过氧化氢酶米氏常数的测定
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
双倒数法测定过氧化物酶的米氏常数学院/专业/班级____________________________________________ 姓名_______________ 合作者___________________________________________________ 教师评定___________【实验目的】以过氧化物酶为例,掌握测定酶促反应初速率和米氏常数的原理及方法【实验原理】1913年,Michaelis 和Menten 运用酶反应过程中形成中间络合物的原理,首先提出了底物浓度和酶促反应速率的关系式,即著名的米氏方程:[][]S K S V v m max +⋅= 式中:v 为反应初速率(微摩尔浓度变化/min );V max 为最大反应速率(微摩尔浓度变化/min );[S ]为底物浓度(mol/L );K m 为米氏常数(mol/L )。
这个方程式表明当已知K m 及V max 时,酶反应速率与底物浓度之间的定量关系。
K m 值等于酶促反应速率达到最大反应速率一半时所对应的底物浓度,是酶的特征常数之一。
不同酶的K m 值不同,同一种酶与不同底物反应K m 值也不同,K m 值可以近似的反应酶与底物的亲和力大小:K m 越大表明亲和力越小;K m 越小表明亲和力越大。
大多数纯酶的K m 值在0.01~100 mmol/L 。
通过米氏方程的不同变形,可有多种求算米氏常数的方法,一般较常用的双倒数法,即取米氏方程的倒数式:[]max max m V 1S 1V K v 1+⋅=以v 1对[]S 1作图得一直线,该直线与横轴截距[]m K 1S 1=-。
过氧化物酶是一种对氢受体(H 2O 2) 底物有特异性,对氢供体底物缺乏特异性的酶,它可催化过氧化氢氧化许多多元酚或多元胺类底物发生显色、荧光或化学发光反应,可用于微量过氧化氢含量测定,也可以和其它酶反应系统偶联可用于测定许多与生命相关的物质:如葡萄糖、半乳糖、氨基酸、尿酸及胆甾醇等,亦是免疫分子和核酸分析中常用的标记物。
过氧化氢酶km值的测定实验报告过氧化氢酶(catalase)是一种重要的酶类,在生物体内起着重要的氧化还原作用。
本实验旨在通过测定过氧化氢酶的Km值,来研究该酶对底物浓度的敏感程度,从而深入了解过氧化氢酶的催化特性。
首先,我们需要准备实验所需的材料和试剂,包括过氧化氢酶样品、过氧化氢底物溶液、缓冲液、吸光度计等。
接着,按照实验方案,我们将过氧化氢底物溶液分别配制成不同的浓度,然后将不同浓度的底物溶液与过氧化氢酶样品混合,反应一定时间后,利用吸光度计测定反应体系中过氧化氢的浓度。
通过对不同浓度底物下反应体系中过氧化氢浓度的测定,我们可以得到不同底物浓度下过氧化氢酶催化反应的速率。
在实验过程中,我们需要注意保持反应体系的温度稳定,避免温度对反应速率的影响。
此外,为了减小误差,我们需要进行多次重复实验,取平均值作为最终结果。
在实验结束后,我们将利用实验数据,通过线性回归分析,计算出过氧化氢酶的Km值。
通过本实验,我们可以得到不同底物浓度下过氧化氢酶的催化速率,进而绘制出酶的底物浓度与催化速率的曲线。
通过分析曲线斜率的变化,我们可以得到过氧化氢酶的Km值。
Km值表示酶与底物结合的紧密程度,Km值越小,表示酶对底物的亲和力越大,反之亦然。
在实验结果分析中,我们可以得出不同底物浓度下过氧化氢酶的Km值,从而揭示了过氧化氢酶对底物浓度的敏感程度。
这有助于我们更深入地了解过氧化氢酶的催化特性和底物结合机制。
同时,对于医学和生物工程领域,对过氧化氢酶的Km值的准确测定也具有重要的应用意义。
综上所述,通过本实验的Km值测定,我们可以更深入地了解过氧化氢酶的催化特性和底物结合机制,为相关领域的研究和应用提供重要的参考依据。
希望本实验能为相关领域的研究工作提供一定的帮助和启发。
