9-4毕奥-萨伐尔定律
- 格式:ppt
- 大小:571.00 KB
- 文档页数:21
毕奥—萨伐尔定律1820年,毕奥和萨伐尔通过实验得到了载流导线周围磁场与电流的定量关系,拉普拉斯又以公式的形式概括得出电流元产生磁感强度d B 的规律。
为计算电流为I 的导线在空间某点户产生的磁感强度B ,设想将载流导线分割成许多电流元,用矢量dl I 表示.线元dl的方向与电流流向一致。
毕奥—萨伐尔定律指出:载流导线上的电流元dl I 在真空中某点P 的磁感度dB 的大小与电流元dl I 的大小成正比,与电流元dl I 和从电流元到P 点的位矢r 之间的夹角θ的正弦成正比,与位矢r 的大小的平方成反比,即20sin 4r dl I dB θπμ= (9-2a ) 上式中,πμ40为比例系数,0μ称为真空磁导率,其值为 270104--∙⨯=A N πμ dB 的方向垂直于dl I 和r 所确定的平面,当右手弯曲,四指从dl I 方向沿小于π角转向r 时,伸直的大姆指所指的方向为dB 的方向, 即dB 、dl I 、r 三个矢量的方向符合右手螺旋法则,如图9—2所示,因此,可将式(9—2a)写成矢量形式204r rdlI dB ⨯=πμ(9-2b)上式中,r0为位矢r的单位矢量.此即毕奥——萨伐尔定律的公式表述。
与点电荷的场强公式相似,毕奥——萨伐尔定律是求电流周围磁感强度的基本公式.磁感强度B也遵从叠加原理.因此,任一形状的载流导线在空间某一点P的磁感强度B,等于各电流元在该点所产生的磁感应强度dB的矢量和,即⎰⎰⨯==L r rIdldBB204πμ(9-3)例9-1例9-1求载流直导线周围的磁场。
解:设有长为L的直导线上通有电流I,求距离此导线为a处一点P的磁感应强度。
在直导线上任取一电流元Idl,它到P点的位矢为r,P点到直线的垂足为O,电流元到O的距离为l,Idl与r的夹角为θ,如左图所示。
根据毕萨定律可得该电流元在P点的磁感应强度dB的大小为20sin 4r l d I dB θπμ= dB 的方向垂直于纸面向里,图中用⊗表示.由于直导线上所有电流元在P 点的磁感应强度dB 的方向度相同,所以, P 点的磁感应强度B 的大小等于各电流元在P 点dB 的大小之和,即20sin 4r l d I B L θπμ⎰= 将上式中l 、r 、θ等变量统一为一个变量,以便积分.由图9-3所得()θπ-=ctg a lθθd adl 2sin =()θθπsin sin a a r =-=于是()2100c o s c o s 4s i n 421θθπμθθπμθθ-==⎰aI d a I B (9-4)式中,θ1和θ2分别为直导线两端的电流元与它到P 点的位矢之间的夹角。
毕奥-萨戈尔定律
毕奥-萨伐尔定律(英文:Biot-Savart Law)在静磁学中是描述电流元在空间任意点P处所激发的磁场。
毕奥-萨伐尔定律是法国科学家毕奥和萨伐尔合作研究发现的,以让-巴蒂斯特·毕奥(Jean-Baptiste Biot)和费利克斯·萨伐尔(Félix Savart)命名,1820年9月30日两人将第一个实验结果发表:载流长直导线到磁极距离与其作用力成反比,这一结果肯定了电和磁的联系。
毕奥-萨伐尔定律在静磁近似中是有效的,并且与安培(Ampère)的电路规律和磁性高斯定律一致。
毕奥-萨伐尔定律文字描述:电流元Idl在空间某点P处产生的磁感应强度dB的大小与电流元Idl的大小成正比,与电流元Idl所在处到P点的位置矢量和电流元Idl之间的夹角的正弦成正比,而与电流元Idl到P点的距离的平方成反比。
毕奥-萨伐尔定律在生产和生活中的应用有磁悬浮列车、根据工件大小来选择充磁电流的大小,从而达到磁粉探伤所需的磁场等。
毕奥-萨伐尔定律公式
毕奥-萨伐尔定律公式是描述电磁感应现象的重要公式之一,它是由法国物理
学家毕奥和英国物理学家萨伐尔分别独立提出的,因此也被称为毕萨定律。
该定律表述了当一个闭合电路中的磁通量发生变化时,该电路内会产生电动势。
具体来说,如果一个电磁感应器中的磁通量Φ发生变化,那么在该感应器两端就
会产生一个电动势E,其大小与磁通量变化率的绝对值成正比。
毕奥-萨伐尔定律公式可以用一个简单的公式来表达:
E = -dΦ/dt
其中,E是感应电动势的大小,Φ是穿过感应电路的磁通量,t是时间,d/dt表示对时间的导数运算。
公式中的负号表示感应电动势的方向与磁通量变化的方向相反。
需要注意的是,该定律只适用于闭合电路中的感应电动势。
对于非闭合电路,根据法拉第电磁感应定律,产生的感应电动势大小与闭合电路中的相同,但方向可能不同。
总的来说,毕奥-萨伐尔定律公式是电磁学中一个非常重要的公式,广泛应用
于各种电磁感应现象的分析和设计中。
毕奥萨伐尔定律公式详细解说毕奥萨伐尔定律是电磁学中的基本定律之一,描述了通过一个导体回路所产生的磁场与通过该回路的电流的关系。
该定律由法国物理学家安德烈-玛丽·安普尔·毕奥萨伐尔于1820年发现并提出。
毕奥萨伐尔定律的数学表达式为:B = μ0 * I / (2 * π * r),其中B 表示磁场的强度,μ0为真空中的磁导率,I表示电流的强度,r表示距离导体回路的距离。
这个公式是通过实验观测得到的,可以用来计算任意一个导体回路所产生的磁场强度。
根据毕奥萨伐尔定律,当电流通过一个导体回路时,会在该回路周围产生一个环绕回路的磁场。
这个磁场的强度与电流的强度成正比,与距离导体回路的距离成反比。
磁场的方向则由右手定则来确定,即握住导线,大拇指指向电流方向,其他四指的弯曲方向就是磁场的方向。
毕奥萨伐尔定律的应用非常广泛。
在电磁学中,我们可以利用这个定律来计算各种不同形状和电流分布的导体回路所产生的磁场。
例如,在电磁铁中,通电线圈产生的磁场可以吸引铁磁物体;在电动机中,导线中的电流通过电磁场与磁场相互作用,产生力矩使电动机运转;在变压器中,通过调整线圈的匝数比可以改变磁场的强度,从而实现电能的传输和转换等。
除了应用于电磁学领域外,毕奥萨伐尔定律还有很多其他应用。
在电路中,我们可以利用这个定律来计算线圈的自感和互感。
自感是指通过一个线圈产生的磁场对该线圈自身电流的影响,而互感则是指线圈之间由于磁场耦合而产生的电流相互影响。
了解自感和互感的大小对于电路的设计和工作原理的理解非常重要。
毕奥萨伐尔定律还可以用于解释许多其他现象。
例如,当一个导体在磁场中运动时,会受到一个由毕奥萨伐尔定律描述的洛伦兹力的作用。
这个力可以使导体受到推动或制动,也可以用于实现电能与机械能的相互转换。
毕奥萨伐尔定律是电磁学中的重要定律,描述了电流通过一个导体回路所产生的磁场与磁场的强度、电流的关系。
它不仅在电磁学领域有广泛的应用,还可以用于解释和理解其他相关现象。