毕奥—萨伐尔定律.
- 格式:doc
- 大小:1.85 MB
- 文档页数:14
1820年,法国物理学家比奥特(Biot)和萨瓦特(Savart)通过实验,测量了一条长直电流线附近的小磁针的力定律,并发表了一篇论文,题为“传递给运动中的金属的电的磁化力”。
后来被称为比奥-萨瓦特定律。
后来,在数学家拉普拉斯(Laplace)的帮助下,该定律以数学公式表示。
毕奥-萨伐尔定律:载流导线上的电流元Idl在真空中某点P的磁感度dB的大小与电流元Idl的大小成正比,与电流元Idl和从电流元到P点的位矢r之间的夹角θ的正弦成正比,与位矢r的大小的平方成反比。
dB的方向垂直于Idl和r所确定的平面,当右手弯曲,四指从方向沿小于π角转向r时,伸直的大拇指所指的方向为dB的方向,即dB、Idl、r三个矢量的方向符合右手螺旋法则。
叠加原理:
与点电荷的场强公式相似,毕奥——萨伐尔定律是求电流周围磁感强度的基本公式.磁感强度B也遵从叠加原理.因此,任一形状的载流导线在空间某一点P的磁感强度B,等于各电流元在该点所产生的磁感应强度dB的矢量和。
特点:
从课程论和物理学课自身特点的角度来分析毕奥-萨伐尔定律,它体现的学科特点有以下几点:(1)是稳恒电流磁场的关键知识点;(2)具有高度的抽象性;(3)使用数学工具的复杂性;(4)掌握“方法”比掌握“内容”更重要;(5)在探索知识的过程中体现“把握本质联
系,揭示事物发展内在规律性”的唯物辩证法观点。
毕奥-萨戈尔定律
毕奥-萨伐尔定律(英文:Biot-Savart Law)在静磁学中是描述电流元在空间任意点P处所激发的磁场。
毕奥-萨伐尔定律是法国科学家毕奥和萨伐尔合作研究发现的,以让-巴蒂斯特·毕奥(Jean-Baptiste Biot)和费利克斯·萨伐尔(Félix Savart)命名,1820年9月30日两人将第一个实验结果发表:载流长直导线到磁极距离与其作用力成反比,这一结果肯定了电和磁的联系。
毕奥-萨伐尔定律在静磁近似中是有效的,并且与安培(Ampère)的电路规律和磁性高斯定律一致。
毕奥-萨伐尔定律文字描述:电流元Idl在空间某点P处产生的磁感应强度dB的大小与电流元Idl的大小成正比,与电流元Idl所在处到P点的位置矢量和电流元Idl之间的夹角的正弦成正比,而与电流元Idl到P点的距离的平方成反比。
毕奥-萨伐尔定律在生产和生活中的应用有磁悬浮列车、根据工件大小来选择充磁电流的大小,从而达到磁粉探伤所需的磁场等。
在静磁学中,毕奥-萨伐尔定律(英文:Biot-Savart Law)描述电流元在空间任意点P处所激发的磁场。
定律文字描述:电流元Idl 在空间某点P处产生的磁感应强度 dB 的大小与电流元Idl 的大小成正比,与电流元Idl 所在处到 P点的位置矢量和电流元Idl 之间的夹角的正弦成正比,而与电流元Idl 到P点的距离的平方成反比。
该定律在静磁近似中是有效的,并且与Ampère的电路规律和磁性高斯定律一致,以Jean-Baptiste Biot和FélixSavart命名。
定义在静磁学中,毕奥-萨伐尔定律(英文:Biot-Savart Law)描述电流元在空间任意点P处所激发的磁场。
定律文字描述:电流元Idl 在空间某点P处产生的磁感应强度dB 的大小与电流元Idl 的大小成正比,与电流元Idl 所在处到 P点的位置矢量和电流元Idl 之间的夹角的正弦成正比,而与电流元Idl 到P点的距离的平方成反比。
该定律在静磁近似中是有效的,并且与Ampère的电路规律和磁性高斯定律一致,以Jean-Baptiste Biot和FélixSavart命名。
电流(沿闭合曲线)毕奥-萨伐尔定律适用于计算一个稳定电流所产生的磁场。
这电流是连续流过一条导线的电荷,电流量不随时间而改变,电荷不会在任意位置累积或消失。
采用国际单位制,用方程表示:电流(整个导体体积)当电流可以近似为穿过无限窄的电线时,上面给出的配方工作良好。
如果导体具有一定厚度,则适用于Biot-Savart定律(再次以SI为单位):Biot-Savart:毕奥萨伐尔定律定律是实验定律,以一些简单的典型的载流导体产生的磁场为基础,经分析、归纳出的定律,而不是由电流元直接得出的,实际上不可能得到单独的电流元。
毕奥撒法尔定律
毕奥-萨伐尔定律(也被称为电场定律)是电学中的一个重要定律,它描述了电荷之间的相互作用力与它们所带电荷量的乘积以及它们之间距离之间的关系。
