九年级数学下册4_2_1概率的概念习题新版湘教版
- 格式:doc
- 大小:131.00 KB
- 文档页数:4
九年级数学概率初步练习题九年级的数学概率的知识点即将学完,同学们要认真做相关的练习题。
下面是店铺为大家带来的关于九年级数学概率初步的练习题,希望会给大家带来帮助。
九年级数学概率初步练习题目一、选择题(每小题3分,共30分)1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出3个球.下列事件是必然事件的是( )A.摸出的3个球中至少有1个球是黑球B.摸出的3个球中至少有1个球是白球C.摸出的3个球中至少有2个球是黑球D.摸出的3个球中至少有2个球是白球2.随机掷两枚硬币,落地后全部正面朝上的概率是( )3.如图所示,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为( )4.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( )A.1B.C.D.05.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是,摸到红球的概率是,则( )A. B. C.P1 =0,P2= D. P1=P2=6.将一颗骰子(正方体)连掷两次,得到的点数都是4的概率是( )7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )8.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A.甲B.乙C.丙D.不能确定9.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.A.45B.48C.50D.5510.做重复试验:抛掷同一枚啤酒瓶盖次.经过统计得“凸面向上”的频率约为,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )二、填空题(每小题3分,共24分)11.王刚的身高将来会长到4米,这个事件发生的概率为_______.12.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏___________.(填“公平”或“不公平”)13.小芳掷一枚硬币次,有7次正面向上,当她掷第次时,正面向上的概率为______.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.15.如图所示,A是正方体小木块(质地均匀)的一个顶点,将木块随机投掷在水平桌面上,则稳定后A与桌面接触的概率是 .16.下表为某乡村100名居民的年龄分布情况(每组含最小值,不含最大值):年龄0~10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90人数 8 10 12 12 14 19 13 7 5如果老人以60岁为标准,那么该村老人所占的比例约是________%.x17 .如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_______.18.一个口袋中有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计口袋中的黄球约有_ __个.三、解答题(共46分)19.(5分)下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是 ;(3) (其中 , 都是实数);(4)水往低处流; (5)三个人性别各不相同;(6)一元二次方程无实数解;(7)经过有信号灯的十字路口,遇见红灯.20.(5分)如图所示,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是 (只需要填一个三角形);(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.21.(6分)如图所示,有一个转盘被分成4个相同的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.22.(6分)有形状、大小和质地都相同的四张卡片,正面分别写有和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A,B,C,D表示).(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜;若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利?为什么?23.(6分 )在一个不透明的盒子里,装有三个分别写有数字的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.24.(6分)“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用画树状图法表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.25.(6分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数 7 9 6 8 20 10(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?26.(6分)小明和小刚做摸纸牌游戏.如图所示,有两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.九年级数学概率初步练习题答案1.A 解析:一定会发生的事件为必然事件.从4个黑球和2个白球中摸出3个球,一定至少有1个球是黑球,故A为必然事件.2.D 解析:随机掷两枚硬币,有四种可能:(正,正),(正,反),(反,正),(反,反),落地后全部正面朝上的情况只有(正,正),所以落地后全部正面朝上的概率是 .3. B 解析:随机闭合开关K1,K2,K3中的两个,共有三种可能:闭合开关K1,K2;闭合开关K1,K3;闭合开关K2,K3.而能让两盏灯泡同时发光的只有闭合开关K1,K3这一种情况,故其概率为 .4.C 解析:因为是随机选取的,故选取桂花、菊花、杜鹃花的可能性是相等的.5.B 解析:因为袋中只有红球,故摸到白球是不可能事件,摸到红球是必然事件.6.D 解析:连掷两次骰子出现的点数情况,共36种:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5 ),(5,6),(6,1),(6,2) ,(6,3),(6,4),(6,5),(6,6).而点数都是4的只有(4,4)一种.7.B 解析:把三名男生分别记为,,,两名女生分别记为,,产生的所有结果为,共10个;选出的恰为一男一女的结果有:,,共6个.所以选出的恰为一男一女的概率是8.C 解析:设总共赛了局,则有 ,说明甲、乙、丙三人共赛了5局.而丙当了3次裁判,说明丙赛了两局,则丙和甲,丙和乙各赛了一局,那么甲和乙赛了3局.甲和乙同赛不可能出现在任何相邻的两局中,则甲、乙两人比赛在第一、三、五局中,第三局丙当裁判,则第二局中丙输了.9.A 解析:本题考查了简单随机事件的概率计算,设口袋中有x个红球,由题意得,P(摸到白球)= = ,解得x=45.10.D 解析:在大量重复试验下,随机事件发生的频率可以作为概率的估计值,因此抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为 .11.0 解析:“王刚的身高将来会长到4米”这个事件是不可能事件,所以这个事件发生的概率是0.12.不公平解析:甲获胜的概率是 ,乙获胜的概率是 ,两个概率值不相等,故这个游戏不公平.13. 解析:掷一枚硬币正面向上的概率为,概率是个固定值,不随试验次数的变化而变化.14. 解析:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是 .15. 