对调査结果随机调査了该市部分市民,并对调査结果进行整理,绘制了如下尚不完整的统计图表.根据图表中提供的信息解答下列问题:(1)求接受调查的总人数;(2)填空:扇形统计图中E组所占的百分比为______%;(3)扇形统计图中,C组所对应扇形圆心角的度数为________;(4)若该地区人口约有100万人,请你估计持D组观点的市民人数.【答案】(1)600人;(2)60,150,15%;(3)90°;(4)30万人.【分析】(1)根据A组的人数和所占的百分比可以求得接受调查的总人数;(2)根据接受调查的总人数和B组观点的百分比可以求得m,总人数减去其余各组的人数可以求得n的值,根据E组人数和总人数可求得所占的百分比;(3)根据C组观点的人数占的百分比可以求得C组所对应扇形圆心角的度数;(4)根据D组观点占的百分比可以求得持D组观点的市民人数.【解答】解:(1)由题意可得,接受调查的总人数是:120÷20%=600,即接受调查的一共有600人;(2)m=600×10%=60,n=600-180-120-90-60=150,扇形统计图中E组所占的百分比为:×100%=15%,故答案为:60,150,15%;(3)扇形统计图中,C组所对应扇形圆心角的度数为:360°×=90°,故答案为:90°;(4)100×=30(万人),答:持D组观点的市民有30万人.3.【题文】某体育器材公司最新推出A、B两种不同型号的跳绳,我区某学校第一次订购两种跳绳共计640条,该公司共获利2160元,两种跳绳的成本价、销售价如下表:(1)求学校第一次订购A、B两种跳绳各多少条?(2)第二次订购A、B两种跳绳的条数皆为第一次的2倍,销售时,A种跳绳按原售价销售,B种跳绳全部降价出售,该公司为使利润不小于4080元,则B种跳绳每条的最低销售价应为多少元?【答案】(1)学校第一次订购A种跳绳400条,B种跳绳240条;(2)第二次B 种跳绳每条的最低销售价应为9.5元.【分析】(1)设学校第一次订购A种跳绳x条B种跳绳y条,根据“两种跳绳共计640条,该公司共获利2160元”列出方程组进行求解;(2)设第二次B种跳绳每条的最低销售价应为a元,根据“该公司的利润不少于4080元”列出不等式,继而即可求解.【解答】解:(1)设学校第一次订购A种跳绳x条,B种跳绳y条,根据题意得:,解得:.答:学校第一次订购A种跳绳400条,B种跳绳240条.(2)设第二次B种跳绳每条的最低销售价应为a元,根据题意得:(8-5)×400×2+(a-6)×240×2≥4080,解得:a≥9.5.答:第二次B种跳绳每条的最低销售价应为9.5元.4.【题文】如图1,在平面直角坐标系中,点A(0,4),C(2,0).(1)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿轴正方向移动,点Q到达A点整个运动随之结束,AC的中点D的坐标是(1,2),设运动时间为秒,问:是否存在这样的使若存在,请求出的值;若不存在,请说明理由.(2)如图2,点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF,点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,以下两个式子:哪个式子为定值,请求出这个定值.【答案】(1) t=;(2)的值不变,其值为2.【分析】(1)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据,列出关于t的方程,求得t的值即可;(2)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.【解答】解:(1)由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=OP•y D=(2−t)×2=2−t,S△DOQ=OQ•x D=×2t×1=t,∵,∴2(2-t)=t,∴t=;(2)的值不变,其值为2.∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴==,不能确定.===2.5.【题文】已知,平面直角坐标系中,A(2,0),B(),且满足(1)求点B坐标;(2)P(0,)为轴上一点,求的取值范围;(3)若Q为直线AB上一点,连接OQ,且直接写出点Q 的纵坐标的取值范围.【答案】(1)B(-2,4);(2)m≥6或m≤-2;(3)≤y≤3或6≤y≤8.【分析】(1)根据非负数的性质列出方程组,解方程组求出a、b,得到点B的坐标;(2)先利用待定系数法求得直线AB的解析式为y=-x+2,进而得出直线AB交y 轴于(0,2),根据三角形的面积公式求出根据S△ABP不小于8时,×|y-2|×(2+2)≥8,得到点P的纵坐标m的取值范围;(3)分两种情况,当点Q在线段AB上时,可得2(4-y)≤y≤3(4-y)计算可得;当点Q在线段AB的延长线上时,可得2(y-4)≤y≤3(y-4)计算即可.【解答】解:(1)∵∴2a+b=0,3a+2b-2=0,解得a=-2,b=4,∴B(-2,4);(2)设直线AB的解析式为y=kx+b,把A(2,0),B(-2,4)代入,可得,解得,∴直线AB的解析式为y=-x+2,令x=0,则y=2,即直线AB交y轴于(0,2),=4,根据得,8,即×|m-2|×(2+2)≥8,解得m≥6或m≤-2;(3)≤y≤3或6≤y≤8.6.【答题】下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.4x+y=2C.D.6xy+9=0 【答案】B【分析】直接利用二元一次方程的定义分析得出答案.【解答】A、,是三元一次方程,故此选项错误;B、,是二元一次方程,故此选项正确;C、,是分式方程,故此选项错误;D、,是二元二次方程,故此选项错误;选B.7.【答题】若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>0【答案】D【分析】根据不等式的性质即可求出答案.【解答】∵m<1∴m+1<2故D错误选D.8.【答题】在下列调查中,适宜采用全面调查的是()A.了解明德集团所有中学生的视力情况B.了解某校七(4)班学生校服的尺码情况C.调查北京2017年的游客流量D.调查中国“2018俄罗斯世界杯”栏目的收视率【答案】B【分析】根据实际问题的需要选择合适的调查方式.【解答】A、适合用抽样调查;B、适合用全面调查;C、适合用抽样调查;D、适合用抽样调查,所以答案选B.9.【答题】不等式组的解在数轴上表示正确的是()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:解得:x<3,x≥-1故不等式组的解集为:-1≤x<3在数轴上表示为:.选C.10.【答题】已知是二元一次方程2x+y=14的解,则k的值是()A.2B.﹣2C.3D.﹣3【答案】A【分析】根据方程的解的定义,将方程2x+y=14中x,y用k替换得到k的一元一次方程进行求解.【解答】将代入二元一次方程2x+y=14,得7k=14,解得k=2.选A.11.【答题】在一个三角形中,一个外角是其相邻内角的2倍,那么这个外角是()A.150B.120°C.100°D.90°【答案】B【分析】设与外角相邻的内角为x°,根据平角的定义得到方程3x=180,求出x即可.【解答】设与外角相邻的内角为x°,∵一个三角形中,一个外角是其相邻内角的2倍∴这个外角为2x°∴3x=180∴x=60.即这个外角为120°选B.12.【答题】由方程组可得出x与y的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9【答案】A【分析】本题考查了二元一次方程组的解法。
A OB α ααA AA AB B B B 18题图七年级下册数学期末重难点讲解15.(2014年济南市中)如图,在第1个△A 1BC 中,∠B=30°,A 1B=CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( )A .()n •75°B .()n ﹣1•65° C .()n ﹣1•75° D .()n •85°15、观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。
18.(2015年济南槐荫)如图,已知∠AOB =α,在射线OA 、OB 上分别取点A 1、B 1,使OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2B 2……按此规律继续下去,记∠A 2B 1B 2=α1,∠323A B B =α2……∠n+11A n n B B +=αn ,则αn = .18.(2017年天桥)如图,已知△ABC和△BDE都是等边三角形.则下列结论:①AE=CD.②BF=BG.③HB⊥FG.④∠AHC=60°.⑤△BFG是等边三角形,其中正确的有.27.(2014年济南市中区|2016年山师大附中)如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(1)请判断:AF与BE的数量关系是,位置关系是;(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明;(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.。
七年级数学下册二元一次方程组知识清单+经典例题+专题复习试卷1.二元一次方程的定义:含有未知数,并且未知数的项的次数都是,像这样的方程叫做二元一次方程。
2.二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组,方程组中含有未知数,含有每个未知数的都是,并且一共有方程。
3.二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有个解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的,叫做二元一次方程组的解。
5.代入消元法解二元一次方程组:(1)基本思路:未知数由多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:①,从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式。
②,将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,解出这个一元一次方程,求出x的值。
③,把求得的x值代入y=ax+b中求出y的值。
④,把x、y的值用“{”联立起来。
6.加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解①方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等。
②把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程。
③解这个一元一次方程,求得一个未煮熟的值。
2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。