具体来说,毕奥-萨伐尔定律表明在真空中,静止的点电荷所产生的电场强度与它们所带电荷量成正比,与它们之间的距离的平方成反比。
公式表示为:$\frac{E}{q} = \frac{k}{r^{2}}$,其中E是电场强度,q是源电荷的电荷量,k是常数,r是源电荷与试探电荷之间的距离。
这个定律是英国物理学家约瑟夫·安培的学生,法国物理学家奥古斯汀·毕奥和其时的科学家萨伐尔共同发现的。
他们在研究电流产生的磁场时,通过实验和理论推导得出了这个定律。
这个定律不仅适用于点电荷产生的电场,还适用于任何形状的电荷分布产生的电场,以及多个电荷共同产生的电场。
需要注意的是,毕奥-萨伐尔定律是在静止电荷产生的电场中得出的,对于随时间变化的磁场,需要使用麦克斯韦方程组来描述。
毕奥萨伐尔定律表达式
毕奥萨伐尔定律公式: k=107T·m·A-1。
在静磁学中,毕奥-萨伐尔定律(英文:Biot-SavartLaw)描述电流元在空间任意点P处所激发的磁场。
具体表述如下:毕奥-萨伐尔公式,它指出,曲线涡丝段d l所诱导的速度d v,其方向垂直子d l和 r,大小则与距离 r的平方成反比,而且同d l和d l与 r
时夹角的正弦成正比。
毕奥萨伐尔定律介绍:
在恒定磁场中引入电流元的概念,分析电流元产生磁场的规律,即B-S定律,最后利用磁场的叠加原理,可以解决任意载流体所产生的稳恒磁场的分布。
B-S(毕奥萨伐尔定律)的物理意义:表明一切磁现象的根源是电流(运动电荷)产生的磁场。
反映了载流导线上任一电流元在空间任一点处产生磁感应强度在大小和方向上的关系。
由此定律原则上可以解决任何载流导体在其周围空间产生的磁场分别。
磁场,物理概念,是指传递实物间磁力作用的场。
磁场是一种看不见、摸不着的特殊物质。
磁场不是由原子或分子组成的,但磁场是客观存在的。
磁场具有波粒的辐射特性。
磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的,所以两磁体不用在物理层面接触就能发生作用。
毕奥—萨伐尔定律1.选择题1. 两条无限长载流导线,间距0.5厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为:( )(A )0 (B )πμ02000 (C )πμ04000 (D )πμ0400 2.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为( )A .PB >Q B >O B B .Q B >P B >O BC . Q B >O B >P BD .O B >Q B >P B3.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问那个区域中有些点的磁感应强度可能为零:( )A .仅在象限1B .仅在象限2C .仅在象限1、3D .仅在象限2、44.边长为a 的一个导体方框上通有电流I ,则此方框中心点的磁场强度( )A .与a 无关B .正比于2a C .正比于a D .与a 成反比5.边长为l 的正方形线圈,分别用图示两种方式通以电流I ,图中ab 、cd 与正方形共面,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为( )A .01=B ,02=B B .01=B ,lI B πμ0222= C .l I B πμ0122=,02=B D .l I B πμ0122=, lI B πμ0222= 6.载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则1a :2a =( ) A .1:1 B .π2:1 C .π2:4 D .π2:8 7.如图所示,两根长直载流导线垂直纸面放置,电流A I 11=,方向垂宜纸面向外;电流A I 22=,方向垂直纸面向内。
则P 点磁感应强度B 的方向与X 抽的夹角为( )8.四条相互平行的载流长直导线电流强度均为I ,方向如图所示。
设正方形的边长为2a ,则正方形中心的磁感应强度为( )。
A .I a πμ02B .I aπμ220 C .0 D .I a πμ0 9. 一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I 。