解析:将木块随机投掷在水平桌面上,正方体的六个面都可能与桌面接触,因为A是正方体小木块三个面的交点,所以当这三个面中的任一面与桌面接触时,A都与桌面接触.所以P(A与桌面接触)= = .16.25 解析:∵ 60岁及以上的老人共有,∴ 该村老人所占的比例约是 .17. 解析:由图可知阴影部分的面积是大圆面积的一半,所以豆子落在阴影部分的概率是 .18.15 解析:∵ 口袋中有25个球,试验200次,其中有120次摸到黄球,∴ 摸到黄球的频率为,∴ 口袋中的黄球约有 .19.解:(1)(4)(6)是必然事件,(2)(3)(5)是不可能事件,(7)是随机事件.20.分析:本题综合考查了三角形的面积和概率.(1)根据“同(等)底同(等)高的三角形面积相等”解答.(2)画树状图求概率.解:(1)△DFG或△DHF;(2)画树状图如图所示:由树状图可知共有6种等可能结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,所以所画三角形与△ABC面积相等的概率P = = .答:所画三角形与△ABC面积相等的概率为 .点拨:树状图法可以不重复不遗漏地列出所有等可能的结果,适合两步或两步以上完成的事件.注意:P(E)= .21.解:转一次转盘,可能结果有4种:红、红、绿、黄,并且各种结果发生的可能性相等.(1) (指针指向绿色) ;(2) (指针指向红色或黄色) ;(3) (指针不指向红色) .22.解:(1)列表如下:第二次第一次 A B CDA (A,B) (A,C) (A,D)B (B,A ) (B,C) (B,D)C (C,A) (C,B) (C,D)D (D,A) (D,B) (D,C)所有情况有12种: .(2)游戏不公平.这个规则对小强有利.理由如下:∵ , = , ,∴ 这个规则对小强有利.23.解:树状图如下:(1) ;(2) .24.解:(1)画树状图如下:(2)九年级学生代表到社区进行义务文艺演出的概率为 .25.解:(1)“3点朝上”的频率是;“5点朝上”的频率是 .(2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.26.分析:本题考查了概率的计算与实际应用,利用列表法或树状图法列出两张牌的牌面数字之积的所有等可能结果,利用概率计算公式可求两张牌的牌面数字之积为奇数的概率.解:第一张牌面上的数字积第二张牌面上的数字232 4 63 6 9∴ P(积为奇数)= ,P(积为偶数)= .∴ 小明得分:×2= (分),小刚得分:×1= (分).∵ ≠ ,∴ 这个游戏对双方不公平.点拨:判断游戏的公平性,关键是计算每个事件的概率,如果概率相等就公平,否则就不公平.。
湘教版九年级下册数学第4章概率含答案一、单选题(共15题,共计45分)1、现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.2、袋子里有3个红球5个黄球,任意摸出1个,要使摸出红球的可能性大于摸出黄球的可能性,下面选项中可行的办法是()A.增加1个红球B.减少1个黄球C.增加3个红球D.减少2个黄球3、一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=8B.m+n=4C.m=n=4D.m=3,n=54、甲乙两人轮流在黑板上写下不超过的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字()时有必胜的策略.A.10B.9C.8D.65、下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环 C.明天会下雨 D.度量三角形的内角和,结果是360°6、下列事件是必然事件的是( )A.明年国庆节宁波的天气是晴天B.小华上学的路上遇到同班同学C.任意掷一枚均匀的硬币,正面朝上D.在学校操场上抛出的篮球会下落7、在等腰三角形、等腰梯形、平行四边形、矩形中任选两个不同的图形,那么下列事件中为不可能事件的是()A.这两个图形都是轴对称图形B.这两个图形都不是轴对称图形C.这两个图形都是中心对称图形D.这两个图形都不是中心对称图形8、同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=﹣x2+3x上的概率为()A. B. C. D.9、从1,2,3,4这四个数字中任意取出两个不同的数字,取出的两个数字的乘积是偶数的概率为()A. B. C. D.10、如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A. B. C. D.11、小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现2个正面向上一个反面向上,则小亮赢;若出现一个正面向上2个反面向上,则小文赢.下面说法正确的是()A.小强赢的概率最小B.小文赢的概率最小C.小亮赢的概率最小 D.三人赢的概率都相等12、气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水13、下列成语所描述的事件是随机事件的是( )A.水中捞月B.旭日东升C.不期而遇D.海枯石烂14、在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为()A. B. C. D.15、在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为( )A. B. C. D.二、填空题(共10题,共计30分)16、为了对1000件某品牌衬衣进行抽检,统计合格衬衣的件数,在相同条件下,经过大量的重复抽检,发现一件合格衬衣的频率稳定在常数0.98附近,由此可估计这1000件中不合格的衬衣约为________件.17、为估计连两次掷骰子第一次比第二次的数字大的概率,于是利用计时器进行模拟试验,产生1~________ 随机整数,每产生________ 个随机整数为一个实验.18、布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.19、一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,如果从中任意摸出一个球,那么摸到红球的可能性大小是________.20、一个不透明的袋子中有3个分别标有数字3,1,﹣2的球,这些球除所标的数字不同外其它都相同.若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是________21、瑞安某服装厂对一批服装质量抽检情况如下:抽检件数(件)10 100 200 500 1000正品件数(件)10 97 194 475 950根据表格中的数据,从这批服装中任选一件是正品的概率约为________.22、“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是________.23、在一个布袋中,装有除颜色外其他完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个球颜色相同的概率是________.24、“小红所在班级中有位同学的身高是4米”是________事件.25、袋中装有4个完全相同的球,分别标有数字1、2、3、4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球.(Ⅰ)取出的3个球恰好是2个红球和1个白球的概率是多少?(Ⅱ)取出的3个球全是白球的概率是多少?28、甲口袋中装有3个相同的小球,它们分别写有数值﹣1,1,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A 的坐标为(x,y),请用树形图或列表法,求点A落在第一象限的概率.29、在一个不透明的盒子里,装有三个分别写有数字6,,7的小球,它们的形状大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图(或列表)的方法求出两次取出小球上的数字之和为偶数的概率.30、现有三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O型的概率(要求:用列表或画树状图方法解答)参考答案一、单选题(共15题,共计45分)1、B2、C3、A4、D5、D6、D7、B8、A9、C10、A11、A12、C13、C14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