七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A .2 B .5 C .10 D.156.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1- C .64-的立方根为4- D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若总分 核分人3421BCAD -1 0 1 2 43 P3l 2l3∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46°D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y a x 是方程02=+y x 的一个解,则=-+236b a ;15.已知线段MN 平行于x 轴,且MN 的长度为5,若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °;BCA输入 x×2>95 +1停止是 否1DCBA17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1) 32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组:23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x各选项人数的扇形统计图各选项人数的条形统计图请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a=________%,b=________%,“常常”对应扇形的圆心角的度数为__________;(2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点坐标为A(2,-1),C(6,2),点M为y轴上一点,△MAB的面积为6,且MD<MA;请解答下列问题:(1)顶点B的坐标为;(2)求点M的坐标;(3)在△MAB中任意一点P(x,y)经平移后对应点为1P(x-5,y-1),将△MAB作同样的平移得到△111BAM,则点1M的坐标为。
∴∠AOF =∠EOF = ∠AOE. 又∵∠DOE =∠BOD = ∠BOE , ∴∠DOE +∠EOF = (∠BOE +∠AOE) = ×180°=90°, , , 第 5 章《相交线与平行线》【知识结构图】【重难点突破】重难点 1 与相交线有关的角度计算【例 1】 如图所示,直线 AB ,CD 相交于点 O ,∠DOE =∠BOD ,OF 平分∠AOE.(1)判断 OF 与 OD 的位置关系;(2)若∠AOC ∶∠AOD =1∶5,求∠EOF 的度数.【思路点拨】 (1)根据∠DOE =∠BOD ,OF 平分∠AOE ,求得∠FOD =90°,从而判断 OF 与 OD 的位置关系.(2)根据∠AOC ,∠AOD 的度数比以及邻补角性质 求得∠AOC.然后利用对顶角性质得∠BOD 的度数 从而得∠EOD的度数.最后利用∠FOD =90°,求得∠EOF 的度数.【解答】 (1)∵OF 平分∠AOE ,1 21 21 21 2即∠FOD =90°.∴OF ⊥OD .(2)设∠AOC =x °,∵∠AOC ∶∠AOD =1∶5,∴∠AOD =5x °.∵∠AOC +∠AOD =180°,∴x +5x =180,解得 x =30.∴∠DOE =∠BOD =∠AOC =30°.又∵∠FOD =90°,∴∠EOF =90°-30°=60°.3.如图所示,O是直线AB上一点,∠AOC=∠BOC,OC是∠AOD的平分线.解:(1)∵∠AOC+∠BOC=180°,∠AOC=∠BOC,∴∠BOC+∠BOC=180°.求角的度数问题时,要善于从图形中挖掘隐含条件,如:邻补角、对顶角,然后结合条件给出的角的和、差、倍、分等关系进行计算.1.如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O.已知∠AOD=136°,则∠COM的度数为(C)A.36°B.44°C.46°D.54°2.如图,已知直线AB与CD交于点O,ON平分∠DOB.若∠BOC=110°,则∠DON为35°.13(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说出理由.1313∴∠BOC=135°.∴∠AOC=45°.∵OC平分∠AOD,∴∠COD=∠AOC=45°.(2)OD⊥AB.理由如下:∵∠COD=∠AOC=45°,∴∠AOD=∠COD+∠AOC=90°.∴OD⊥AB.重难点2平行线的性质与判定【例2】如图,∠1=∠2,∠3=40°,则∠4等于(C)A.120°B.130°C.140°D.40°【思路点拨】首先根据“同位角相等,两直线平行”可得a∥b,再根据平行线的性质可得∠3=∠5,最后根据邻补角互补可得∠4的度数.此类题目一般会综合考查平行线的性质与判定,即“由形推角”或“由角判形”,所以解决时要明确条件和结论,不要产生混淆,性质是由“形”得到“角”,判定是由“角”得到“形”.4.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有(A)A.4个B.3个C.2个D.1个5.如图,已知∠AFE=∠ABC,DG∥BE,∠DGB=130°,则∠FEB=50°.6.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.解:(1)证明:∵AB∥DF,∴∠D+∠DHB=180°.∵∠D+∠B=180°,∴∠B=∠DHB.∴DE∥BC.(2)∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°.∴∠AGC=180°-∠AGB=180°-75°=105°.重难点3命题【例3】(2017·百色改编)下列四个命题中:①对顶角相等;②同旁内角互补;③平移前后的两个图形面积、周长都相等;④两直线平行,同位角相等,其中是假命题的有:②(填序号).要说明一个命题的正确性,可根据已有知识进行推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.下面各数中,可以用来证明命题“任何偶数都是8的倍数”是假命题的反例是(C)A.9B.8C.4D.168.将命题“同角的余角相等”,改写成“如果……那么……”的形式为:如果两个角是同一个角的余角,那么这两个角相等.重难点4平移【例4】如图,四边形ABCD向右平移一段距离后得到四边形A′B′C′D′.(1)找出图中存在的平行且相等的四条线段;(2)找出图中存在的四组相等的角;(3)四边形ABCD与四边形A′B′C′D′的形状、大小相同吗?【解答】(1)AA′,BB′,CC′与DD′.(2)∠A=∠A′,∠B=∠B′,∠C=∠C′,∠D=∠D′.(3)四边形ABCD与四边形A′B′C′D′的形状、大小相同.本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.如图,左边的图案通过平移后得到的图案是(D)10.如图所示是一个会场的台阶的侧视图,要在上面铺上红地毯,则至少需要多少地毯才能铺好整个台阶(C)A.2.5米B.5米C.7.5米D.10米备考集训一、选择题(每小题3分,共24分)1.如图,当光线从空气射入水中,光线的传播发生了改变,这就是折射现象.∠1的对顶角是(A)A.∠AOBB.∠BOCC.∠AOCD.都不是2.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠1与∠3的关系是(A)A.互余B.对顶角C.互补D.相等3.在下列四个图中,∠1与∠2是同位角的有(C)A.①②③④B.①②③C.①③D.①4.下列结论正确的是(D)A.不相交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同一直线的两条直线互相平行D.平行于同一直线的两条直线互相平行5.如图,直线AB,CD相交于点O,OT⊥AB于点O,CE∥AB交CD于点C.若∠ECO=30°,则∠DOT等于(C)A.30°B.45°C.60°D.120°6.下列命题中,为假命题的是(D)A.互补的两个角不可能都是锐角B.内错角可能互补C.同旁内角可能相等.D.在同一平面内,过一点有且只有一条直线与已知直线平行7.如图,∠1+∠3=140°,∠2+∠1=180°,∠4=115°,则∠1 为(D)A.15°B.45°C.65°D .75° 8.(2017· 枣庄中考改编)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含 30°角的直角三角板的斜边与纸条一边重合,含 45°角的三角板的一个顶点在纸条的另一边上,则∠1 的度数是(A)A.15°B.20°C.30° D .35°二、填空题(每小题 4 分,共 24 分)9.如图,直线 AB ,CD 相交于点 O ,∠1-∠2=50°,则∠2=65°,∠BOD =115°.10.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在 A 处,依据的几何原理是垂线段最短.11.如图,AC ⊥BC ,C 为垂足,CD ⊥AB ,D 为垂足,BC =8,CD =4.8,BD =6.4,AD =3.6,AC =6,点 A 到 BC的距离是 6,A ,B 两点间的距离是 10.12.如图所示,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是内错角相等,两直线平行.13.如图,DA 是∠BDF 的平分线,∠3=∠4.若∠1=40°,∠2=140°,则∠CBD 的度数为 70°.14.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为 2 米,则绿化的面积为 540m 2∴∠BOD=×180°=60°.∴∠DOE=∠BOD=×60°=30°.∴∠COF=∠COE=×150°=75°.三、解答题(共52分)15.(8分)如图,已知直线a∥b,∠2=85°,求∠1的度数.请在横线上补全求解的过程或依据.解:∵a∥b(已知),∴∠1=∠3(两直线平行,同位角相等).∵∠2=∠3(对顶角相等),∠2=85°(已知),∴∠1=85°(等量代换).16.(10分)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD∶∠BOD=2∶1.(1)求∠DOE的度数;(2)求∠AOF的度数.解:(1)∵∠AOD∶∠BOD=2∶1,∠AOD+∠BOD=180°,13∵OE平分∠BOD,1123(2)∵∠DOE=30°,∴∠COE=∠180°-∠DOE=180°-30°=150°.∵OF平分∠COE,1122∵∠AOC=∠BOD=60°(对顶角相等),∴∠AOF=∠AOC+∠COF=60°+75°=135°.17.(10分)如图,画图并填空:(1)画出三角形ABC先向右平移6格,再向下平移2格得到的三角形A1B1C1;(2)线段AA1与线段BB1的关系是:平行且相等;(3)三角形ABC的面积是3.5.解:三角形A1B1C1如图所示.18.(12分)如图,直线AB,CD被直线EF所截,∠1+∠2=180°,EM,FN分别平分∠BEF和∠CFE.(1)判定EM与FN之间的关系,并证明你的结论;(2)由(1)的结论我们可以得到一个命题:如果两条直线平行,那么内错角的角平分线互相平行;(3)由此可以探究并得到:如果两条直线平行,那么同旁内角的角平分线互相垂直.