SMT元件基础知识与命名统一
- 格式:doc
- 大小:490.00 KB
- 文档页数:9
技术员培训资料—初级提纲一:生产程序的数据结构二:元件数据的结构三:Part Number(元件名称)命名规范四:Part Type Name(外形类型名称)命名规范五:Packaging Name(封装名称)命名规范六:数据库中元件数据原始方向的统一七:定位点命名规范八:常用误差代码对照表九:常用额定电压代码对照表十:三星电容规格对照表一:生产程序的数据结构构成XP机器的生产程序的数据结构如下:图一每一个编辑好的程序都由定位点数据、吸嘴数据、电路板数据、顺序数据、供料器安装数据、元件数据等六块数据组成(其中,元件数据又包括:Part Number数据、Part Type数据、Packaging数据)。
如图一左边(手画的框框里面的内容)。
每一个完整的程序中的数据都是独立的。
两个不同的程序中的数据虽然都是独立的,但是他们中间还是有很多数据是相同的。
我们把这些相同的数据都再另外保存在机器的数据库里面,方便下次编程的时候,遇到需要相同数据就可以直接读取。
如图一右边的那些数据。
二:元件数据的结构XP机器中使用的元件相关数据以如下结构进行管理:如上图所示,这里的每一个数据都是由一个名称和它所对应的实质数据组成。
1、Part Number数据(元件数据)包括:Part Number(元件名称)、Part Type数据(外形类型数据)、Packaging数据(封装数据)和影像数据。
2、Part Type数据(外形类型数据)包括:Part Type Number(外形类型数据名称)、Template 数据(模板数据)。
3、Packaging数据(封装数据)包括:Packaging Number(封装名称)、封装模板数据4、影像数据包括:影像数据文件名、图片。
三:Part Number(元件名称)命名规范Part Number就是元件名称。
编程时,我们取物料的主要信息按照固定结构排列,形成我们所用的元件名称。
1.2.“R3.4.5.6.由字母或者数字构成。
[SMT贴片元件基础知识]一、表面贴装元件分类(一)按功能分类1.连接件(Interconnect):提供机械与电气连接/断开,由连接插头和插座组成,将电缆、支架、机箱或其它PCB与PCB连接起来;可是与板的实际连接必须是通过表面贴装型接触。
2. 有源电子元件(Active):在模拟或数字电路中,可以自己控制电压和电流,以产生增益或开关作用,即对施加信号有反应,可以改变自己的基本特性。
3. 无源电子元件(Inactive):当施以电信号时不改变本身特性,即提供简单的、可重复的反应。
4.异型电子元件(Odd-form):其几何形状因素是奇特的,但不必是独特的。
因此必须用手工贴装,其外壳(与其基本功能成对比)形状是不标准的,例如:许多变压器、混合电路结构、风扇、机械开关块,等。
(二)按封装外形形状/尺寸分类Chip:片电阻, 电容等, 尺寸规格: 0201, 0402, 0603, 0805, 1206, 1210, 2010, 等..钽电容, 尺寸规格: TANA,TANB,TANC,TAND..SOT:晶体管,SOT23, SOT143, SOT89等..Melf:圆柱形元件, 二极管, 电阻等….SOIC:集成电路, 尺寸规格: SOIC08, 14, 16, 18, 20, 24, 28, 32….QFP:密脚距集成电路….PLCC:集成电路, PLCC20, 28, 32, 44, 52, 68, 84….BGA:球栅列阵包装集成电路, 列阵间距规格: 1.27, 1.00, 0.80….CSP:集成电路, 元件边长不超过里面芯片边长的1.2倍, 列阵间距<0.50的µBGA….英制和公制电容、电阻的封装形式通常可以有英制和公制两种标示方法:英制公制0402 (40milX20mil) 1005 (1.0mmX0.5mm)0603 (60milX30mil) 1608 (1.6mmX0.8mm)0805 (80milX50mil) 2012 (2.0mmX1.2mm)1206 (120milX60mil) 3216 (3.2mmX1.6mm)1210 (120milX100mil) 3225 (3.2mmX2.5mm)1812 (180milX120mil) 4532 (4.5mmX3.2mm五、电阻电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。