湘教版九年级下册数学第4章概率含答案一、单选题(共15题,共计45分)1、下列事件中,属于随机事件的是()A.方程在实数范围内有解B.在平面上画一个矩形,这个矩形一定是轴对称图形 C.在一副扑g牌中抽取一张牌,抽出的牌是黑桃A D.十边形有15条对角线2、现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是( )A. B. C. D.3、下列说法正确的是()A.为了解一批灯泡的使用寿命,应采用普查的方式B.抛掷两枚质量均匀的硬币,出现两面都是正面的概率为C.某种彩票中奖的概率是,买1000张这种彩票一定会中奖1000D.在一定条件下大量重复试验时,某个事件发生的频率稳定在0.6附近摆动,估计该事件发生的概率为0.64、现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A. B. C. D.5、在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外完全相同,将球摇匀,从中任取l球.①恰好取出白球;②恰好取出黄球;③恰好取出红球.根据你的判断,将这些事件按发生的可能性从小到大的顺序排列是()A.①③②B.②①③C.①②③D.③②①6、下列事件属于必然事件的是()A.打开电视,正在播出系列专题片“航拍中国”B.若原命题成立,则它的逆命题一定成立C.一组数据的方差越小,则这组数据的波动越小 D.在数轴上任取一点,则该点表示的数一定是有理数7、一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是()A. B. C. D.18、掷一枚质地均匀的硬币100次,下列说法正确的是()A.可能50次正面朝上B.掷2次必有1次正面朝上C.必有50次正面朝上D.不可能100次正面朝上9、下列事件为必然事件的是( )A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球10、小华把如图所示的4×4的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是()A. B. C. D.11、在“抛一枚均匀硬币”的试验中,如果现在没有硬币,则下面4个试验中不能代替这一试验的是().A.在一个暗箱里放上“大王”和“小王”两张扑g牌,随意从中摸出一张 B.在布袋里放上两个除了颜色外形状大小重量完全一样的乒乓球,随意从中摸出一个 C.抛掷一个瓶盖 D.任意转动一个黑、白各占一半的圆形转盘12、从编号为1到10的10张卡片中任取1张,所得编号是3的倍数的概率为()A. B. C. D.13、有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的硬币,落地后正面朝上.下列说法正确的是()A.事件A,B都是必然事件B.事件A,B都是随机事件C.事件A必然事件,事件B是随机事件D.事件A随机事件,事件B是必然事件14、如图所示转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的机会与停在偶数号扇形的机会相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有()A.1个B.2个C.3个D.4个15、在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.6个B.15个C.13个D.12个二、填空题(共10题,共计30分)16、已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是________.17、一个不透明布袋里共有5个球(只有颜色不同),其中3个是黑球,2个是白球,从中随机摸出一个球,记下颜色后放回、搅匀,再随机摸出一个球,则两次摸出的球是一黑一白的概率是________.18、某林业部门要考察某种幼树在一定条件下的移植成活率,在同样的条件下对这种幼树进行大量移植,并统计成活情况,记录如下:移植总数(n)50 200 1000 5000 10000成活(m)46 171 912 4480 9020成活的频率0.920 0.855 0.912 0.896 0.902()由此可以估计幼树移植成活的概率为________(结果保留小数点后一位)19、为了弘扬中华传统文化,营造书香校园文化氛围,12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是________20、在一个透明的布袋中,红色、黑色、白色的玻璃球共有80个,它们除颜色外其他完全相同,小李通过多次摸球试验后,发现其中摸到红色球、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是________ 个.21、一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有________个.22、小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是________.23、小玲在一次班会中参加知识抢答活动,现有语文题道,数学题道,综合题道,她从中随机抽取道,抽中数学题的概率是________.24、袋中有5个黑球,3个白球和2个红球,每次摸一个球,摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为________.25、有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,不放回,再抽出一张卡片,以第一次抽取的数字为十位数,第二次抽取的数字为个位数,则组成的两位数是6的倍数的概率是________.三、解答题(共5题,共计25分)26、在四编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中机抽取一张.我们知道,满足的三个正整数a,b,c成为勾股数,请用“列表法”或“树状图法”求抽到的两张卡片上的数都是勾股数的概率(卡片用A,B,C,D表示).27、一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.28、在一个口袋中装有4个完成相同的小球,把它们分别标号1、2、3、4,小明从中随机地摸出一个球.(1)直接写出小明摸出的球标号为4的概率;(2)若小明摸到的球不放回,记小明摸出球的标号为x,然后由小强再随机摸出一个球记为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.请问他们制定的游戏规则公平吗?请用树状图或列表法说明理由.29、如图是一个可以自由转动的转盘,小明跟小红分别转动一次转盘,然后记下转盘停止时指针所指的颜色(指针压线时重转),若两次颜色相同则小明获胜,否则小红获胜,请你用树状图或列表的方法表示这个游戏所有可能出现的结果,并判断游戏是否公平.30、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、B5、C6、C7、C8、A9、D10、C11、C12、C13、C14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