解:EM∥FN.证明:∵∠1+∠2=180°,∠EFD+∠2=180°,∴∠1=∠EFD.∴AB∥CD.∴∠BEF=∠CFE.∵EM,FN分别平分∠BEF和∠CFE,∴∠3=∠4.∴EM∥FN.19.(12分)如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗?请说明理由.解:(1)AD∥EF.理由如下:∵∠BDA+∠CEG=180°,∠BEF+∠CEG=180°,∴∠BDA=∠BEF.∴AD∥EF.(2)∠F=∠H.理由:∵AD平分∠BAC,∴∠BAD=∠CAD.∵∠EDH=∠C,∴HD∥AC.∴∠H=∠CGH.∵AD∥EF,∴∠CAD=∠CGH,∠BAD=∠F.∴∠F=∠H.(1);解:的平方根是±.(2)-0.216.第6章《实数》【知识结构图】【重难点突破】重难点1平方根、立方根、算术平方根【例1】下列说法中错误的是(A)A.0没有平方根B.225的算术平方根是15C.任何实数都有立方根D.(-9)2的平方根是±91.9所表示的意义是(C)A.9的平方根B.3的平方根C.9的算术平方根D.3的算术平方根2.求下列各数的平方根:2549255497(2)(-2)2.解:(-2)2的平方根是±2.3.求下列各式的值:3(1)-64;3解:-64=-4.3解:-0.216=-0.6.-,-,7,-27,0.324371,0.5,9,-0.4,16,0.8080080008….(1)无理数集合:{-,7,9,-0.4,0.8080080008…,…};(2)有理数集合:{-,-27,0.324371,0.5,16,…};(3)分数集合:{-,0.324371,0.5,…};(4)负无理数集合:{-,-0.4,…}.4.(2017·荆门)在实数-,9,π,8中,是无理数的是(C)A.-B.9C.πD.85.实数-7.5,15,4,8,-π,0.15,中,有理数的个数为a,无理数的个数为b,则a-b的值为(B)+17.3,12,0,π,-3,,9.32%,-16,-25.(1)有理数集合:{+17.3,12,0,-3,,9.32%,-25,…};(2)无理数集合:{π,-16,…};(3)分数集合:{+17.3,-3,,9.32%,…};33重难点2实数的分类【例2】把下列各数分别填入相应的数集里.π223313π33223132213π3223722373··23A.2B.3C.4D.56.把下列各数分别填入相应的集合中:22233722237322237(4)整数集合:{12,0,-25,…}.重难点3实数与数轴【例3】在如图所示的数轴上,AB=AC,A,B两点对应的实数分别是3和-1,则点C所对应的实数是(D)A.1+3B.2+3C.23-1D.23+17.实数a,b在数轴上的位置如图所示,则下列各式正确的是(C)1.9的平方根是(D)C. D.±A.a>b B.a>-bC.a<bD.-a<-b重难点4实数的性质与运算【例4】计算:|2-3|-(22-33).【思路点拨】先去绝对值符号和括号,然后利用加法的交换律、结合律、分配律计算.【解答】原式=3-2-22+33=(1+3)3+(-1-2)2=43-3 2.根据绝对值的性质,先判断绝对值里面的数与0的大小,然后去掉绝对值符号.括号前是“-”号的,去掉“-”号与括号,括号里面的每一项都要改变符号.如果被开方数相同,那么利用加法的分配律,将系数相加减,被开方数以及根号不变.8.下列各组数中互为相反数的是(A)3A.-2与(-2)2B.-2与-8C.2与(-2)2D.|-2|与29.化简2-2(1-2)的结果是(A)A.2B.-2C.2D.-23310.计算:512-81+-1.解:原式=8-9-1=-2.备考集训一、选择题(每小题3分,共30分)16A.34 B.±3334442.-8的立方根是(A)3.下列各数-,81,0.3,\s\up6(·))1,\s\up6(·)),,43,0.2020020002…(两个2之间依次多一个0)中,无A.0.008=0.2B.-=-9.若a+b=0,则a与b的关系是(C)C.a与b互为相反数D.a=13.小成编写了一个程序:输入x→x2→立方根→倒数→算术平方根→,则x为±8.A.-2B.-4C.2D.±213π-172理数有(B)A.2个B.3个C.4个D.5个4.下列各式错误的是(C)33112733C.121=±11D.-106=-1025.(2017·重庆)估计10+1的值应在(B)A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.一个自然数的算术平方根是a,则下一个自然数的算术平方根是(A)A.a2+1B.a+1C.a+1D.a+17.如图,数轴上A,B两点表示的数分别为2和5.1,则A,B两点之间表示整数的点共有(C)A.6个B.5个C.4个D.3个8.若10201=101,则102.01等于(B)A.1.01B.10.1C.101D.1.020133A.a=b=0B.a与b相等1b10.若m,n满足(m-1)2+n-15=0,则m+n的平方根是(B)A.±4B.±2C.4D.2二、填空题(每小题4分,共20分)11.比较大小:-5>-26(填“>”“=”或“<”).12.3-11的相反数是11-3,绝对值是11-3.1214.已知36=x,y=3,z是16的算术平方根,则2x+y-5z的值为1.,如 3※2= = 5.那么 12※4= . 3 7 ,-0.4,1.6, 6,0,1.101 001 000 1….(2)负分数:{- ,-0.4,…};解:化简,得(x -1)2= . ∴x -1=± .∴x = 或 x =- .解:化简,得(x -2)3=.15.对于任意不相等的两个数 a ,b ,定义一种运算※如下:a ※b =a +b 3+2 1a -b 3-2 2三、解答题(共 50 分)16.(9 分)把下列各数填在相应的表示集合的大括号内.2 22-6,π ,- ,-|-3|, (1)整数:{-6,-|-3|,0,…};23(3)无理数:{π , 6,1.101 001 000 1…,…}.17.(12 分)计算:(1)2 5-5 5+3 5;解:原式=(2-5+3) 5=0.(2) 3+1+3+|1- 3|;解:原式= 3+4+ 3-1=2 3+3.3 3(3) 25- -1+ 144+ -64.解:原式=5+1+12-4=14.18.(8 分)求下列各式中的 x 的值:(1)25(x -1)2=49;49 257512 25 5(2)64(x -2)3-1=0.1 64∴x-2=.∴x=.⎪⎪⎩⎩149419.(10分)如图,计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5∶2.讨论方案时,小英说:“我们不可能围成满足要求的长方形场地.”小军说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?解:设长方形场地的长为5x m,宽为2x m.依题意,得5x·2x=50.∴x= 5.即长为55m,宽为25m.∵4<5<9,∴2<5<3.由上可知25<6,且55>10.若长与墙平行,墙长只有10m,故不能围成满足条件的长方形场地;若宽与墙平行,则能围成满足条件的长方形场地.∴他们的说法都不正确.20.(11分)已知:M=a-b a+b+3是a+b+3的算术平方根,N=a-2b+2a+6b是a+6b的算术平方根,求M·N 的值.解:由题意,得⎧a-b=2,⎧a=4,⎨解得⎨⎪a-2b+2=2.⎪b=2.∴M=a+b+3=4+2+3=9=3,N=a+6b=4+6×2=16=4.于是M·N=3×4=12.A.m>B.m<3C.m>3D.<m<3第7章《平面直角坐标系》【知识结构图】【重难点突破】重难点1由点的坐标位置确定字母的取值范围【例1】若点A(m-3,1-3m)在第三象限,则m的取值范围是(D)13131.(2017·贵港)在平面直角坐标系中,点P(m-3,4-2m)不可能在(A)A.第一象限B.第二象限C.第三象限D.第四象限2.若点P(m-1,2m+1)在第一象限,则m的取值范围是m>1.重难点2用坐标表示地理位置【例2】如图,在方格纸上,用(1,1)表示点A的位置,用(2,3)表示点C的位置,则点B的位置表示为(C)A.(3,1)B.(3,2)C.(4,2)D.(4,3)3.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成(A)A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)4.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线为:森林公园—玲珑塔—国家体育场—水立方.如图,设在奥林匹克公园设计图上玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2),那么水立方的坐标为(A)A.(-2,-4)B.(-1,-4)C.(-2,4)D.(-4,-1)重难点3图形的平移与坐标变换【例3】已知三角形ABC在平面直角坐标系中的位置如图所示,将三角形ABC向下平移5个单位长度,再向左平移2个单位长度,则平移后C点的坐标是(B)A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)在平面直角坐标系中,点P(x,y)向右(或左)平移a个单位长度后的坐标为P(x+a,y)[或P(x-a,y)];点P(x,y)向上(或下)平移b个单位长度后的坐标为P(x,y+b)[或P(x,y-b)].5.在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向下平移4个单位长度得到点P′的坐标是(B)A.(2,4)B.(1,-3)C.(1,5)D.(-5,5)6.在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A′的坐标是(-2,2),现将三角形ABC平移,使点A变换为点A′,点B′,C′分别是B,C的对应点.(1)请画出平移后的三角形A′B′C′(不写画法),并直接写出点B′,C′的坐标;=×1×3+×(3+4)×3+×2×4.(2)若三角形ABC内部一点P的坐标(a,b),求点P的对应点P′的坐标.解:(1)如图,点B′(-4,1),C′(-1,-1).(2)P′(a-5,b-2).重难点4计算平面直角坐标系内图形的面积【例4】如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)【思路点拨】过点D作DE⊥BC,AF⊥BC,垂足分别为点E,点F,则S四边形ABCD=S三角形ABF+S四边形AFED+S三角形DEC.【解答】(1)A(-2,1),B(-3,-2),C(3,-2),D(1,2).(2)过点D作DE⊥BC,AF⊥BC,垂足分别为点E,F.S四边形ABCD=S三角形ABF+S四边形AFED+S三角形DEC111222=16.求平面直角坐标系中平面图形的面积时,常常利用平行于坐标轴的线段当底,点的横坐标或者纵坐标的绝对值当高.不规则图形的面积常常通过割补法转化为几个规则图形的面积求解7.在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则三角形ABO的面积为(D)A.15B.7.5C.6D.38.