若作一个半径为a R 5=、高l 的圆柱形曲面,轴与载流导线的轴平行且相距a 3,则B 在圆柱侧面S 上积分⎰∙s d B为( )A .I a πμ520B .I a πμ250C .0D .I aπμ5010.长直导线通有电流I ,将其弯成如图所示形状,则O 点处的磁感应强度为( )。
A .R I R I 4200μπμ+B .R I R I 8400μπμ+C .R I R I 8200μπμ+D .RI R I 4400μπμ+ 11.电流由长直导线1沿平行bc 边方向经过a 点流入电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源,如图。
已知直导线上的电流为I ,三角框每边长l 。
若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁场分别用1B 、2B 、3B 表示,则O 点的磁感应强度大小( )。
A .0=B ,因为0321===B B BB .0=B ,因为021=+B B ,03=BC .0≠B ,因为虽然021=+B B,但03≠BD .0≠B ,因为虽然03=B ,但021≠+B B12.如图所示,一条长导线折成钝角α,导线中通有电流I ,则O 点的磁感应强度为( )。
A .0B .απμcos 20IC .απμsin 20ID .απμsin 0I 13.如图所示,一条长导线折成钝角α,导线中通有电流I ,则在PO 延长线上离O 点距离为l 的A 点处的磁感应强度为( )。
A .0B .)]2sin(1[)2cos(40παπαπμ-+-l IC .)]2sin(1[)2sin(40παπαπμ-+-l ID .)]2sin(1[)2cos(40παπαπμ---l I14.如图所示,两根长导线沿半径方向引到铁环上的A 、B 两点上,两导线的夹角为α,环的半径R ,将两根导线在很远处与电源相连,从而在导线中形成电流I ,则环中心点的磁感应强度为( )。
A .0B .R I20μ C .αμsin 20R ID . αμCOS R I2015.两条长导线交叉于一点O ,这两条导线上通过的电流分别为I 和2I ,则O 点的磁感应强度为( )A .0B .πμI 0C .πμI 02D . πμI 04 16.两条长导线相互平行放置于真空中,如图所示,两条导线的电流为I I I ==21,两条导线到P 点的距离都是a ,P 点的磁感应强度为( )A .0B .aI πμ220 C .a I πμ02 D . a I πμ0 17.两条长导线相互平行放置于真空中,如图所示,两条导线的电流为I I I ==21,两条导线到P 点的距离都是a ,P 点的磁感应强度方向( )A .竖直向上B .竖直向下C .水平向右D . 水平向左18.两条长导线相互平行放置于真空中,如图所示,两条导线的电流为I I I ==21,两条导线到P 点的距离都是a ,P 点的磁感应强度方向( )A .竖直向上B .竖直向下C .水平向右D . 水平向左19.电流由长直导线1沿切线方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源,如图。
已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一条直线上。
设长直导线1、2和圆环中的电流分别在O 点产生的磁感应强度为1B 、2B 、3B ,则O 点的磁感应强度大小( )。
A .0=B ,因为0321===B B BB .0=B ,因为虽然01≠B ,02≠B ,但021=+B B ,03=BC .0≠B ,因为01≠B ,02≠B ,03≠BD .0≠B ,因为虽然03=B ,但021≠+B B19.电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源,如图。
已知直导线上的电流强度为I ,圆环的半径为R ,︒=∠30aOb 。
设长直导线1、2和圆环中的电流分别在O 点产生的磁感应强度为1B 、2B 、3B ,则O 点的磁感应强度大小( )。