4.2 等可能条件下的概率(一)基础篇一、单选题1.下列说法正确的是()A.概率很小的事件是不可能事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖D.只要试验的次数足够多,频率就等于概率【答案】B【分析】根据概率的意义、随机事件、中心对称的知识逐项分析即可解答.【详解】解:A、概率很小的事件是随机事件,故此选项错误;B. “任意画出一个平行四边形,它是中心对称图形”这个事件是随机事件,故此选项错误;C. 某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,故此选项错误;D、只要试验的次数足够多,频率就无限接近于概率,故此选项错误.故选:B.【点睛】本题主要查考了概率的意义、随机事件、中心对称等知识点,正确理解概率的含义是解决本题的关键.2.下列说法正确的是()A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨B.从两个班级中任选三名学生,至少有两名学生来自同一个班级C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D.小明前几次的数学测试成绩都在90分以上,这次数学测试成绩也一定在90分以上【答案】B【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.【详解】解:A.明天下雨的概率为80%,只是说明明天下雨的可能性大,与时间无关,故本选项不符合题意;B.从两个班级中任选三名学生,来自同一个班级的可能是2个,也可能是3个,即至少有两名学生来自同一个班级,故选项正确,故本选项符合题意;C.某彩票中奖概率是1%,买100张这种彩票中奖是随机事件,不一定会有1张中奖,故本选项不符合题意;D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩不一定在90分以上,故本选项不符合题意.故选:B.【点睛】本题考查概率的意义,解题的关键是正确理解概率的意义,本题属于基础题型. 3.从一定的高度任意抛掷一枚质地均匀的硬币的次数很大时,落下后,正面朝上的频率最有可能接近的数值为( ) A .0.83 B .0.52 C .1.50 D .1.03A .要了解一批灯泡的使用寿命,应采用普查的方式B .12名同学中有两人的出生月份相同是必然事件C .若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖D .甲、乙两组数据的样本容量与平均数分别相同,若方差20.1S =甲,20.2S =乙,则甲组数据比乙组数据稳定 【答案】D【分析】根据概率的意义、全面调查和抽样调查、随机事件以及方差的意义分别对每一项进行分析,即可得出答案.【详解】解:A 、要了解一批灯泡的使用寿命,应采用抽样调查的方式,故本选项错误; B 、12个同学的生日月份可能互不相同,故本事件是随机事件,故本选项错误; C 、若一个游戏的中奖率是1%,则做100次这样的游戏不一定会中奖,故本选项错误;D 、甲、乙两组数据的样本容量与平均数分别相同,若方差20.1S =甲,20.2S =乙,则甲组数据比乙组数据稳定,故本选项正确; 故选:D .【点睛】此题考查了概率的意义、全面调查和抽样调查、随机事件以及方差的意义,关键是灵活应用有关定义对每一选项进行判断. 5.下列说法正确的是( )A .为了解全国中学生的课外阅读情况,应采取全面调查的方式B.为了解九年级1200名学生模拟考试的数学成绩,从中抽取200名学生的数学成绩进行调查,这个问题中样本容量为1200C.投掷一枚硬币100次,一定有50次“正面朝上”D.甲、乙两名学生参加“国学小名士”知识竞赛选拔赛成绩的平均数均为94,方差分别为5.3和4.8,则乙学生的成绩稳定【答案】D【分析】分别根据抽样调查、全面调查、样本容量、概率、方差的有关概念对每一项进行分析即可.【详解】A.为了解全国中学生的课外阅读情况,应采取抽样调查的方式,故A错误;B.为了解九年级1200名学生模拟考试的数学成绩,从中抽取200名学生的数学成绩进行调查,这个问题中样本容量为200,故B错误;C.投掷一枚硬币100次,有50次“正面朝上”的可能性很大,但不是一定有50次,故C错误;D.甲、乙两名学生参加“国学小名士”知识竞赛选拔赛成绩的平均数均为94.方差分别为5.3和4.8,乙的方差小于甲的方差,故D正确.故选:D.【点睛】此题考查了抽样调查、全面调查、样本容量、概率、方差的有关概念,熟练掌握有关知识,会进行灵活运用是解题的关键.6.在一个不透明的口袋中放有8个完全相同的小球,分别写有“甬,立,潮,头,合,力,兴,甬”这8个字.现从袋中随机摸出一个小球,则此小球上写着“甬”字的概率为()A.38B.18C.14D.12∶掷得的点数是6 ;∶掷得的点数是奇数;∶掷得的点数不大于4;∶掷得的点数不小于2;这些事件发生的可能性由大到小排列正确的是()A.∶∶∶∶B.∶∶∶∶C.∶∶∶∶D.∶∶∶∶【答案】B【分析】根据题意得,∶掷得的点数是6包含一种情况;∶掷得的点数是奇数包括3种情况;∶掷得的点数不大于4包括4种情况;∶掷得的点数不小于2包括5种情况,分别比较情况数的大小即可选得答案.【详解】根据题意,投掷一枚普通的六面体骰子,共6种情况;而∶掷得的点数是6包含1种情况;∶掷得的点数是奇数包括3种情况;∶掷得的点数不大于4包括4种情况;∶掷得的点数不小于2包括5种情况故发生的可能性由大到小的顺序排为∶∶∶∶故选:B【点睛】此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大,反之也成立;若包含的情况相当,那么它们的可能性就相等;解答本题时,根据题意,易得这些事件的总情况数目相同,只需比较其包含的情况数目.8.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是23,则n的取值为()A.10B.8C.12D.4圆心角为120°,∶号转盘表示数字3的扇形对应的圆心角也是120°,则转得的两个数之积为偶数的概率为()A.12B.29C.79D.34所以转得的两个数之积为偶数的概率为79,故选C.【点睛】此题考查此题考查列表法与树状图法,解题关键在于得出所有可能出现的情况列出表格.二、填空题10.要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸出一个乒乓球是白色的概率是15,可以怎样放球:_______(只写一种即可).故答案为:放入4个黄球,1个白球(答案不唯一).【点睛】本题考查概率,解题的关键是熟练掌握概率的意义.11.一个不透明的袋子中装有5个小球,其中3个红球、2个黑球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是___________.的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从口袋中取出一个球记下数字后作为点P的纵坐标y,则在坐标平面内,点P(x,y)落在坐标轴上的概率为_____.的概率为925;故答案为:925.【点睛】本题考查了列举法求概率,解题关键是熟练运用列表法表示出所有等可能的情况数,根据概率公式准确计算.13.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别.从袋子中随机摸出一个小球,则摸出的小球是绿球的概率是_____________.形内有一点M,则点M落在△BPC内(包括边界)的概率为_____.∶BP平分∶ABC,BPC ABCS S=考查了概率公式的应用与全等三角形的性质和判定,三角形的面积的应用,注意:个数中任取的一个数,b 是从1、3、5三个数中任取的一个数,定义“方程有实数根”为事件An (n =1,2,3),当An 的概率最小时,n 的所有可能值为_____.x2﹣x+2a32-=有两个不相等的实数根的概率是_____.三、解答题17.一个袋子中装有3个红球和两个黄球,它们除颜色外,其他都相同.(1)求从袋中摸出一个球是红球的概率;(2)将n个绿球(与红、黄球除颜色外,其他都相同)放入袋中摇均匀,从袋中随机摸出一个球,记下颜色,再把它放回袋中,不断重复上述的过程,共摸了500次,其中60次摸到红球.请通过计算估计n的值.3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这枚骰子掷出后,求:(1)“6”朝上的概率是多少?(2)哪个数字朝上的概率最大?是很有名的,西安十大美食有肉夹馍、凉皮、羊肉泡馍、黄桂柿子饼、岐山臊子面、贾三灌汤包、泡泡油糕、biangbiang面、荞面饸饹、甑糕.