已知点A,点B在平面直角坐标系中的位置如图所示,则:形A-(1)写出这两点坐标:A(-1,2),B(3,-2);(2)求三角形AOB的面积.11解:S三角AOB=2×1×1+2×1×3=2.重难点5平面直角坐标系中的规律探究题【例5】如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2017的坐标为(505,-504).【思路点拨】要求A2017的坐标,可先从简单的点的坐标开始探究,发现其中的规律.从各点的位置可以发现:1(1,0),A2(1,1),A3(-1,1),A4(-1,-1);A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2);A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3);….因为2017÷4=504……1,所以可判断A2017所在象限及坐标.规律探究题往往是从个例、特殊情况入手,发现其中的规律,从而推广到一般情况,用适当的式子表示出来即可.9.(2017·赤峰)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(y+1,x+2),我们把点P′(-y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,Pn.若点P1的坐标为(2,0),则点P2017的坐标为(2,0).备考集训一、选择题(每小题3分,共30分)1.下列各点中,在第二象限的点是(B)A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如图,在平面直角坐标系中,小猫遮住的点的坐标可能是(C)A.(-2,1)B.(2,3)C.(3,-5)D.(-6,-2)3.在平面直角坐标系中,点(-3,-x2-1)所在的象限是(C)A.第一象限B.第二象限C.第三象限D.第四象限4.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B的坐标是(B)A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)5.如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是(C)A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上6.两点的横坐标相同,则这两个点所在的直线与x轴的关系是(B)A.平行B.垂直C.重合D.无法确定7.如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为(A)14.若点(m-4,1-2m)在第三象限内,则m的取值范围是<m<4.A.(8,7)B.(7,8)C.(8,9)D.(8,8)8.在平面直角坐标系内有一点P,已知P点到x轴的距离为2,到y轴的距离为4,则P点的坐标不可能是(A)A.(-2,-4)B.(4,2)C.(-4,2)D.(4,-2)9.已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为(C)A.3B.4C.5D.610.下列依次给出的点的坐标(0,3),(1,1),(2,-1),(3,-3),…,依此规律,则第2017个点的坐标为(C)A.(2017,-2015)B.(2016,-2014)C.(2016,-4029)D.(2016,-4031)二、填空题(每小题4分,共20分)11.教室里的座位摆放整齐,如果1排2号用(1,2)表示,那么(4,5)表示的是4排5号.12.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为答案不唯一,如:(2,2)或(0,0).13.已知A(-1,4),B(-4,4),则线段AB的长为3.1215.如图,在平面直角坐标系中,A,B的坐标分别为(3,0),(0,2),将线段AB平移至A1B1,则a+b的值为2.三、解答题(共50分)16.(8分)如图是某市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?解:(1)湖心岛(2.5,5)、光岳楼(4,4)、山陕会馆(7,3).(2)不是,因为根据题目中点的位置规定可知水平数轴上的点对应的数在前,竖直数轴上的点对应的数在后,是有序数对.17.(8分)如图,已知三角形ABC在单位长度为1的方格纸上.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,点B′的坐标:B(1,2),B′(3,5).18.(8分)在平面直角坐标系中,描出点A(-1,3),B(-3,1),C(-1,-1),D(3,1),E(7,3),F(7,-1),并连接AB,BC,CD,DA,DE,DF,形成一个图案.(1)每个点的横坐标保持不变,纵坐标变为原来的一半,再按原来的要求连接各点,观察所得图案与原来的图案,发现有什么变化?(2)纵坐标保持不变,横坐标分别增加3呢?解:如图所示.(1)图略,与原图案相比,图案横向未发生变化,纵向被压缩为原来的一半.(2)与原图案相比,图案被向右平移了3个单位长度,图案的大小未发生变化.19.(12分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大5;(3)点P到x轴的距离为2,且在第四象限.解:(1)∵点P(2m+4,m-1)在y轴上,∴2m+4=0,解得m=-2.∴m-1=-2-1=-3.∴点P的坐标为(0,-3).(2)∵点P的纵坐标比横坐标大5,∴(m-1)-(2m+4)=5,解得m=-10.∴m-1=-10-1=-11,2m+4=2×(-10)+4=-16.即 ×1×BP =4,解得 BP =8,即 2·AP =4,解得 AP =4.∴点 P 的坐标为(-16,-11).(3)∵点 P 到 x 轴的距离为 2,∴|m -1|=2,解得 m =-1 或 m =3.当 m =-1 时,2m +4=2×(-1)+4=2,m -1=-1-1=-2.此时,点 P(2,-2).当 m =3 时,2m +4=2×3+4=10,m -1=3-1=2.此时,点 P(10,2).∵点 P 在第四象限,∴点 P 的坐标为(2,-2).20.(14 分)已知 A(0,1),B(2,0),C(4,3).(1)在如图所示的坐标系中描出各点,画出三角形 ABC ;(2)求三角形 ABC 的面积;(3)设点 P 在坐标轴上,且三角形 ABP 与三角形 ABC 的面积相等,求点 P 的坐标.解:(1)如图所示.(2)过点 C 向 x ,y 轴作垂线,垂足为点 D ,点 E ,1 1 1∴S 四边形 DOEC =3×4=12,S 三角形 BCD =2×2×3=3,S 三角形 ACE =2×2×4=4,S 三角形 AOB =2×2×1=1.∴S 三角形 ABC =S 四边形 DOEC -S 三角形 BCD -S 三角形 ACE -S 三角形 AOB =12-3-4-1=4.1(3)当点 P 在 x 轴上时,S 三角形 ABP =2AO·BP =4,12∴点 P 的坐标为(10,0)或(-6,0);1当点 P 在 y 轴上时,S 三角形 ABP =2·BO·AP =4,12∴点 P 的坐标为(0,5)或(0,-3).故点 P 的坐标为(0,5)或(0,-3)或(10,0)或(-6,0).⎩⎩⎩第8章《二元一次方程组》【知识结构图】【重难点突破】重难点1二元一次方程组的解法⎧⎪2x+y=4,①【例1】解方程组:⎨⎪2y+1=5x.②【思路点拨】解法一:将①变形为y=4-2x,然后代入②,消去y,转化为一元一次方程求解;解法二:①×2-②,消去y,转化为一元一次方程求解.【解答】解法一:由①,得y=4-2x,③代入②,得2(4-2x)+1=5x.解得x=1.把x=1代入③,得y=2.⎧⎪x=1,∴原方程组的解为⎨⎪y=2.解法二:①×2,得4x+2y=8.③③-②,得4x-1=8-5x.解得x=1.把x=1代入①,得y=2.⎧⎪x=1,∴原方程组的解为⎨⎪y=2.二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.A.2B.-2C.D.4⎩⎩⎧x+2y=8,1.已知x,y满足方程组⎨则x+y的值是(B)⎩2x+y=7,A.3B.5C.7D.92.定义一种运算“◎”,规定x◎y=ax-by,其中a,b为常数,且2◎3=6,3◎2=8,则a+b的值是(A)163⎧⎪3x+4y=19,①3.解方程组:⎨⎪x-y=4.②解:由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.⎧⎪x=5,∴原方程组的解为⎨⎪⎩y=1.重难点2二元一次方程组的应用【例2】(2017·张家界)某校组织“大手拉小手,义卖献爱心”活动,购买了黑、白两种颜色的文化衫共140件,进行手绘设计后出售,所获得利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:黑色文化衫白色文化衫批发价(元)108零售价(元)2520假设文化衫全部售出,共获利1860元,求购买黑、白两种文化衫各多少件?【思路点拨】根据等量关系“黑色文化衫件数+白色文化衫件数=140,黑色文化衫的利润+白色文化衫的利润=1860元”列方程组求解.【解答】设购买黑色文化衫x件,白色文化衫y件,根据题意,得⎧x+y=140,⎧⎪x=60,⎨解得⎨⎩(25-10)x+(20-8)y=1860,⎪y=80.答:购买黑色文化衫60件,购买白色文化衫80件.⎩ ⎪ ⎪ ⎩ ⎩ ⎪ ⎩ ⎪ ⎩ ⎪ ⎪⎩ ⎩ 列方程解决实际问题的解题步骤是:①审题:弄清已知量和未知量;②设未知数列方程,并根据相等关系列出符合题意的方程;③解方程;④验根并作答:检验方程的根是否符合题意,并写出完整的答.4.“鸡兔同笼”是我国古代著名的数学趣题之一.大约在 1500 年前成书的《孙子算经》中,就有关于“鸡兔同笼” 的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有 35 个头;从下面数,有 94 条腿.问笼中各有几只鸡和兔?解:设鸡有 x 只,兔有 y 只,根据题意,得⎧x +y =35, ⎧⎪x =23, ⎨ 解得⎨ ⎩2x +4y =94, ⎪y =12.答:笼中有鸡 23 只,兔 12 只.5.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间 70 名工人承接了制作丝巾的任务,已知每人每天 平均生产手上的丝巾 1 800 条或者脖子上的丝巾 1 200 条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?解:设应分配 x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意,得⎧x +y =70, ⎧x =30,⎨解得⎨ ⎪1 200x ×2=1 800y . ⎪y =40.答:应分配 30 名工人生产脖子上的丝巾,40 名工人生产手上的丝巾.备考集训一、选择题(每小题 3 分,共 30 分)1.下列方程组中,是二元一次方程组的是(B)⎧2x +y =-1 A.⎨ ⎪y +z =2⎧5x -3y =3 B.⎨ ⎪y =2+3x⎧x -5y =1 ⎧3x -y =7 C.⎨ D.⎨⎪xy =2⎪x 2+y =1⎧⎪x =-2,2.