SMT电子元器件知识在表面贴装技术生产的过程中,我们会接触到各种各样的电子物料,通常将这些物料分为SMT元件(也称SMC,包含表面贴装电阻、电容、电感等)和SMT器件(也称SMD,包含表面贴装二极管、三极管、插座、集成电路等)两大类,下面就我们常用的电子元器件作以介绍:一、表面贴装电阻表示,以大写英文字母 R 代表,其基本单位为欧姆,符号为Ω。
单位换算关系:1兆欧(MΩ)=1000千欧(KΩ)=1000000欧(Ω)。
主要参数:阻值、尺寸、功率、误差、温度系数和包装类型等。
1,表面贴装电阻的阻值大小一般丝印于元件表面,常用三位或四位数表示。
当用三位数字表示阻值大小时,第一、二位为有效数字,第三位为在有效数字后添加 0 的个数,单位为欧姆。
例如:103 表示 10000Ω 10KΩ101 表示 100Ω124 表示 120000Ω 120KΩ但对于阻值小的电阻,有如下的表示方法:6R8 表示 6.8Ω2R2 表示 2.2Ω用 R 代表小数点000 表示 0Ω当用四位数字表示阻值大小时,第一、二、三位为有效数字,第四位为在有效数字后添加 0 的个数,单位为欧姆。
例如:3301 表示 3300Ω 3.3KΩ1203 表示 120000Ω 120 KΩ4702 表示 47000Ω 47 KΩ2,表面贴装电阻的尺寸常用其体积的长度与宽度尺寸表示,有公制(单位为毫米mm)和英制(单位为英寸)两种尺寸代码,由4位数字组成,前两位数表示电阻的长度,后两位数表示电阻的宽度。
另外,不同尺寸的电阻,其额定功率也不同,有1/16W、1/10W、1/8W、1/4W、1/2W、1W等。
下表为几种常用贴片电阻的尺寸代码、实际尺寸和额定功率的相对应关系:英制代码0402 0603 0805 1206 1210 2010 2512 公制代码1005 1608 2012 3216 3225 5025 6432 实际尺寸(mm) 1.0x0.5 1.6x0.8 2.0x1.2 3.2x1.6 3.2x2.5 5.0x2.5 6.4x3.2功率值(W)1/16 1/16 1/10 1/8 1/4 1/2 1 3,电阻元件在生产过程中其阻值不可能达到绝对的精确,为了判定其是否合格,常统一规定其阻值的上、下限,即误差范围对其进行检测。
SMT电子元器件知识在表面贴装技术生产的过程中,我们会接触到各种各样的电子物料,通常将这些物料分为SMT元件(也称SMC,包含表面贴装电阻、电容、电感等)和SMT器件(也称SMD,包含表面贴装二极管、三极管、插座、集成电路等)两大类,下面就我们常用的电子元器件作以介绍:一、表面贴装电阻表示,以大写英文字母 R 代表,其基本单位为欧姆,符号为Ω。
单位换算关系:1兆欧(MΩ)=1000千欧(KΩ)=1000000欧(Ω)。
主要参数:阻值、尺寸、功率、误差、温度系数和包装类型等。
1,表面贴装电阻的阻值大小一般丝印于元件表面,常用三位或四位数表示。
当用三位数字表示阻值大小时,第一、二位为有效数字,第三位为在有效数字后添加 0 的个数,单位为欧姆。
例如:103 表示 10000Ω 10KΩ101 表示 100Ω124 表示 120000Ω 120KΩ但对于阻值小的电阻,有如下的表示方法:6R8 表示 6.8Ω2R2 表示 2.2Ω用 R 代表小数点000 表示 0Ω当用四位数字表示阻值大小时,第一、二、三位为有效数字,第四位为在有效数字后添加 0 的个数,单位为欧姆。
例如:3301 表示 3300Ω 3.3KΩ1203 表示 120000Ω 120 K Ω4702 表示 47000Ω 47 K Ω2,有公制(单位为毫米mm )和英制(单位为英寸)两种尺寸代码,由4位数字组成,前两位数表示电阻的长度,后两位数表示电阻的宽度。
另外,不同尺寸的电阻,其额定功率也不同,有1/16W 、1/10W 、1/8W 、1/4W 、1/2W 、1W 等。