李华和王涛同时去品尝美食,准备在贾三灌汤包、泡泡油糕、biangbiang面、荞面饸饹、甑糕”这五种美食中选择一种.(肉夹馍、凉皮、羊肉泡馍、黄桂柿子饼、岐山臊子面分别记为A,B,C,D,E,贾三灌汤包、泡泡油糕、biangbiang面、荞面饸饹、甑糕分别记为F,G,H,K,L)(1)用树状图或列表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择美食都是甜食类(黄桂柿子饼D,泡泡油糕G,甑糕L)的概率.李华和王涛同学选择美食的所有可能结果共有25种;将扑克牌洗匀后,背面朝上放置在桌面上,小薇先随机在这四张扑克牌中抽取一张,然后小宇在剩余的扑克牌中随机抽取一张.(1)求小薇抽出的牌面数字大于4的概率;(2)小薇、小宇约定:若小薇抽到的牌面数字比小宇的大,则小薇赢;反之,则小薇输.请你用列表或画树状图的方法说明这个游戏对双方是否公平?由树状图可以得到,可能会出现的结果有12种,其中小薇抽到的牌面数字比小宇的大的情m头50天的日用水量数据,得到频数直方图如下:(1)估计该家庭使用节水水龙头后,日用水量小于30.4m 的概率;(2)为了计算方便,把用水量介于300.1m ~之间的日用水量均近似地看做30.05m ,用水量介于30.10.2m ~之间的日用水量均近似地看做30.15m ,用水量介于30.20.3m ~之间的日用水量均近似地看做30.25m ,……,以此类推,请估计该家庭使用节水水龙头前后的日用水量分别是多少?(结果精确到30.01m )(3)如果一年按365天计算,那么利用(2)的结论估计该家庭一年能节省多少水?【点睛】本题考查了概率公式、频数分布直方图、近似数、用样本估计总体,平均数的计算,解决本题的关键是综合掌握以上知识.22.2022年2月山西省召开了教育工作会议,会议提出:实施基础教育优质均衡提升行动,坚决打好“双减”攻坚落实战,全面提高教育基本公共服务水平.某校为了认真落实会议精神,扎实开展课后服务,通过调查问卷、座谈等形式,对全校学生征求了意见,其中有一个问题为:(要求学生只选择一个最能反映实际愿望的选项)你理想的课后服务形式是()A.集中完成作业B.组织特色活动C.组织实践活动D.自主阅读交流从该校八年级学生中随机抽取部分学生调查结果,汇总后制成以下两幅不完整的统计图.根据以上信息,解答下列问题:(1)调查的人数一共有______名学生;在扇形统计图中,表示“C.组织实践活动”的扇形则心角的度数为______;(2)将条形统计图补充完整;(3)若该校八年级共行200名学生,请估计该校八年级大约有多少名学生选择A;(4)学校领导决定从八年级甲、乙、丙、丁、戊五个班级中,随机抽取两个班的班干部分两次进行座谈,请用画树状图或列表的方法求这两次都没有选中甲班的概率.(3)出现的可能性相同,这两次都没有选中甲班的结果有12种,所以P(两次都没有选中甲班的概率)123 205 ==.【点睛】本题考查了考查条形统计图和扇形统计图,随机事件的概率,解题的关键是掌握列表格图展示等可能的结果.提升篇1.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到正确算式的概率是()A.14B.12C.34D.1x的分式方程:21x mx-+=3的解是负数,且使关于x的函数y=3mx-图象在每个象限y随x的增大而增大的概率为_____.择∶A.舞蹈社团;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)根据题中信息,估计该年级选择A课程学生成绩在80<x < 90的总人数;(2)该年级每名学生选两门不同的课程,小明和小华在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.等可能结果共有9种,他俩第二次同时选择课程A或课程B的有2种,所以他俩第二次同供学生借用,现从九年级随机抽取了部分学生对新跳绳进行测试,绘制了如下的两幅不完整的统计表和统计图.请根据相关信息,解答下列问题:一分钟跳绳成绩的分组统计表一分钟跳绳成绩的扇形统计图(1)本次接受随机抽样调查的学生人数为人,统计表中的m的值为;(2)抽取学生一分钟跳绳成绩的中位数所在的组别是;(3)现在指定两名男生和两名女生负责跳绳发放和整理工作,若两人一组,随机组合,则恰好分组都是一男一女的概率是多少?所以,()82 123P==分组都是一男一女【点睛】本题考查了频数,中位数和概率的求法,解题的关键是列出表格求概率.5.某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况(1)从该企业的员工中随机抽取1人,求该员工手机月平均使用流量不超过900M的概率.(2)据了解,某网络运营商推出两款流量套餮,详情如下流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以人均所需费用为决策依据,该企业订购哪一款套餐更经济?9【点睛】本题考查了概率的知识和频数(率)分布直方图.用到的知识点为:概率=所求情况数与总情况数之比,解题关键是准确从图表中获得信息,综合运用所学知识解决问题.6.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?∶丙抢到金额为1元的红包;∶乙抢到金额为4元的红包∶甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.∶求出甲抢到红包A的概率;∶若甲没抢到红包A,则乙能抢到红包A的概率又是多少?。
第4章概率数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是()A. B. C. D.2、下列说法不正确的是()A.“某射击运动员射击一次,正中把靶心”属于随机事件B.“13名同学至少有两名同学的出生月份相同”属于必然事件C.“在标准大气压下,当温度降到﹣5℃时,水结成冰”属于随机事件D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件3、下列说法中,正确是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小4、现有A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),用小莉掷A立方体朝上的数字为x,小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在已知抛物线上的概率为( )A. B. C. D.5、下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.“等腰三角形的一个角是80度,则它的顶角是80度”是必然事件C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“是有理数,”是不可能事件6、现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A. B. C. D.7、下列事件中,属于随机事件的是()A. 的值比8大B.购买一张彩票,中奖C.地球自转的同时也在绕日公转D.袋中只有5个黄球,摸出一个球是白球8、小球从A点入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等。