方程 5x +2y =-9 与下列方程构成的方程组的解为⎨ 1的是(C)⎪⎩y =2⎧2x +y =4, ⎩ ⎪⎪⎪⎪⎩⎩ ⎩ ⎩⎪ ⎪⎩ ⎩ ⎪ ⎪ ⎩ ⎩ ⎪ ⎪⎪ ⎪⎩ ⎩ ⎩ ⎩⎩ ⎩ A.x +2y =1B.5x +4y =-3C.3x -4y =-8D.3x +2y =-8⎧⎪3x -y =2,①3.方程组⎨的最优解法是(C) ⎪3x +2y =11 ②A.由①得 y =3x -2,再代入②B.由②得 3x =11-2y ,再代入①C.由②-①,消去 xD.由①×2+②,消去 y⎪4.方程组⎨x +3z =1,的解是(C)⎪⎩x +y +z =7⎧x =2 ⎧x =2 ⎧x =-2 ⎧x =2 A.⎨y =2 B.⎨y =1 C.⎨y =8 D.⎨y =2 ⎪z =1 ⎪z =1 ⎪z =1 ⎪z =2⎧a +5b =12,5.已知 a ,b 满足方程组⎨ 则 a +b 的值为(B)⎩3a -b =4,A.-4B.4C.-2D.26.若(x +y -5)2+|2x -3y -10|=0,则 x ,y 等于(C)⎧x =3 ⎧x =2 A.⎨ B.⎨⎪y =2⎪y =3⎧x =5⎧x =0 C.⎨ D.⎨ ⎪y =0⎪y =57.A ,B 两地相距 6 km ,甲、乙两人从 A ,B 两地同时出发,若同向而行,甲 3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为 x km/h ,乙的速度为 y km/h ,则得方程组为(D)⎧x +y =6 ⎧x +y =6 ⎧x -y =6⎧x +y =6 A.⎨ B.⎨C.⎨D.⎨⎪3x +3y =6⎪3x -y =6 ⎪3x +3y =6 ⎪3x -3y =68.某车间有 90 名工人,每人每天平均能生产螺栓 15 个或螺帽 24 个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为(C)A.50 人,40 人B.30 人,60 人C.40 人,50 人D .60 人,30 人⎧⎪5x +y =3, ⎧⎪x -2y =5,10.已知方程组⎨和⎨ 有相同的解,则 a ,b 的值为(A) ⎪ax +5y =4 ⎪5x +by =1⎪x -y =-1y =2.⎪⎩y =-213.已知⎨是方程 2x -ay =3 的一个解,则 a 的值是 . ⎪ ⎪ ⎪⎪⎩ ⎩ ⎩ ⎩ ⎪ ⎪ ⎩⎩ ⎪ ⎪ ⎩. ⎩ ⎩ ⎧a =14 ⎧a =4 ⎧a =-6 ⎧a =1 A.⎨ B.⎨ C.⎨ D.⎨ ⎪b =2⎪b =-6 ⎪b =2 ⎪b =2二、填空题(每小题 4 分,共 20 分)⎧4x -2y =2,⎧x =2y ,11.解二元一次方程组的基本思想方法是“消元”,那么解方程组⎨ 宜用加减法;解方程组⎨ 宜⎪3x +2y =5⎪2x -y =3用代入法.12.请写出一个以 x ,y 为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成;②方⎧x =1, ⎧x +y =3程组的解为⎨ 这样的方程组可以是答案不唯一,如:⎨ __.⎪⎧⎪x =1, 1214 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?” 译文大致是:“用一根绳子去量一根木条,绳子剩余 4.5 尺;将绳子对折再量木条,木条剩余 1 尺,问木条长多少⎧⎪y -x =4.5 尺?”如果设木条长 x 尺,绳子长 y 尺,可列方程组为⎨y .⎪⎩2=x -115.一个两位数的十位数字与个位数字的和为 8,若把这个两位数加上 18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为 35.三、解答题(共 50 分)16.(12 分)解方程组:⎧⎪3x -2y =-1,①(1)(荆州中考)⎨⎪x +3y =7;②解:由②,得 x =7-3y.③③代入①,得 3(7-3y)-2y =-1.解得 y =2.把 y =2 代入③,得 x =7-3y =1.⎧⎪x =1,∴原方程组的解是⎨⎪⎩y =2.⎧⎪3x +2y =5,① (2)⎨⎪2x +5y =7;②解:①×2-②×3,得-11y =-11,解得 y =1.⎩⎩ ⎩⎪ ⎩ ⎩ 将 y =1 代入①,得 x =1.⎧⎪x =1,∴原方程组的解是⎨⎪y =1.⎧⎪4(x -y -1)=3(1-y )-2, (3)⎨x y⎪⎩2+3=2.⎧⎪4x -y =5,①解:原方程组可化为:⎨⎪3x +2y =12.②①×2+②,得 11x =22,∴x =2.将 x =2 代入①,得 y =3.⎧⎪x =2,∴原方程组的解是⎨⎪y =3.17.(12 分)4 月 23 日“世界读书日”期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,求出每本《英汉词典》和《读者》杂志的单价.解:设每本《汉英词典》和《读者》杂志的单价分别为 x ,y 元,根据题意,得⎧10x +4y +5=349, ⎨ ⎪2x +12y +5=141.⎧⎪x =32, 解得⎨⎪y =6.答:每本《汉英词典》和《读者》杂志的单价分别为 32 元和 6 元.⎧a =5,⎨ 2⎩b =21.故 a = ,b = ,c =-5.⎪ ⎪ ⎩⎩⎩⎩⎩⎩⎧ax +by =2, ⎧x =1,18.(12 分)甲、乙两位同学一起解方程组 ⎨ 甲正确地解得 ⎨ 乙仅因抄错了题中的 c ,解得⎩cx -3y =-2, ⎩y =-1,⎧x =2,⎨求原方程组中 a ,b ,c 的值.⎩y =-6,⎧x =1,⎧ax +by =2, ⎧a -b =2, 解:把⎨ 代入⎨中,得⎨ ⎪y =-1 ⎪cx -3y =2⎩c +3=-2,⎧⎪a -b =2,∴⎨⎪⎩c =-5.⎧⎪x =2,由题意知:⎨是方程 ax +by =2 的解, ⎪y =-6∴2a -6b =2,即 a -3b =1.⎧a -b =2,联立⎨ 解得 ⎩a -3b =1,5 1 2219.(14 分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里分,她看了看兑换方法后(见表),兑换了两种礼品共 5 件并刚好用完积分,出亮亮妈妈的兑换方法.解:①设亮亮妈妈兑换了 x 个电茶壶和 y 个书包,由题意,得⎧2 000x +1 000y =7 000, ⎧⎪x =2, ⎨ 解得⎨ ⎩x +y =5, ⎪y =3.礼品表兑换礼品榨汁机一个电茶壶一个书包一个积分3 000 分2 000 分1 000 分有 7 000请你求②设亮亮妈妈兑换了 x 个榨汁机和 y 个书包,由题意,得⎧3 000x +1 000y =7 000, ⎧⎪x =1, ⎨ 解得⎨ ⎩x +y =5, ⎪y =4.③设亮亮妈妈兑换 x 个榨汁机和 y 个电茶壶,由题意,得⎧3 000x +2 000y =7 000, ⎨⎩x +y =5,⎧⎪x =-3, 解得⎨不合题意,舍去. ⎪y =8.答:亮亮妈妈兑换了2个电茶壶和3个书包或1个榨汁机和4个书包.⎪⎩ 2 ≤ ,②x ≥1 ⎩第 9 章 《不等式与不等式组》【知识结构图】【重难点突破】重难点 1 一元一次不等式(组)的解法⎧⎪5x<1+4x ,①【例 1】 解不等式组⎨1-x x +4 并在数轴上表示不等式组的解集.3 【思路点拨】 分别解两个不等式,然后确定两个不等式解集的公共部分.【解答】 解不等式①,得 x <1.解不等式②,得 x ≥-1.∴不等式组的解集为-1≤x <1.把解集表示在数轴上为:(1)找“不等式解集的公共部分”时,可借助数轴或口诀.其中确定不等组解集的口诀为:“大大取大,小小取小,大小小大中间找,大大小小无处找”.(2)在数轴上表示解集时,大于向右画,小于向左画,含等号取实心点,不含等号取空心圆圈.⎧⎪x <3,1.不等式组⎨ 的解集在数轴上表示为(C)⎪。
第一章:整式的运算单项式厂整式多项式同底数幕的乘法整式的运算幕的乘方I积的乘方幕运算同底数幕的除法零指数幕负指数幕整式的加减单项式及单项式相乘单项式及多项式相乘多项式及多项式相乘整式运算平方差公式完全平方公式单项式除以单项式一、单项式整式的除法多项式除以单项式1、都是数字及字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或一1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或一1时,通常省略数字“1”。
12、单项式的次数仅及字母有关,及单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括•号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去扌舌号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
2017-2018学年度下期期末复习七年级数学试题(二)(时间120分钟,满分150分)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A .a 的平方根是±aB .a 的立方根是3aC .010⋅的平方根是0.1D .3)3(2-=-2. 点P (2,-4)到x 轴的距离是( ) A.2 B.-4 C.-2 D.43.为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是( ) A .2000名学生的体重是总体 B .2000名学生是总体 C .每个学生是个 D .150名学生是所抽取的一个样本 4.若点P (3a -9,1-a )在第三象限内,且a 为整数, 则a 的值是 ( )A 、a =0B 、a =1C 、a =2D 、a =35、如图,O 是正六边形ABCDEF 的中心,下列图形:△OCD ,△ODE ,△OEF ,△OAF ,△OAB ,其中可由△OBC 平移得到的有( )A 、1个 B 、2个 C 、3个 D 、4个6、如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,∠ADE =125°,则∠DBC 的度数为( ) A.55° B.65° C.75° D.125° 7.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2n m -的平方根为( )A .4B .2C .2D .±28.若关于x 的不等式组⎩⎨⎧<+>-ax x x 5335无解,则a 的取值范围为( )A .a <4 B .a =4 C . a ≤4 D .a ≥49、甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为⎩⎨⎧-==11y x ,乙把ax -by =7看成ax -by =1,求得一个解为⎩⎨⎧==21y x ,则a ,b 的值分别为( )A 、⎩⎨⎧==52b a B 、⎩⎨⎧==25b a C 、⎩⎨⎧==53b a D 、⎩⎨⎧==35b a10、如图,把长方形纸片沿EF 折叠,D 、C 分别落在D ’、C ’的位置,若∠EFB =65, 则∠AED 等于( )A 、50°B 、55°C 、60° D. 65°11、在平面直角坐标系中,线段AB 两端点的坐标分别为A (1,0),B (3,2).平移后,A 、B 的对应点的坐标可以是( )A .(1,-1),(-1,-3)B .(1,1),(3,3)C .(-1,3),(3,1)D .(3,2),(1,4)12.为了了解本校九年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟 仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐 次数在25~30次的频率为( ) A .0.1 B .0.2 C .0.3 D .0.4 二、填空题:本大题共6小题,每小题4分,共24分. 13. 8-的立方根是_____.计算: 2324-= . 14.如图,已知∠1=∠2,∠3=80︒,则∠4的度数为 .15 将命题“对顶角相等”改写成“如果……,那么……”的形式为16. 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=200,则∠2= 度。