下表为几种常用贴片电阻的尺寸代码、实际尺寸和额定功率的相对应关系:3,电阻元件在生产过程中其阻值不可能达到绝对的精确,为了判定其是否合格,常统一规定其阻值的上、下限,即误差范围对其进行检测。
电阻常用的误差等级有±1%、±5%、±10%等,分别用字母M 、J 、K 代表。
SMT贴片元件知识一、电阻:是一种无方向之分的元件。
用符号“R”表示1、外形分:矩形:排阻:可调电阻:2、电阻单位:欧姆(Ω),单位换算:1兆欧(MΩ)=103千欧(KΩ)1千欧(KΩ)=1000欧(Ω)数字表示换算方法:(1)三位数换算(电阻表面丝印为3个数字)前两位有数字照写,第三位为10的几次方。
如103=10×103=10×1000=10000Ω=10KΩ102=10×102=10×100=1000Ω=1KΩ101=10×101=10×10=100Ω1RO=1Ω(2)四位数换算规则(电阻表面丝印为4个数字此种表示方法为精密电阻):前三位有效数字照写,第4位为10的几次方,如:1003=100×103=100×1000=100000Ω=100K1002=100×102=100×100=10000Ω=10K1001=100×101=100×10=1000Ω=1K1000=100×100=100×1=100Ω3、误差:F:±1% J:±5% K:±10% M:±20%4、常用规格:公制:公制:10 05 1608 2012 3216长1.0MM 宽0.5MM英制:04 02 0603 0805 1206长0.04英寸宽0.02英寸1英寸=2.54CM 1CM=10MM二:电容(C)1、外形分:片状瓷介电容:钽质电容:(无极性)(有极性)铝电解电容:瓷介可调电容(有极性)(有极性)2、电容单位:法拉(F)1F=103MF 1MF=103UF 1UF=103NF 1NF=1000PF(1)数字表示换算规则:前二位数字照写,第三位数字为10的几次方。
如:104=10×104=10×10000=100000PF=0.1UF=100NF103=10×103=10×1000=10000PF=0.01UF=10NF102=10×102=10×100=1000PF=1NF101=10×101=10×10=100PF100=10×100=10×1=10PF109=10×1/10=1PF(如第三位数字为9,则“9”表示1/10)(2)误差:A: ±0.1PF B: ±0.15PF C: ±0.25PF D: ±0.5PF F: ±1%G:±2% J:±5% K:±10% M:±20% Z:+80% -20%三、电感(L)1、外形分:片状:绕线状:水桶形:2、电感单位:享利(H):1享(H)=103毫享(MH)=106微享(UH)3、常用规格:同电阻、电容一样。
SMT物料基础必学知识点
以下是SMT(表面贴装技术)物料基础必学的知识点:
1.基本术语:了解SMT的基本术语,例如SMT、贴装、焊接、元件等。
2.元件分类:了解常见的SMT元件的分类,例如贴片元件、插件元件、螺柱元件等。
3.元件封装:了解不同元件的封装形式,例如SOP(小外形封装)、QFP(四边形外形封装)、BGA(球网格阵列封装)等。
4.元件参数:了解元件的参数,例如阻值、电容值、电感值、电压等。
5.元件标记:了解元件的标记,例如元件的型号、批次号、生产厂商等。
6.元件尺寸:了解元件的尺寸规格,例如长宽高、引脚间距等。
7.元件小样:了解元件的小样,如何正确识别元件并保持正确的识别。
8.元件存储:了解元件的存储要求,例如温度、湿度、防尘等。
9.元件包装:了解元件的包装方式,例如卷带包装、管装包装、盘装
包装等。
10.元件识别:了解元件的识别方法,例如通过包装上的标签、标记、
颜色等识别。
11.元件检验:了解元件的检验方法,例如外观检查、尺寸测量、性能测试等。
12.元件替代:了解元件的替代方法,例如通过查找替代手册、联系供应商等。
以上是SMT物料基础必学的知识点,掌握这些知识将有助于理解和操作SMT物料。