【期末专题复习】湘教版九年级数学下册 第四章 概率 单元检测试卷一、单选题(共10题;共30分)1.某学生书包中有三枝红铅笔,两枝黑铅笔,一支白铅笔,它们的形状、大小一样,从中任意摸出一枝,那么摸到白铅笔的机会是( )A. 16 B. 14 C. 13 D. 12 2.下列说法正确的是 ( )A. 掷两枚硬币,一枚正面朝上,一枚反面朝上是不可能事件B. 随意地翻到一本书的某页,这页的页码为奇数是随机事件C. 经过某市一装有交通信号灯的路口,遇到红灯是必然事件D. 某一抽奖活动中奖的概率为1100,买100张奖券一定会中奖3.某班为迎接“体育健康周”活动,从3 名学生(1男 2女)中随机选两名担任入场式旗手,则选中两名女学生的概率是( )A. 13 B. 23 C. 16 D. 19 4.在下列事件中,不可能事件为()A. 通常加热到100℃时,水沸腾B. 度量三角形内角和,结果是180°C. 抛掷两枚硬币,两枚硬币全部正面朝上D. 在布袋中装有两个质地相同的红球,摸出一个白球 5.下列说法正确的是( )A. 为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行B. 鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数C. 明天我市会下雨是随机事件D. 某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 6.下列事件中,必然事件是( )A. 掷一枚硬币,正面朝上B. a 是实数,|a|≥0C. 某运动员跳高的最好成绩是20.1米D. 从车间刚生产的产品中任意抽取一个,是次品 7.有A ,B 两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷A ,朝上的数字记作x ;小张掷B ,朝上的数字记作y .在平面坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王小张各掷一次所确定的点P (x ,y )落在矩形内(不含矩形的边)的概率是( )A. 23 B. 512 C. 12 D. 7128.如图,在一块菱形菜地ABCD 中,对角线AC 与BD 相交于点O ,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是( )A. 1B. 12C. 13D. 149.分别写有数字-3,-2,-1,0,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A. 15 B. 25C. 35D. 4510.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是().A. B. C. D.二、填空题(共10题;共30分)11.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.12.如图,在2×2的正方形网格中有9个格点,已知取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是________.13.(•宿迁)如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2cm的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是________ m2.14.下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:________.15.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为________.16.如图,A,B是固定箭头的两个转盘.均被分成三个面积相等的扇形,转盘A上的扇形分别写有数字1,6,8,转盘B上的扇形分别写有数字4,5,7.如果你和小亮各选择其中一个转盘,同时将它们转动,规定如果转盘停止时,箭头指的数字较大者获胜.你认为选择________转盘(填A或B).17.从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是________.18.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为15,那么口袋中小球共有________个.19.(•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是________.20.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,把它放回袋中,搅匀后,再摸出一球,…通过多次试验后,发现摸到黑球的频率稳定于0.5,则n的值大约是 ________.三、解答题(共10题;共60分)21.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.22.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.23.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?24.九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛.(1)如果选派一位学生代表参赛,那么选派到的代表是A的概率;(2)如果选派两位学生代表参赛,求恰好选派一男一女两位同学参赛的概率.25.某校九年级(8)课外活动设置了如图所示的翻牌游戏,每次抽奖翻开一个数字,考虑“第一个人中奖排球”的机会.正面1 2 34 5 67 8 9反面排球钢笔图书铅笔空门书包球拍小刀篮球(1)如果用实验进行估计,但制作翻奖牌没有材料,那么你有什么简便的模拟实验方法?(2)如果不做实验,你能估计“第一个人中奖排球”的机会是多少?26.某中学举行“中国梦•我的梦”演讲比赛.小明和小红都想去,于是老师制作了三张形状、大小和颜色完全一样的卡片,上面分别标有“1”,“2”,“3”,小明从这三张卡片中随机抽取一张,记下数字后放回,小红再从这三张卡片中随机抽取一张并记下数字,谁抽取的数大就谁去,若两个数一样大则重新抽.这个游戏公平吗?请用树枝状图或列表的方法,结合概率知识给予说明.27.如图,有两个构造完全相同(除所标数字外)的转盘A,B,每个转盘都被分成3个大小相同的扇形,指针位置固定,游戏规定,转动两个转盘各一次,转盘停止后若A盘指针指示区域数字比B盘指针指示区域数字大则小明胜,否则小亮胜(指针指向两个扇形的交线时,当作指向右边的扇形).你认为这个游戏规则公平吗?为什么?28.有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,用列表或树状表示组成二位数的可能情况,并求组成的二位数为8的倍数的概率.29.给你1枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现1、2、3、4、5、6向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测1枚骰予的质量.30.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗请你利用列举法说明理由.答案解析部分一、单选题1.【答案】A2.【答案】B3.【答案】A4.【答案】D5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】C10.【答案】B二、填空题11.【答案】1312.【答案】4713.【答案】114.【答案】①③②④15.【答案】1316.【答案】A17.【答案】3718.【答案】1519.【答案】4920.【答案】10三、解答题21.【答案】解:根据题意列表如下:. 十位上则十位上的数字和个位上的数字之和为9的两位数有45和54,所以其概率为:2÷9=2922.【答案】解:游戏不公平,理由如下: 游戏结果分析如下:“√”表示配成紫色,“×”表示不能够配成紫色. 红 蓝 绿 红 × √ × 蓝 √ × × P (配紫色)= ,P (没有配紫色)=,∵,∴这个游戏对双方不公平.23.【答案】解:∵已经限定在身高160厘米以上的女生中抽选旗手,甲班身高在160厘米以上的女同学3人,乙班身高在160厘米以上的女同学8人,∴在甲班被抽到的概率为 13,在乙甲班被抽到的概率为 18,∵ 13> 18,∴在甲班被抽到的机会大24.【答案】解:(1)∵九年级(1)班现要从A 、B 两位男生和D 、E 两位女生中,选派学生代表本班参加全校“中华好诗词”大赛,∴如果选派一位学生代表参赛,那么选派到的代表是A 的概率是:14; 故答案为:14; (2)画树状图得:∵共有12种等可能的结果,恰好选派一男一女两位同学参赛的有8种情况, ∴恰好选派一男一女两位同学参赛的概率为:812=23.25.