专题8.14 《二元一次方程组》全章复习与巩固(专项练习)一、单选题1.(2020·珠海市文园中学七年级期中)已知21x y =⎧⎨=⎩是方程kx+y =3的一个解,那么k 的值是( )A .2B .﹣2C .1D .﹣12.(2020·河北廊坊市·八年级开学考试)现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .1902822x y x y +=⎧⎨⨯=⎩B .1902228x y y x +=⎧⎨⨯=⎩C .2190822y x x y +=⎧⎨=⎩D .21902822y x x y +=⎧⎨⨯=⎩3.(2020·山西忻州市·七年级期末)以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2020·山东东营市·七年级期末)若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( )A .351x y x y +=⎧⎨+=⎩ B .251x y x y -=⎧⎨+=⎩C .231x y x y =⎧⎨=+⎩ D .325x y y x =-⎧⎨+=⎩5.(2020·贵州安顺市·七年级期末)若方程组01ax y x by +=+=⎧⎨⎩的解是11x y =⎧⎨=-⎩,那么a 、b 的值是( ).A .10a b ==,B .112a b ==, C .10a b =-=,D .00a b ==,6.(2020·湖南株洲市·七年级期末)如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .300cm 27.(2020·广东云浮市·七年级期末)用加减消元法解二元一次方程组237,532,x y x y -=⎧⎨-=-⎩①②由①-①可得的方程为( )A .3x =5B .-3x =9C .-3x -6y =9D .3x -6y =58.(2020·山东菏泽市·七年级期末)如图,点O 在直线AB 上,OC 为射线,①1比①2的3倍少10°,设①1,①2的度数分别为x,y,那么下列求出这两个角的度数的方程是( )A .18010x y x y +=⎧⎨=-⎩B .180310x y x y +=⎧⎨=-⎩C .180+10x y x y +=⎧⎨=⎩D .3180310y x y =⎧⎨=-⎩9.(2020·浙江湖州市·七年级期中)已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-10.(2020·河南洛阳市·七年级期中)如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .280B .140C .70D .19611.(2020·苏州市吴江区同里中学七年级期末)在关于x 、y 的二元一次方程组321x y ax y +=⎧⎨-=⎩中,若232x y +=,则a 的值为( ) A .1B .-3C .3D .412.(2020·安徽淮南市·七年级期末)方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、4二、填空题13.(2019·湖北省建始金太阳学校七年级月考)二元一次方程x +y =4有______组解,有_______组正整数解. 14.(2020·湖北随州市·八年级月考)若2,-1x y =⎧⎨=⎩是方程组-3,-6mx y x ny =⎧⎨=⎩的解,则m=____,n=____.15.(2018·内蒙古兴安盟·七年级期中)若2x 2a -5b +y a -3b =0是二元一次方程,则a=______,b=______.16.(2020·唐山市第十一中学七年级月考)若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.17.(2019·湖北省建始金太阳学校七年级月考)若11x y =⎧⎨=-⎩,22x y =⎧⎨=⎩和3x y c =⎧⎨=⎩都是方程ax +by +2=0的解,则c=______.18.(2020·四川省射洪县射洪中学外国语实验学校七年级期中)关于x 、y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.19.(2020·长沙市中雅培粹学校七年级月考)对于任意有理数a 、b 、C 、d ,我们规定a b c d=ad ﹣bc .已知x ,y 同时满足14x y - =5,53yx- =1,则x=_____,y=_____. 20.(2018·山西九年级专题练习)已知32x y =⎧⎨=-⎩ 是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a -b)的值为_________21.(2020·内蒙古通辽市·七年级期末)已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为___.22.(2020·内蒙古通辽市·七年级期末)某班有30名同学去看演出,购买甲、乙两种票共用去690元,其中甲种票每张25元,乙种票每张20元,设购买了甲种票x 张,乙种票y 张,由此可列出方程组________.23.(2019·山西九年级专题练习)对于实数a ,b ,定义运算“①”:a①b=a b ab a b ≥⎪⎩,<,例如4①3,因为4>3.所以.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x①y=_____________.24.(2020·湖北襄阳市·七年级期末)若()235230x y x y ,-++-+=则x y +的值为______.25.(2017·河北九年级其他模拟)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以用方程组形式表述为__________.三、解答题26.(2019·全国)(1)解方程组:{3x +4y =19x −y =4(2)解方程组:{3(x +y)−4(x −y)=4x+y 2+x−y 6=1 . 27.(2020·内蒙古兴安盟·七年级期末)在等式y =ax 2+bx +c 中,当x =﹣1时,y =3;当x =0时,y =1,当x =1时,y =1,求这个等式中a 、b 、c 的值.28.(2019·全国七年级单元测试)杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米. (1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?29.(2018·辽宁大连市·七年级期末)某工厂接受了20天内生产1200台GH 型电子产品的总任务.已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H 型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好组成GH 型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?(2)工厂补充10名新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G 型装置,则补充新工人后每天能配套生产多少产品?(3)为了在规定期限内完成总任务,请问至少需要补充多少名(2)中的新工人才能在规定期内完成总任务?参考答案1.C 【分析】将方程的解代入方程得到关于k 的一元一次方程,于是可求得k 的值. 【详解】解:将21x y =⎧⎨=⎩代入方程3kx y +=得:213k +=,解得1k =. 故选C . 【点拨】本题主要考查的是二元一次方程的解,将方程的解代入方程得到关于k 的方程是解题的关键. 2.A 【分析】此题中的等量关系有:①共有190张铁皮; ①做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案. 【详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y . 列方程组为1902822x y x y+=⎧⎨⨯=⎩.故选:A . 【点拨】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键. 3.A 【分析】先求出方程组的解,然后即可判断点的位置. 【详解】 解:解方程组21x y x y +=⎧⎨-=⎩,得 1.50.5x y =⎧⎨=⎩,①点(1.5,0.5)在第一象限. 故选:A . 【点拨】本题考查了二元一次方程组的解法和坐标系中点的坐标特点,属于基本题型,熟练掌握上述基础知识是解题关键.4.B【分析】运用代入排除法进行选择或分别解每一个方程组求解.【详解】A.x=2,y=﹣1不是方程x+3y=5的解,故该选项错误;B.x=2,y=﹣1适合方程组中的每一个方程,故该选项正确.C.x=2,y=﹣1不是方程组中每一个方程的解,故该选项错误;D.x=2,y=﹣1不是方程组中每一个方程的解,故该选项错误.故选B.【点拨】本题考查了方程组的解的定义,即适合方程组的每一个方程的解是方程组的解.5.A【详解】由题意得,解得,故选A.6.A【解析】设一个小长方形的长为x cm,宽为y cm,根据等量关系:小长方形的长+小长方形的宽=50cm,小长方形的长+小长方形宽的4倍=小长方形长的2倍,可列方程组5042x yx y x+=⎧⎨+=⎩,解得4010xy=⎧⎨=⎩,则一个小长方形的面积=40cm×10cm=400cm2.故选A.7.B【分析】利用加减消元法进行计算即可.【详解】用加减消元法解二元一次方程组237532x yx y-=⎧⎨-=-⎩①②,由①-①可得的方程为:-3x=9.【点拨】本题考点:解二元一次方程组-加减消元法. 两个二元一次方程中同一未知数的系数相同或互为相反数时,将这两个方程分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称消元法. 8.B 【分析】设①1,①2的度数分别为x ,y ,根据题目中的等量关系:①①1和①2组成了平角,则和是180;①①1比①2的3倍少10度.列出方程组即可. 【详解】设①1,①2的度数分别为x ,y ,根据①1和①2组成了平角,得方程x+y=180;根据①1比①2的3倍少10°,得方程x=3y -10.可列方程组为180310x y x y +=⎧⎨=-⎩.故选B . 