过氧化氢酶米氏常数各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:过氧化氢酶动力学常数测定实验项目二、过氧化氢酶的活力和动力学常数测定姓名:赵家熙指导教师:谭志文实验室:6503 组员:①章恒炯②③成绩:第三部分:实验记录与分析一、酶活力测定(一)原始数据1.样品原始质量:2.标定数据:(1)KMnO4质量数及配制:158 (2)Na2C2O4质量数:134 (3)标定数据:/L(4)KMnO4实际浓度:/L3.样品滴定数据消耗高锰酸钾溶液(ml):实验(1)实验(2)对照(1)对照(2)(二)结果计算1.换算系数(1mL KMnO4溶液相当于多少mg H2O2)2.样品酶活计算(每克鲜重样品1min内分解H2O2的毫克数表示:mg H2O2/g?min)(A?B)?VT??V1?t酶活(mgH2O2/g·min)=酶活(mgH2O2/g·min)=(A-B)= VT====10min二、动力学常数的测定(一)原始数据(二)求出各管反应前的底物浓度[S]0和反应速度V0(三)以1/V0对1/[S]0作图(用excel 作图)1/s 1/v2008040(四)求出Km(mol/L)和Vmax (mmol/min)Km11?? vv[S]v如(三)中图maxmaxy=+ x=0时y=1/Vmaxy=0时x=-1/KmKm= Vmax=第四部分:课后研讨题1.总结本实验操作过程的注意事项。
1酶的提取和存放一般在0-4℃下进行。
2每个三角瓶内的酶促反应时间要精确控制在5min。
3各反应瓶的滴定终点微红色为同一标准。
4使用前应检查滴定管是否渗漏,滴定过程中应该保证逐滴加入。
2.影响过氧化氢酶活力测定的因素有哪些?1、温度,温度过高或者过低会降低过氧化氢酶的活性。
2、酸碱度,酸或碱浓度太高会使过氧化氢酶失活。
3.过氧化氢酶与哪些生化过程有关?R(Fe2+)+H2O2 = R(Fe3++OH-) R(Fe3+OH-)2+H2O2 = R(Fe2+)2+2H2O+O24.在反应速度的测定中,加入硫酸有哪些作用?终止反应,为下一步的滴定提供酸的环境。
实验一过氧化氢酶米氏常数的测定一、目的了解米氏常数的意义,测定过氧化氢酶的米氏常数。
二、实验原理H2O2被过氧化氢酶分解出H2O和O2,未分解的H2O2用KMNO4在酸性环境中滴定,根据反应前后H2O2的浓度差可求出反应速度。
本实验以马铃薯提供过氧化氢酶,以1/ν~1/[S]作图求Km三、实验器材1.锥形瓶100~150ml(×6)。
2.吸管1.0ml(×2)、0.5ml(×2)、2.0ml(×2)、5ml(×2)、10.0ml(×1)。
3.温度计(0~100℃)。
4.微量滴定管5ml(×1)。
5.容量瓶1000ml(×1)。
四、实验试剂1、0.02mol/L磷酸缓冲液(Ph7.0)取磷酸二氢钾 0.68g,加0.1mol/L氢氧化钠溶液 29.1ml,用水稀释至100ml,即得。
2、酶液:称取马铃薯5g,加上述缓冲液10ml,匀浆,过滤。
3、0.02mol/L KMnO4:称取KMnO4(AR)3.2g,加蒸馏水1000ml,煮沸15min,2d后过滤,棕色瓶保存。
4、0.004mol/L KMnO4:准确称取恒重草酸钠0.2g,加250ml冷沸水及10ml浓硫酸,搅拌溶解,用0.02ml/L的KMnO4滴定至微红色,水浴,加热至65℃,继续滴定至溶液微红色并30s不褪,算出KMnO4的准确浓度稀释成0.004mol/L即可。
5、0.05 mol/L H2O2:取30% H2O223ml加入1000ml容量瓶中,加蒸馏水至刻度(约0.2mol/L),用标准KMnO4(0.004mol/L)标定其准确浓度,稀释成0.05mol/L(标定前稀释4倍,取2.0ml,加25% H2SO42.0ml,用0.004mol/LKMnO4滴定至微红色)。
6、25% H2SO4五、操作取锥形瓶6只,按下表顺序加入试剂:表一过氧化氢酶米氏常数的测定管号试剂0123450.05mol/L H2O2/ml蒸馏水/ml酶液/ml9.50.51.008.500.51.258.250.51.677.830.52.57.00.55.004.500.5先加好0.05mol/L H2O2及蒸馏水,加酶液后立即混合,依次记录各瓶的起始反应时间。