【答案】解:(1)可用9张扑克牌代替翻奖牌,分别标上奖品或空门, (2)“第一个人中奖排球”的机会是19. 26.【答案】游戏公平.理由如下: 画树状图为:共有9种等可能的结果数,小明随机抽取一张的数值大于小红的占3种,小红抽取的数值大于小明的占3种,所以小明去的概率=,小红去的概率=,因为小明去的概率等于小红去的概率,所以此游戏公平.27.【答案】解:这个游戏规则不公平,列表如下A B 3 5 89 (9,3)(9,5)(9,8)5 (5,3)(5,5)(5,8)2 (2,3)(2,5)(2,8)由上表可知,共有9种等可能的结果,其中A盘指示数字比B盘指示数字大的有4种结果,即(9,3),(9,5),(9,8),(5,3),其它结果5种∴P(小明胜)= ,P(小亮胜)= ,∴这个游戏规则不公平28.【答案】解:所以组成的二位数共有6种可能,其中为8的倍数的二位数有2个:56和64,26=13,故组成的二位数为8的倍数的概率为13.29.【答案】【解答】解:设计表格如下:向上数字 1 2 3 4 5 6 出现次数出现概率30.【答案】解:根据题意列树状图如下:由树状图可知,游戏结果有12中情况,其中两数之积为非负有7种,则两数之积为非负的概率为712,两数之积为负的情况有5种,则两数之积为为负的概率为512.512≠712,因此该游戏不公平。
第4章概率数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0. 2左右,则a的值约为 ( )A.12B.15C.18D.202、如图,已知点A,B,C,D是边长为1的正方形的顶点,连接任意两点均可得到一条线段,以下的树状图是所有可能发生的结果,在连接两点所得的所有线段中任取一条线段,取到长度为1的线段的概率为()A. B. C. D.3、下列说法正确的是()A.连续抛一枚硬币n次,当n越来越大时,出现正面朝上的频率会越来越稳定于0.5B.连续抛一枚硬币50次,出现正面朝上的次数是25次C.连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D.某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖4、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是()A. B. C. D.5、任意掷一枚骰子,下列情况出现的可能性比较大的是( )A.面朝上的点数是3B.面朝上的点数是奇数C.面朝上的点数小于2 D.面朝上的点数不小于36、下列说法正确的是()A.调查湘江河水的水质情况,采用抽样调查的方式B.数据2,0,,1,3的中位数是C.可能性是的事件在一次实验中一定会发生 D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生7、如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是()A. B. C. D.18、掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是( )A.1B.C.D.09、一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色外其他完全相同,那么从袋子中随机摸出一个球是黄球的概率为()A. B. C. D.10、已知一组数据﹣,π,﹣,1 ,2 ,则无理数出现的频率是()A.20%B.40%C.60%D.80%11、下列事件中,是随机事件的是()A.将石子抛入水中,石子会沉入水底B.傍晚的太阳从东方落下C.用长度为厘米厘米、厘米的三根小木棒(不能折断),首尾顺次相接可以搭成一个三角形D.打开电视机,正在播放篮球比赛12、甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所掷骰子的点数和大于6,则甲胜;反之,乙胜.则甲、乙两人中()A.甲获胜的可能最大B.乙获胜的可能最大C.甲、乙获胜的可能一样大D.由于是随机事件,因此无法估计13、如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A. B. C. D.14、掷两枚质地均匀的骰子,两枚的点数都是6的概率为()A. B. C. D.15、以下说法合理的是:()A.“打开电视,正在播放新闻节日”是必然事件B.“抛一枚硬币,正面朝上的概率为”表示每抛两次就有一次正面朝上C.“抛掷一枚均匀的骰子,出现点数6的概率是”表示随着抛掷次数的增加“出现点数6”这一事件发生的频率稳定在附近D.为了解某品牌火腿的质量,选择全面检测二、填空题(共10题,共计30分)16、在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有________ 个.17、一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是________.18、在一个不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,摇匀后从袋子中任意摸出一个球,摸出________颜色的球的可能性最大.19、小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为________20、在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是________.21、一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为________.22、如图,是两个可以自由转动的均匀圆盘A和B,A、B分别被均匀的分成三等份和四等份.同时自由转动圆盘A和B,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是________.23、学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,则从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是________.24、今年宁波市体育中考已确定抽测项目为篮球,实心球,50米跑.A、B两人随机从这三项中选择一项作为测试项目,他们都选中篮球的概率为________ .25、如图是两个质地均匀的转盘,现转动转盘①和转盘②各一次,则两个转盘指针都指向红的部分的概率为________。
第4章概率达标测试一、选择题(每题3分,共18分)1.在如图所示的转盘中,最有可能转到的颜色是()A.红色B.黄色C.白色D.黑色(第1题)(第6题)2.同时抛掷两枚质地均匀的正方体骰子(骰子每一面的点数分别是1到6这六个数字中的一个),以下说法正确的是()A.掷出两个1点是不可能事件B.掷出两个骰子的点数和为6是必然事件C.掷出两个6点是随机事件D.掷出两个骰子的点数和为14是随机事件3.小明计划到永州市体验民俗文化,想从“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化中任意选择两种,则小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为()A.13 B.14 C.34 D.164.小刚是一名学校足球队的队员,根据以往比赛数据统计,小刚每场比赛进球率为10%,他明天将参加一场学校足球队比赛,下列说法正确的是()A.小刚明天肯定进球B.小刚明天每射球10次必进球1次C.小刚明天有可能进球D.小刚明天一定不能进球5.在一个不透明的盒子里有3个红球和若干个白球,这些球除颜色外其余完全相同,摇匀后随机摸出1个,摸到红球的概率是13,则白球的个数是()A.3 B.4 C.6 D.96.如图是智慧小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率分布折线图,则符合这一结果的试验可能是()A.抛掷一枚质地均匀的硬币,出现反面朝上B.