【点拨】本题考查了二元一次方程组的应用,题关键是能够结合图形进一步发现两个角之间的一种等量关系,即两个角组成了一个平角,和是180度. 9.C 【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点拨】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核. 10.C 【解析】解:设小长方形的长、宽分别为x 、y , 依题意得:,解得:,则矩形ABCD 的面积为7×2×5=70.【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.11.C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:3{21x y ax y+=-=①②,①﹣①,得:2x+3y=a﹣1.①2x+3y=2,①a﹣1=2,解得:a=3.故选C.点拨:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.12.C【分析】把x=2代入x+y=3求出y,再将x,y代入2x+y即可求解.【详解】根据{x2y==,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C.【点拨】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y值为解题关键.13.无数; 3.【分析】二元一次方程的解有无数组,将x看做已知数求出y,确定出方程的正整数解即可.【详解】解:方程x+y=4的解有无数组,方程变形得:y=4-x,①当x=1时,y=3;当x=2时,y=2; 当x=3时,y=1.则方程的正整数解有3组,【点拨】此题考查了解二元一次方程的解,解题的关键是将x看做已知数求出y.14.1 4【分析】首先将x,y的值代入方程组,然后解关于m,n的二元一次方程组即可求解.【详解】将2,-1xy=⎧⎨=⎩代入方程组-3,-6mx yx ny=⎧⎨=⎩得213 2+6 mn+=⎧⎨=⎩解得m=1,n=4.【点拨】此题主要考查二元一次方程组的解,解题的关键是熟知方程组解得含义. 15.-2 -1【解析】根据二元一次方程的定义可得x,y的指数都是1,由二元一次方程定义得:2512 311 a b aa b b-==-⎧⎧⎨⎨-==-⎩⎩解得,故答案为:a=-2,b=-1.16.y=3x+5(x+4).【分析】载重3吨的卡车有x辆,则共运货3x吨, 载重5吨的卡车比它多4辆,则共运货5(x+4)吨,所以两种车的总运货量即为3x+5(x+4).【详解】解:依题意得: y=3x+5(x+4).故答案为y=3x+5(x+4).【点拨】本题考查了二元一次方程的应用,找到等量关系是解题的关键.17.5.【分析】将已知前两对解代入方程计算求出a与b的值,确定出方程,再将第三对解代入计算即可求出c的值.【详解】解:将11x y =⎧⎨=-⎩与22x y =⎧⎨=⎩代入ax+by+2=0得:2222a b a b --⎧⎨+-⎩==,解得:3212a b ⎧=-⎪⎪⎨⎪=⎪⎩,①方程为-32x+12y+2=0, 将x=3,y=c 代入方程得:-92+12c+2=0,即c=5. 故答案为5. 【点拨】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 18.2m <- 【分析】先解关于关于x ,y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可. 【详解】31 3,x y m x y +=+⎧⎨+=⎩①② 由①+①得4x +2y =4+m ,422mx y ++=, ①由21x y +<,得41,2m+<, 解得,2m <-. 故答案为2m <-. 【点拨】考查解一元一次不等式, 解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键. 19.2 ﹣3 【分析】先认真观察式子的特点,根据特点得出方程组,求出方程组的解即可.【详解】由题意得:45531x yx y+=⎧⎨+=⎩①②,①×3-①,得7x=14,x=2,①4×2+y=5,y=-3.故答案为2,-3.【点拨】本题考查了解二元一次方程组,解题的关键是熟练的掌握二元一次方程组的运算法则. 20.−8【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【详解】解:把32xy=⎧⎨=-⎩代入方程组得:323327a bb a-=⎧⎨-=-⎩①②,①×3+①×2得:5a=−5,即a=−1,把a=−1代入①得:b=−3,则(a+b)(a-b)=a2−b2=1−9=−8,故答案为−8.【点拨】此题考查了二元一次方程组的解和解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.21.1【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x-y或直接让两个方程相减求解.【详解】方法一:解方程组2524x yx y+=⎧⎨+=⎩,解得:21 xy=⎧⎨=⎩,方法二:两个方程相减,得.x-y=1,故答案为1.【点拨】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.22.30 2520690x yx y+=⎧⎨+=⎩【分析】设购买了甲种票x张,乙种票y张,根据等量关系“甲种票张数+乙种票张数=学生人数”和“甲种票花费的钱数+乙种票花费的钱数=购票共花去的费用”,列出二元一次方程组即可求解.【详解】设购买了甲种票x张,乙种票y张,根据等量关系“甲种票张数+乙种票张数=学生人数”和“甲种票花费的钱数+乙种票花费的钱数=购票共花去的费用”,列出二元一次方程组得30 2520690x yx y+=⎧⎨+=⎩.故答案是:30 2520690x yx y+=⎧⎨+=⎩.【点拨】考查了二元一次方程组的应用,解题的关键是:找出关于x、y的二元一次方程组.解决该种题型时,把握住不变的量,再根据数量关系列出方程(或方程组).23.60【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.详解:由题意可知:48229x yx y-=⎧⎨+=⎩,解得:512 xy=⎧⎨=⎩.①x<y,①原式=5×12=60.故答案为60.点拨:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出x+y 的值.【详解】①(3x -y+5)2+|2x -y+3|=0,①3x -y+5=0,2x -y+3=0,①x= -2,y= -1.①x+y= -3.【点拨】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.25.{2x +y =114x +3y =27【解析】【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【详解】解:第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为{2x +y =114x +3y =27, 故答案为{2x +y =114x +3y =27. 【点拨】本题考查了列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.26.(1){x =5y =1 ;(2){x =1715y =1115 . 【解析】【分析】(1)利用加减消元法即可求出解;(2)方程组整理后,利用加减消元法即可求出解;【详解】解:(1){3x +4y =19①x −y =4②, ①+①×4得:7x =35,即x =5,把x =5代入①得:y =1,则方程组的解为{x =5y =1; (2)方程组整理得:{−x +7y =4①2x +y =3②, ①×2+①得:15y =11,即y =1115,把y =1115代入①得:x =1715,则不等式组的解集为{x =1715y =1115. 【点拨】本题考查了解二元一次方程组,代入消元法与加减消元法,根据题目选用适当的方法是解题的关键.27.a =1,b =﹣1,c =1.【分析】根据题意列出三元一次方程组,解方程组即可.【详解】 由题意得,311a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得,a =1,b =﹣1,c =1.【点拨】本题考查的是三元一次方程组的解法,解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.①然后解这个二元一次方程组,求出这两个未知数的值.①再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.①解这个一元一次方程,求出第三个未知数的值,得到方程组的解.28.(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.【解析】【分析】(1)设甲、乙班组平均每天掘进x 米,y 米,根据“甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米,”列出方程组解答即可;(2)设按原来的施工进度和改进施工技术后的进度分别还需a 天,b 填完成任务,根据题意列式计算得出答案,再进一步相减即可.【详解】解:(1)设甲、乙班组平均每天掘进x 米,y 米,由题意,得()2.4,5110,x y x y -=⎧⎨+=⎩解得12.2,9.8.x y =⎧⎨=⎩ 答:甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a 天,b 天完成任务,则a =(48 180-110)÷(12.2+9.8)=2 185(天),b =(48 180-110)÷(12.2+1.7+9.8+1.3)=1 922.8(天),因此a -b =2 185-1 922.8=262.2(天).答:少用262.2天完成任务.【点拨】考查二元一次方程组的实际运用,找出题目蕴含的数量关系,理清工程问题的计算方法是解决问题的关键. 29.(1)48套;(2)52套;(3)30名.【解析】【分析】(1)设安排x 名工人生产G 型装置,则安排(80−x )名工人生产H 型装置,根据生产的装置总数=每人每天生产的数量×人数结合每台GH 型产品由4个G 型装置和3个H 型装置配套组成,即可得出关于x 的一元一次方程,解之可得出x 的值,再将其代入64x 中即可求出结论; (2)设安排y 名工人生产H 型装置,则安排(80−y )名工人及10名新工人生产G 型装置,同(1)可得出关于y 的一元一次方程,解之可得出x 的值,再将其代入33y 中即可求出结论; (3)设至少需要补充m 名(2)中的新工人才能在规定期内完成总任务,安排n 名工人生产H 型装置,则安排(80−n )名工人及m 名新工人生产G 型装置,由每天需要生产1200÷20套设备,可得出关于m ,n 的二元一次方程组,解之即可得出结论.【详解】解:(1)设安排x 名工人生产G 型装置,则安排(80﹣x)名工人生产H 型装置, 根据题意得:()380643x x -=, 解得:x =32, ①66324844x ⨯==. 答:按照这样的生产方式,工厂每天能配套组成48套GH 型电子产品.(2)设安排y 名工人生产H 型装置,则安排(80﹣y)名工人及10名新工人生产G 型装置,根据题意得:()680410343y y-+⨯=,解得:y=52,①33y=y=52.答:补充新工人后每天能配套生产52套产品.(3)设至少需要补充m名(2)中的新工人才能在规定期内完成总任务,安排n名工人生产H型装置,则安排(80﹣n)名工人及m名新工人生产G型装置,根据题意得:()68041200420 31200320n mn⎧-+=⎪⎪⎨⎪=⎪⎩,解得:3060mn=⎧⎨=⎩.答:至少需要补充30名(2)中的新工人才能在规定期内完成总任务.【点拨】本题考查了一元一次方程的应用以及二元一次方程组的应用,解题的关键是:(1)(2)找准等量关系,正确列出一元一次方程;(3)找准等量关系,正确列出二元一次方程组.。