技术员培训资料—初级提纲一:生产程序的数据结构二:元件数据的结构三:Part Number(元件名称)命名规范四:Part Type Name(外形类型名称)命名规范五:Packaging Name(封装名称)命名规范六:数据库中元件数据原始方向的统一七:定位点命名规范八:常用误差代码对照表九:常用额定电压代码对照表十:三星电容规格对照表一:生产程序的数据结构构成XP机器的生产程序的数据结构如下:图一每一个编辑好的程序都由定位点数据、吸嘴数据、电路板数据、顺序数据、供料器安装数据、元件数据等六块数据组成(其中,元件数据又包括:Part Number数据、Part Type数据、Packaging数据)。
如图一左边(手画的框框里面的内容)。
每一个完整的程序中的数据都是独立的。
两个不同的程序中的数据虽然都是独立的,但是他们中间还是有很多数据是相同的。
我们把这些相同的数据都再另外保存在机器的数据库里面,方便下次编程的时候,遇到需要相同数据就可以直接读取。
如图一右边的那些数据。
二:元件数据的结构XP机器中使用的元件相关数据以如下结构进行管理:如上图所示,这里的每一个数据都是由一个名称和它所对应的实质数据组成。
1、Part Number数据(元件数据)包括:Part Number(元件名称)、Part Type数据(外形类型数据)、Packaging数据(封装数据)和影像数据。
2、Part Type数据(外形类型数据)包括:Part Type Number(外形类型数据名称)、Template 数据(模板数据)。
3、Packaging数据(封装数据)包括:Packaging Number(封装名称)、封装模板数据4、影像数据包括:影像数据文件名、图片。
三:Part Number(元件名称)命名规范Part Number就是元件名称。
编程时,我们取物料的主要信息按照固定结构排列,形成我们所用的元件名称。
1.2.“R3.4.5.6.由字母或者数字构成。
接在实际供料方向编码后面,用“—”连接。
如果之前的编码空缺,则接在实际值编码/型号编码后面。
HW=海威(海威物料,一般是SONY套件)C2=Count2(两次送料)S3=吸取速度为30%(Soft Pick Speed=3)如:SSOP24,2096—HW;SOT89,78L05—C2;SOT23,1037—S3四:Part Type Name(外形类型名称)命名规范SMT所涉及的零件种类繁多,样式各异,有许多已经形成了业界通用的标准,这主要是一些芯片电容电阻等等;有许多仍在经历着不断的变化,尤其是IC类零件,其封装形式的变化层出不穷,令人目不暇接,在本章里将分标准零件与IC类零件详细阐述。
(一):标准零件命名规范06=0603(本体尺寸为0603的晶体管。
SOT23—06;SOT236—06)08=0805(本体尺寸为0805的晶体管。
SOT23—08;SOT236—08)B=Black黑色(黑色的钽质电容。
TCA—A;TCB—B)Blue=蓝色(蓝色2520电感。
L2525—Blue)4.以上编码有部分还可以是其他样式:D1206<---->SOD123 SOT234<---->SOT343<---->SOT24D0805<---->SOD323 SOT235<---->SOT353<---->SOT25D0603<---->SOD523 SOT236<---->SOT363<---->SOT26(二):IC类零件命名规范模板:XXXX00 1:IC类型编码IC为Integrated Circuit(集成电路块)之英文缩写,业界一般以IC的封装形式来划分其类型,传统IC有SOP、SOJ、QFP、PLCC等等,现在比较新型的IC 有BGA、CSP、FLIP CHIP等等,这些零件类型因其PIN (零件脚)的多寡大小以及PIN与PIN之间的间距不一样,而呈现出各种各样的形状,在本节我们将讲述几种常用IC的外形及常用称谓等。
(1)、SOPSmall outline Package零件两面有脚,脚向外张开一般称为鸥翼型引脚SSOP:引脚间距小于1mm的SOP(2)、QFPQuad Flat Package零件四边有脚,零件脚向外张开。
我们公司更常用的是LQFP。
LQFP也就是薄型QFP(Low profile Quad Flat Package)厚度等于1.4mmPQFP:厚度等于1.0mm的QFP(3)LCC近似无引线陶瓷芯片载体,它把引线封装在陶瓷基体四边上,使整个器件的热循环性能增强。