第一部分 实验一、 原理1、过氧化氢酶米氏常数的测定:H 2O 2被过氧化氢酶分解出H 2O 和O 2,未分解的H 2O 2用KMnO 4在酸性环境中滴定,根据反映前后H 2O 2的浓度差可以求出反应速度。
本实验以马铃薯提供过氧化氢酶,以1/ν~1/[S]作图求Km2、黄素蛋白酶的定性试验:黄素蛋白酶是以黄素核莓酸(FMN 或FDA )为辅基的脱氢酶类。
某些黄素蛋白酶还含有铁、铜或钼类金属离子。
分子中核黄素部分能与氢原子可逆地结合,从而引起递氢作用。
N N C NH CN O O CH 2(CHOH)3CH 2OH H 3C H 3C N H N CNH C H N O O CH 2(CHOH)3CH 2OH H 3C H 3C +2H -2H这类脱氢酶可以催化脱去底物分子中的氢氧或从还原态辅酶Ⅱ(NADH,H+及NADPH ,H+)上把氢传给氧。
在无氧条件下,可用甲烯蓝代替氧。
例如牛乳中的黄嘌呤氧化酶就是黄素蛋白酶的一种。
它能催化水合甲醛把氢交给甲烯蓝3、酵母蔗糖酶的部分纯化与酶活测定:酵母中含有丰富的蔗糖酶(EC3.2.1.26),本实验以酵母为原料,首先通过研磨法以及温度差破碎法破碎细胞的方式得到粗酶,之后先通过调节pH 到5.0杂蛋白的等电点,不影响酶活的情况下,使其凝聚沉淀,最后保温至最适温度反应后,通过测定没催化产物量来间接测定酶活。
细胞破碎方法有机械破碎法(通过机械运动所产生的剪切力的作用使细胞破碎的方法),物理破碎法(通过压力、温度、声波等各种物理因素的作用使组织细胞破碎的方法,常用的有温度差破碎法、压力差破碎法和超声波破碎法)和化学破碎法(通过各种化学试剂对细胞膜的作用使细胞破碎的方法)。
研磨法是利用研体、石磨、细菌磨、球磨等研磨器械所产生的剪切力将组织细胞破碎,必要时可以加入精制石英砂、小玻璃球、玻璃粉、氧化铝等作为助磨剂,以提高研磨效果。
研磨法设备简单、可以采用人工研磨液可以采用电动研磨。
实验二过氧化氢酶km值的测定
过氧化氢酶(H2O2)是一种经典的多功能过氧化物。
它可以在氧化还原或化学反应中发挥作用。
因此,它在生物氧化解氧化反应中非常重要。
H2O2可以与其他过氧化物,包括氧原子和自由基,反应形成复杂的反应物组合。
这些反应控制着氧化脱氢反应,而过氧化氢酶(Km)是这种反应序列的关键步骤。
Km是H2O2和其他过氧化物之间氧化脱氢反应的活性位置,它表示H2O2在氧化脱氢反应中显示出其最大活性的浓度。
它是生物体氧化脱氢反应进行的重要指标,可以帮助我们了解这种反应的效率和机理。
测定Km值可以看出这个过程的氧化-脱氢速率,从而优化氧化脱氢反应的效率。
Km值的测定大致可以分为三个部分:进行反应的准备工作、进行该反应的实验操作和数据处理。
首先,用实验室内的设备准备反应液,其中应包括酶溶液、过氧化氢和反应基质。
其次,把反应液倒入试剂瓶,用磁力搅拌器搅拌均匀,使酶蛋白完全溶解。
然后,用光度仪测定溶液的响应时间,并确定反应停止的时间。
最后,对得到的数据进行分析,以确定Km值。
Km值测定是一个比较复杂的实验,需要实验室设备、当心操作和熟练的数据处理。
这些都是关键因素,控制着测定结果的准确性和可信度。
因此,在实验室中必须做好准备,并且试剂、实验仪器要有正确的温度、湿度和搅拌速度,以保证实验的准确性和可靠性。
此外,实验室人员还需要做好安全防护措施,以防止接触有毒物质,确保实验的安全性。
总之,测定H2O2的Km值是比较复杂的,需要安全准备、细心操作和合理数据分析,以获得准确、可靠的结果,为氧化解氧化反应提供参考。
过氧化氢酶米氏常数的测定傅璐121140012一、实验目的1. 了解米氏常数的测定方法2. 学习提取生物组织中的酶二、实验原理1.米氏反应动力学米氏方程(Michaelis-Menten Equation):2.米氏常数的意义:①反映酶的种类:Km是一种酶的特征常数,只与酶的种类有关,与酶浓度、底物浓度无关。
②米氏常数是酶促反应达到最大反应速度Vmax一半时的底物浓度。