七年级下册复习第二学期期末考分知识点汇编【第一章 相交线与平行线】一、相交线与平行线的基本概念、命题1、(2011年白云区期末考试题)8.下列语句中,不正确的是( ) A.如果直线a 、b 、c 满足a ∥b ,b ∥c 那么a ∥c B.两直线平行,同旁内角互补 C.相等的两个角是对顶角D.如果(,)A a b 在x 轴上,那么(,)B b a 在y 轴上2、(2011年白云区期末考试题)11.如图,直线AB 、CD 相交于点O ,70EOC ∠=︒,OA 平分EOC ∠,则BOD ∠= *.第2题 第3题 第5题3、(2011年白云区期末考试题)18.(8分)如图,点P 是ABC ∠内一点, //PE BC 交AB 于E , (1)画图:①过点P 画BC 的垂线,D 是垂足, ②过点P 画BA 的平行线交BC 于点F . (2)EPF ∠等于B ∠吗?为什么?4、(广东省执信中学2011-2012期末)5、下列说法中正确的是( )A 、有且只有一条直线垂直于已知直线B 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
C 、互相垂直的两条线段一定相交D 、直线l 外一点A 与直线l 上各点连接而成的所有线段中,最短线段的长是3cm ,则点A 到直线l 的距离是3cm.5、(广东省执信中学2011-2012期末)11、如图,BC ⊥AC ,CB=8cm ,AC=6cm ,AB=10cm ,那么点B 到AC 的距离是 ,点A 到BC 的距离是 ,A 、B 两点间的距离是 。
C第18题6、(广州市第十三中学2012年期末)9、如图,直线AB 与直线CD 相交于点O ,OE ⊥AB ,垂足为O , ∠EOD=1/2∠AOC 则∠BOC= ( )A. 1500B. 1400 .C. 1300丁D. 1200 (2011天河区期末)12.把命题“对顶角相等”写成“如果……,那么……”的形式为 .二、 平行线的性质1、(2011年白云区期末考试题)5.下列图形中,由A B C D ∥,能得到12∠=∠的是(* )2、(广东省执信中学2011-2012期末)3、如图1所示,AE//BD ,∠1=120°,∠2=40°,则∠C 的度数是( )A 、10°B 、20°C 、30°D 、403、(广州市第十三中学2012年期末)15.如图,已知AB 、CD 、EF 互相平行,且∠ABE=70º, ∠ECD = 150º ,则∠BEC= 。
4、(2011天河区期末)6.如图,∠1与∠2是同位角,若∠1=53°,则∠2的大小是( ). A .37° B .53° C .37°或53°D .不能确定三、 平行线的判定1、(2011年白云区期末考试题)4.如图,下列条件中,可以判定BC AD //的是(* ) A .21∠=∠ B .43∠=∠C .D B ∠=∠ D . 180=∠+∠BCD B4321DBCA2、(中大附中2011-2012年期末)12.如图,AB ∥CD ,∠BAE = 120º,∠DCE = 30º,则∠AEC =______度。
四、 平行线的综合1、(广东省执信中学2011-2012期末)23、已知,如图,∠B=∠C=90 º,M 是BC 的中点,DM 平分∠ADC 。
(1)若连接AM ,则AM 是否平分∠BAD ?请你证明你的结论。
(2)线段DM 与AM 有怎样的位置关系?请说明理由。
A CB D1 2A CB D12AB12 ACDC BD C A D1 2DCABM2、(2011天河区期末)20.(本题满分6分)(2011天河区期末)如图所示,已知AB ∥CD ,BC ∥DE ,若∠B =55°, 求∠D 的度数.3、(2011天河区期末)22.(本题满分8分)(2011天河区期末)直线AB 、CD 被直线EF 所截,EF 分别交AB CD 、于M ,N ,50EMB ∠=, MG 平分BMF MG CD G ∠,交于.(1)如图1,若AB CD ∥,求1∠的度数.(2)如图2,若︒=∠140MNC ,求1∠的度数.4、(中大附中2011-2012年期末)21、(10分) 如图,在四边形ABCD 中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE ∥DFABCDAM EBDGN FC 150AM EBDGNFC 150FAB C D E 1 2 34【第三章平面直角坐标系】1、(2011年白云区期末考试题)3. 通过平移,可将图1中的福娃“欢欢”移动到图(*)(图1) A B C D2、(2011年白云区期末考试题)6.若点(,)A x y在第二象限,则点(,)B x y--在(*)A.第一象限 B.第二象限 C.第三象限 D.第四象限3、(2011年白云区期末考试题)已知矩形ABCD在平面直角坐标系中的位置如图所示,将矩形ABCD沿x轴向右平移到使点A与坐标原点重合后,此时点C的坐标是* .4、(2011年白云区期末考试题)19.(9分)已知点A(-2,0)B(4,0)C(-2,-3)(1)(4分)在直角坐标系中描出A、B、C三点,并求出A、B两点之间的距离.(2)(2分)求点C到x轴的距离.(3)(3分)求△ABC的面积.4、(广东省执信中学2011-2012期末)7、在平面直角坐标系中,一只电子青蛙每次只能向上或向下或向左或向右跳动一个单位,现已知这只电子青蛙位于点(2,—3)处,则经过两次跳动后,它不可能跳到的位置是()A、(3,—2)B、(4,—3)C、(4,—2)D、(1,—2)5、(广东省执信中学2011-2012期末)10、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①)1,2()1,2(),,(),(-=-=fnmnmf如②)1,2()1,2(),,(),(--=--=gnmnmg如按照以上变换有:)4,3()4,3()]4,3([-=--=fgf,那么)]2,3([-fg等于()A、(3,2)B、(3,-2)C、(-3,2)D、(-3,-2)YXDCOB(-6,-2)A第3题6、(广东省执信中学2011-2012期末)15、已知点),(b a -在第二象限,则点),(2b a -在第 象限。
7、(广州市第十三中学2012年期末)1、在平面直角坐标系中,点P (2,3)在 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限8、(广州市第十三中学2012年期末) 4、将题图所示的图案通过平移后可以得到的图案是 ( )9、(广州市第十三中学2012期末)13.线段AB 两端点的坐标分别为A (2,4), B (5,2),若将线段AB 平移,使得点B 的对应点为点C (3, -1).则平移后点A 的对应点的坐标为 。
10、(广州市第十三中学2012期末)20 、(本题10分)已知△ABC 在平面直角坐标系中的位置如图所示. (图中每个小方格边长均为1个单位长度)。
(1)写出△ABC 各顶点的坐标, (2)求出△ABC 的面积,(3)将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1,在图中画出平移后的△A 1B 1C 1;并写出△A 1B 1C 1各顶点的坐标。
11、(2011天河区期末)1.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( ).12、(2011天河区期末)11.将点P (1-,3)向左平移2个单位,再向上平移1个单位得到P ',则点P '的坐标是______.(1)13、(2011天河区期末)21.(本题满分6分)已知四边形ABCD 各顶点的坐标分别是A (0,0),B (3,6),C (6,8),D (8,0)(1)请建立适当的平面直角坐标系,并 描出点A 、点B 、点C 、点D .(2)求四边形ABCD 的面积.14、(中大附中2011-2012年期末)6. 已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a=( ) A.1 B.2 C .3 D .O15、(中大附中2011-2012年期末)13. 已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为______。
16、(中大附中2011-2012年期末)15. 已知直线a ∥b,点M 到直线a 的距离是5c m,到直线b 的距离是3cm,那么直线a 和直线b 之间的距离为____ ___.17、(中大附中2011-2012年期末)19、(12分)如图,所示的平面直角坐标系中,已知A (3,1),B (1,-3),C (5,-1)(1)画出△ABC 。
(2)将△ABC 向左平移3个单位,再向上平移2个单位,得到△A 1B 1C 1。
画出△A 1B 1C 1,并写出下列点的坐标:A 1 ,B 1 ;C 1 。
(3)求ABC S 。
【第四章 二元一次方程(组)及其应用】一、定义1、(2011年白云区期末考试题)1.下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩ C .44x y x y +=⎧⎨-=⎩ D .35251025x y x y +=⎧⎨+=⎩二、解方程1、(2011年白云区期末考试题)17. (8分)解下列方程组:(1) 327413x y y x +=⎧⎨=-⎩ (4分) (2) 2342410x y x y +=-⎧⎨-=⎩(4分)2、(广东省执信中学2011-2012期末)8、已知方程⎩⎨⎧=+=+132y nx y x 与⎩⎨⎧=+=+122y x my x 同解,则n m +等于( )A 、3B 、—3C 、1D 、—13、(广州市第十三中学2012年期末)5、已知二元一次方程3x-y=1,当x=2时, y 等于 ( )A. 5B. -3C.一7D. 74、(2011天河区期末)3.二元一次方程组2,0.x y x y +=⎧⎨-=⎩的解是 ( ).A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩5、(2011天河区期末)10.小亮解方程组 2212.x y x y +=⎧⎨-=⎩●的解为 5x y =⎧⎨=⎩,★,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( ). A .4和-6 B .-6和4 C .-2和8 D .8和-26、(中大附中2011-2012年期末)25.(14分)(1)若方程组①9.30531332=+=-b a b a 的解为2.13.8==b a ,求方程组②9.30)1(5)2(313)1(3)2(2=-++=--+y x y x 的解时,令方程组②中的x+2=a,y-1=b,则方程组②就转化为方程组①,所以可得x+2=8.3,y-1=1.2, 故方程组②的解为 。