(4)LDCCCMOS感光元器件(5)TSOPThin Small Outline Package(6)TSSOPThin Small Shrink Outline Package(7)、PLCC(Plastic Leadless Chip Carrier)零件四边有脚,零件脚向零件底部弯曲。
(8)、BGA(Ball Grid Array):零件表面无脚,其脚成球状矩阵排列于零件底部。
2:PIN脚数编码物料引脚根数五:Packaging Name(封装名称)命名规范与业界通常的习惯有所不同,我们常说的封装是指物料的外形种类;而贴片机程序数据中的封装,是指物料的包装方式。
常见的包装方式分:纸带包装;胶带包装;管装;盘装等。
我们公司主要使用的供料器只有普通Feeder和托盘,随之,命名就分为普通Feeder名称和料盘名称。
(一):普通Feeder名称命名规范1:普通FeederE=(EmbossP=(Paper)纸带包装2:物料编带宽度编码3:物料编带间距编码编码等于物料编带间距,单位mm。
(二):料盘名称命名规范1SOYO=2:厚度编码3:结构编码4:特殊编码用于微型料盘3-1=当微型料盘安装在站位3-1时用3-51=当微型料盘安装在站位3-51时用六:数据库中元件数据原始方向的统一在SMT零件中,可分为有极性零件与无极性零件两大类。
无极性零件:普通电阻、普通电容、大部分排阻、普通电感等有极性零件:二极管、钽质电容、IC等其中无极性零件在生产中不需进行极性的识别,在此不赘述;但有极性零件之极性对产品有致命的影响,故下面将对有极性零件进行详尽的描述。
1、二极管(D):在实际生产中二极管又有很多种类别和形态,常见的有Class tube diode 、Green LED、Cylinder Diode等几种。
(1)、Glass tube diode:红色玻璃管一端为正极(黑色一端为负极)(2)、Green LED:一般在零件表面用一黑点或在零件背面用一正三角形作记号,零件表面黑点一端为正极(有黑色一端为负极);若在背面作标示,则正三角形所指方向为负极。
(3)、Cylinder Diode:有白色横线一端为负极.2、钽质电容:零件表面标有白色横线一端为正极。
3、IC:IC类零件一般是在零件面的一个角标注一个向下凹的小圆点,或在一端标示一小缺口或者一条横线来表示其极性。
在生产过程中,正确的极性指的是零件之极性与PCB上标识之极性一致,一般在PCB 上贴装IC的位置都有很明确的极性标示,IC零件之极性标示与PCB上相应标示吻合即可。
上面说明了常见零件之极性标示,但在实际生产中,因物料生产厂家不同,有时候同样的物料的编带方向会有所不同。
贴片机需要通过影像处理每一个元件外形后进行装贴,当来料编带方向与元件库定义的为此,特做以下统一。
以下所说的情况是基于,操作者站在正面Side1操作,面对触摸操作面板。
常用元器件0°方向的定义:1:片式元件无极性元件,焊盘或引脚左右分布;2:二极管;钽电容;铝电解有极性元件,焊盘或引脚左右分布,负极在左边(靠近编带孔的那边)3:晶体管(三极管、稳压管、四脚IC、五脚IC、六脚IC等)有极性元件,两边有引脚,左右分布,脚少的一端在左边(靠近编带孔的那边)。
当两边引脚个数相同时,表示方向的横线朝下方;4:IC用来表示方向的向下凹的小圆点在左下方;或,缺口端(横线端)在左边。
IC中的特例:SSOP24 方向向下为0 °!七:定位点命名规范定位点主要包括:基准定位点、子电路板跳过定位点。
基准定位点数据又由:定位点颜色、定位点形状、定位点尺寸、定位点读取范围组成。
以下主要对基准定位点进行描述。
基准定位点命名规范1:颜色编码B=BlackW=White2:尺寸编码编码等于定位点孔直径,单位mm。
八:常用误差代码对照表注:B;D;C只用于电容;当F用于小于10pF的电容时,F=1pF—+1pF。
九:常用额定电压代码对照表有很多元件厂家的额定电压是用两位编码(数字+字母)来表示的。
1:倍数编码编码数字等于2:基数编码每一个字母对应一个数字作为基数。
详细情况如下表:V。
例如:1H=10 X 5=50V。