其数值大小反映了酶与底物之间的亲和力:Km值越大,亲和力越弱,反之Km值越小,亲和能力越强。
③Km可用来判断酶(多功能酶)的最适底物:Km值最小的酶促反应对应底物就是该酶的最适底物。
3.米氏常数的求法:该方法的缺点是难以确定最大反应速度Vmax。
该作图法应用最广。
但在低浓度是v值误差较大,在[S]等差值实验时作图点较集中于纵轴。
因此在设计底物浓度时,最好将1/[S]配成等差数列,这样可使点距较为平均,再配以最小二乘回归法,就可以得到较为准确的结果。
此法优点是横轴上点分布均匀,缺点是1/v会放大误差,同时对底物浓度的选择有要求。
[S]<<Km时图形近于水平线,[S]>>Km时直线将在原点附近与轴相交。
4.氧化酶:生物体内重要的三种氧化酶类,其作用均是消除体内自由基:①POD:过氧化物酶②SOD:超氧化物歧化酶③CAT:;过氧化氢酶5.过氧化氢酶的作用:植物体内活性氧代谢加强而使过氧化氢发生积累。
过氧化氢可进行一步生成氢氧自由基。
氢氧自由基是化学性质最活泼的活性氧,可以直接或间接地氧化细胞内核酸、蛋白质等生物大分子,并且有非常高的速度常数,破坏性极强,可使细胞膜遭受损害,加速细胞的衰老和解体。
过氧化氢酶(catalase,CAT)可以清除过氧化氢、分解氢氧自由基,保护机体细胞稳定的内环境及细胞的正常生活,因此CAT是植物体内重要的酶促防御系统之一,其活性高低与植物的抗逆性密切相关。
6.过氧化氢酶活力的测定方法:①紫外吸收法:过氧化氢在240nm波长下有强烈吸收,过氧化氢酶能分解过氧化氢,使反应溶液吸光度(A240nm)随反应时间而降低。
过氧化氢酶米氏常数的测定一、实验目的
了解并掌握米氏常数的意义和测定方法
二、实验原理
H 2O
2
被过氧化氢酶分解出H
2
O和O
2
,未分解的H
2
O
2
用KMnO
4
在酸性环境中滴
定,根据反应前后H
2O
2
的浓度差可求出反应速度。
2H
2O
2
= 2H
2
O + O
2
2KMnO
4 + 5H
2
O
2
+ 3H
2
SO
4
= 2MnSO
4
+ K
2
SO
4
+ 5O
2
↑ + 8H
2
O
本实验由马铃薯提供过氧化氢酶。
在保持恒定的条件下,用相同浓度的过
氧化氢酶催化不同浓度的H
2O
2
分解。
在一定限度内,酶促反应速度与H
2
O
2
浓度
成正比。
用双倒数作图法(即以1/v对1/[S]作图)可求得过氧化氢酶的Km值。
三、实验器材
锥形瓶(6个) 吸管、酸式滴定管
四、实验试剂
1、0.02mol/L 磷酸缓冲液(pH=7)
2、0.004 mol/L KMnO
4
(需标定)
3、0.05 mol/L H
2O
2
(需标定) 4、25% H
2
SO
4
五、实验操作
1、酶液的提取:称取马铃薯(去皮)5克,加0.02mol/L 磷酸缓冲液10mL,再加少量海砂,研磨成匀浆,离心(3000r/ min,10min),上清液即为酶液。
2、滴定:取干燥锥形瓶6只,按下表顺序加入试剂:
先加好0.05mol/L H
2O
2
及蒸馏水,加酶液后立即混合,依次记录各瓶的起
始反应时间。
各瓶时间达5min时立即加2.0mL 25% H
2SO
4
终止反应,充分混
匀。
用0.004 mol/L KMnO
4滴定各瓶中剩余的H
2
O
2
至微红色,记录消耗的KMnO
4
体积。
六、实验计算
分别求出1─5瓶的底物浓度[S]和相应的反应速度v。
C 1V 1
10
[S] = 5 ∕2C2V2
C 1V
1
–
v =
式中 [S]:为底物物质的量浓度(mol/L)
C 1:为H
2
O
2
物质的的量浓度(mol/L)
V
1:为H
2
O
2
的体积(mL)
10:反应的总体积
v:反应速度(mmol/min)
C 2: KMnO
4
物质的量浓度(mol/L)
V
2:KMnO
4
的体积(mL)
以1/v对1/[S]作图求出Km。
七、实验注意事项
( 1 ) 按表先加H
2O
2
及蒸馏水。
( 2 ) 准确控制各瓶中酶促反应时间尽量一致。
( 3 ) 各种试剂的加量应准确。