A .0=B ,因为0321===B B BB .0=B ,因为虽然01≠B ,02≠B ,但021=+B B ,03=BC .0≠B ,因为虽然03=B ,但021≠+B BD .0≠B ,因为03≠B ,021≠+B B ,所以0321≠++B B B2. 判断题:1.一条载流长直导线,在导线上的任何一点,由导线上的电流所产生的磁场强度为零。
(2.根据毕奥沙伐定律分析,在均匀、线性、各向同性媒质中,一段有限长载流直导线周围空间的磁场分布具有对称性,磁感应强度线是一些以轴线为中心的同心圆。
( ) 3.一段电流元l Id 所产生的磁场的方向并不总是与l Id 垂直。
( )4.在电子仪器中,为了减弱与电源相连的两条导线所产生的磁场,通常总是把它们扭在一起。
( )5.如图,两根通有同样电流I 的长直导线十字交叉放在一起,交叉点相互绝缘,则虚线上的磁场为零。
6.如图,一根导线中间分成电流相同的两支,形成一菱形,则在菱形长对角线(水平方向)上的磁场为零,短对角线上的磁场不为零。
( )7.对于一个载流长直螺线管,两端的磁感应强度大小是中间的一半。
( )8.当需要对一个在地球上、暴露在空气中的点的磁场进行精确计算时,如果磁场比较弱,需要考虑地磁场的影响。
( )8.载流导线所产生的磁场与地磁场之间不可以进行磁场的叠加。
( )8.载流导线所产生的磁场与永磁体所产生的磁场具有不同的性质,所以在计算合磁场时,并不是总能进行叠加计算。
( )3. 填空题1.一根长直载流导线,通过的电流为2A ,在距离其2mm 处的磁感应强度为 。
2.一根直载流导线,导线长度为100mm ,通过的电流为5A ,在与导线垂直、距离其中点的50mm 处的磁感应强度为 。
3.一根载流圆弧导线,半径1m ,弧所对圆心角6,通过的电流为10A ,在圆心处的磁感应强度为 。
4.一个载流直螺线管,直径0.1m ,长度0.1m ,通过的电流为0.1A,线圈匝数1000,在螺线管内部轴线中点上的磁感应强度为 。
5.一个载流直螺线管,半径0.2m ,长度0.2m ,线圈两端加36V 电压,线圈匝数1000,线圈电阻100欧姆,在螺线管一端轴线中点上的磁感应强度为 。
6.真空中,电流I由长直导线1沿垂直bc边方向经a点流入一电阻均匀分布的正三角形线框,再由b点沿平行ac边方向流出,经长直导线2返回电源(如图)。
三角形框每边长为l,则在该正三角框中心O点处磁感应强度的大小B=7.电流由长直导线1沿半径方向经a点流入一电阻均匀分布的圆环,再由b点沿半径方向流出,经长直导线2返回电源(如图),已知直导线上的电流强度为I,圆环的半径为R,且a、b和圆心O在同一直线上,则O处的磁感应强度B的大小为8.在真空中,电流I由长直导线1沿半径方向经a点流入一电阻均匀分布的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图)。
已知直导线上的电流强度为I,圆环的半径为R,且a、b和圆心O在同一直线上,则O处的磁感应强度B的大小为9.一弯曲的载流导线在同一平面内,形状如图(O点是半径为R1和R的半圆圆心)则圆心O点处的磁感应强度B= 。
10.一弯曲的载流导线在同一平面内,形状如图(O点是半径为R1和R的半圆圆心)则圆心O点处的磁感应强度B的方向。
11.如图所示,用均匀细金属丝构成一半径为R的圆环C,电流I由导线1流入圆环A点,而后由圆环B流出,进入导线2。
设导线1和导线2与圆环共面,则环心O处的磁感应强度大小为。
12.如图所示,用均匀细金属丝构成一半径为R的圆环C,电流I由导线1流入圆环A点,而后由圆环B流出,进入导线2。
设导线1和导线2与圆环共面,则环心O处的磁感应强度方向。
13.在xy平面内,有两根互相绝缘,分别通有电流3I和I的长直导线,设两根导线互相垂直(如图),则在xy平面内,磁感应强度为零的点的轨迹方程为。
14.两平行载流导线,导线上的电流为I,方向相反,两导线之间的距离a,则在与两导线同平面且与两导线距离相等的点上的磁感应强度大小为。
15.两平行载流导线,导线上的电流为I,方向相反,两导线之间的距离a,则在与两导线同平面且与其中一导线距离为b的、两导线之间的点上的磁感应强度大小为。
16.在真空中有一根半径为R的半圆形细导线,流过的电流为I,则圆心处的磁感应强度大小为。
17.在半径为R的长直金属圆柱体内部挖去一个半径为r的长直圆柱体,两柱体轴线平行其间距为a,如图,今在此导体上通有电流I,电流在截面上均匀分布,则空心部分轴线上O 点的磁感强度的大小为。