投掷一个质地均匀的正六面体骰子,出现2点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是梅花D.一个袋子中装有1个红球和2个黑球,这些球除颜色外其他都相同,现从中任意摸出一个球,摸出的是红球二、填空题(每题4分,共24分)7.有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、等腰梯形四个图案,卡片背面完全一样,现将这四张卡片背面朝上洗匀后随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是________.8.如图是由9个小正方形组成的图案,从图中随机取一点,该点在阴影部分的概率是________.(第8题)(第10题)9.下表记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n 200500800 2 00012 000成活的棵数m 187446732 1 79010 836成活的频率mn0.9350.8920.9150.8950.903由此估计这种苹果树苗移植成活的概率约为________.(精确到0.1)10.如图是一个转盘,盘面被等分成四个扇形区域,并分别标有数-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数(当指针恰好指在分界线上时,不记,重转),则记录的两个数之和是正数的概率为________.11.从一副扑克牌中任意抽取1张,下列3个事件:①这张牌是“A”;②这张牌是“红桃”;③这张牌是“王”.其中发生的可能性最大的事件是________.(填写你认为正确的序号)12.口袋中有30个大小质地相同的小球,其中红球n个,黑球3n个,其余为绿球.甲从袋中任意摸出1个,若为红球则甲得1分;甲将摸出的球放回袋中,乙再从袋中摸出1个,若为绿球则乙得1分.谁先得10分谁获胜.要使游戏对甲、乙双方公平,则n的值是________.三、解答题(第13~15题每题8分,第16题10分,第17~18题每题12分,共58分)13.下列事件:哪些事件一定会发生?哪些事件可能会发生?哪些事件不可能发生?(1)从装有1个红球和2个黄球的袋子中摸出的1个球是白球(这些球除颜色不同外,其他都相同);(2)随意画一个凸多边形,它的外角和为360°;(3)花2元买一张体育彩票,喜中500万大奖;(4)一个数的绝对值是正数.14.如图,一个可以自由转动的转盘被平均分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少?(2)请再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率为12.(第14题)。
4.2 概率及其计算
4.2.1 概率的概念
基础题
知识点1 概率的意义
1.(福州中考)下列说法中,正确的是( )
A .不可能事件发生的概率为0
B .随机事件发生的概率为12
C .概率很小的事件不可能发生
D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 2.气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是( )
A .本市明天将有30%的地区降水
B .本市明天将有30%的时间降水
C .本市明天有可能降水
D .本市明天肯定不降水
知识点2 随机事件的概率
3.(益阳中考)小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )
A.120
B.15
C.14
D.13
4.(湘西中考)在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为( )
A.34
B.14
C.12
D .1 5.(宜昌中考)如图是一个可以自由转动的转盘,转盘分为6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是( )
A.23
B.13
C.12
D.14
6.(北京中考)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )
A.16
B.14
C.13
D.12
7.小刚掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数大于3的概率为( )
A.12
B.13
C.23
D.14
8.下列说法正确的是( )
A .太阳从西方升起的概率是1
B .抛一枚硬币一次正面向上的概率是0
C .水往低处流的概率是0
D .某小组13位同学中有2人在同一个月生日的概率是1
9.(邵阳中考)某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是____________.
10.(长沙中考)一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是____________. 中档题
11.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是p 1,摸到红球的概率是p 2,则( )
A .p 1=1,p 2=1
B .p 1=0,p 2=1
C .p 1=0,p 2=14
D .p 1=p 2=14
12.(泰安中考)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
A.15
B.25
C.35
D.45
13.(永州中考)在1,π,3,2,-3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是____________.
14.(益阳中考)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为____________.
15.人们从数学的角度认识事物,不外乎观察其数和形,概率是用一个数来刻画事件发生可能性的量,习惯上认为:必然事件A 的概率:P(A)=1,不可能事件A 的概率:P(A)=0,随机事件A 的概率:0<P(A)<1.有人告诉你,放学后送你回家的概率如下:
(1)50%;(2)2%;(3)90%.试将以上数据分别与下面的文字描述相配:
(A)很可能送你回家,但不一定送;
(B)送与不送的可能性一样大;
(C)送你回家的可能性极小.
16.掷一枚六面体骰子,六个面分别标有数字:1,2,3,4,5,6.观察向上一面的点数,求下列事件的概率:
(1)点数为偶数;
(2)点数为8;
(3)点数大于2且小于5.
17.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格: 事件A
必然事件 随机事件 m 的值
(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.
综合题
18.(成都中考)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数
字为a ,则关于x 的不等式组⎩⎪⎨⎪⎧4x≥3(x +1),2x -x -12<a 有解的概率为____________.
参考答案
1.A 2.C 3.C 4.A 5.C 6.D 7.A 8.D 9.14 10.25 11.B 12.C 13.15 14.23
15.(1)50%─(B)送与不送的可能性一样大.
(2)2%─(C)送你回家的可能性极小.
(3)90%─(A)很可能送你回家,但不一定送. 16.(1)掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.点数为偶
数有3种可能,即点数为2,4,6,∴P(点数为偶数)=36=12
. (2)点数为8是不可能的,∴P(点数为8)=0.
(3)点数大于2且小于5有2种可能,即点数为3,4,∴P(点数大于2且小于5)=26=13
. 17.(1)4 2或3
(2)根据题意,得6+m 10=45
.解得m =2.所以m 的值为2. 18.49。