高一【数学(人教B版)】对数函数的性质与图像-教学设计
- 格式:docx
- 大小:79.55 KB
- 文档页数:2
第1课时 对数函数的性质与图像问题导学预习教材P24-P27的内容,思考以下问题:1.对数函数的概念是什么?它的解析式具有什么特点?2.对数函数的图像是什么,通过图像可观察到对数函数具有哪些性质?对数函数一般地,函数y =log a x 称为对数函数,其中a 是常数,a >0且a ≠1. 对数函数y =log a x 的性质:(1)定义域是(0,+∞),因此函数图像一定在y 轴的右边. (2)值域是实数集R .(3)函数图像一定过点(1,0).(4)当a >1时,y =log a x 是增函数;当0<a <1时,y =log a x 是减函数. (5)对数函数的图像■名师点拨底数a 与1的大小关系决定了对数函数图像的“升降”:当a >1时,对数函数的图像“上升”;当0<a <1时,对数函数的图像“下降”.判断正误(正确的打“√”,错误的打“×”) (1)函数y =log x 12是对数函数.( )(2)函数y =2log 3x 是对数函数.( )(3)函数y =log 3(x +1)的定义域是(0,+∞).( ) 答案:(1)× (2)× (3)×函数f (x )=x -1+lg x 的定义域是( )A .(0,+∞)B .(0,1)C .[1,+∞)D .(1,+∞)解析:选C.因为⎩⎪⎨⎪⎧x -1≥0x >0,所以x ≥1.下列不等号连接错误的一组是( )A .log 0.52.2>log 0.52.3B .log 34>log 65C .log 34>log 56D .log πe>log e π解析:选 D.函数y =log πx 在定义域上单调递增,e<π,则log πe<log ππ=1.同理,log e π>log e e =1,则log πe<log e π.故D 错误.函数y =log(3a -1)x 是(0,+∞)上的减函数,则实数a 的取值范围是________. 解析:由题意可得0<3a -1<1, 解得13<a <23,所以实数a 的取值范围是⎝ ⎛⎭⎪⎫13,23. 答案:⎝ ⎛⎭⎪⎫13,23对数函数的概念判断下列函数哪些是对数函数?(1)y =3log 2x ;(2)y =log 6x ;(3)y =log x 3;(4)y =log 2x +1. 【解】 (1)log 2x 的系数是3,不是1,不是对数函数. (2)符合对数函数的结构形式,是对数函数. (3)自变量在底数位置上,不是对数函数. (4)对数式log 2x 后又加1,不是对数函数.判断一个函数是对数函数必须是形如y =log a x (a >0且a ≠1)的形式,即必须满足以下条件:(1)系数为1.(2)底数为大于0且不等于1的常数.(3)对数的真数仅有自变量x .若某对数函数的图像过点(4,2),则该对数函数的解析式为( )A .y =log 2xB .y =2log 4xC .y =log 2x 或y =2log 4xD .不确定解析:选A.设对数函数的解析式为y =log a x (a >0且a ≠1),由题意可知log a 4=2, 所以a 2=4,所以a =2,所以该对数函数的解析式为y =log 2x .对数函数的图像如图所示,曲线是对数函数y =loga x 的图像,已知a 取3,43,35,110,则对应于c 1、c 2、c 3、c 4的a 值依次为( ) A.3、43、35、110B.3、43、110、35C.43、3、35、110D.43、3、110、35【解析】 法一:观察在(1,+∞)上的图像,先排c 1、c 2底的顺序,底都大于1,当x >1时图像靠近x 轴的底大,c 1、c 2对应的a 分别为3、43.然后考虑c 3、c 4底的顺序,底都小于1,当x <1时图像靠近x 轴的底小,c 3、c 4对应的a 分别为35、110.综合以上分析,可得c 1、c 2、c 3、c 4的a 值依次为3、43、35、110.故选A.法二:作直线y =1与四条曲线交于四点,由y =log a x =1,得x =a (即交点的横坐标等于底数),所以横坐标小的底数小,所以c 1、c 2、c 3、c 4对应的a 值分别为3、43、35、110,故选A.【答案】 A函数y =log a x (a >0且a ≠1)的 底数变化对图像位置的影响观察图像,注意变化规律:(1)上下比较:在直线x =1的右侧,a >1时,a 越大,图像越靠近x 轴,0<a <1时,a 越小,图像越靠近x 轴.(2)左右比较:比较图像与y =1的交点,交点的横坐标越大,对应的对数函数的底数越大.1.函数y =log a (x +2)+1的图像过定点( ) A .(1,2) B .(2,1) C .(-2,1)D .(-1,1)解析:选D.令x +2=1,即x =-1, 得y =log a 1+1=1,故函数y =log a (x +2)+1的图像过定点(-1,1).2.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图像,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1解析:选B.作直线y =1,则直线y =1与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1.与对数函数有关的定义域问题若f (x )=1log 12(2x +1),则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫-12,+∞C.⎝ ⎛⎭⎪⎫-12,0∪(0,+∞) D.⎝ ⎛⎭⎪⎫-12,2【解析】 由题意知⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x >-12且x ≠0.【答案】 C求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数大于零且不等于1;三是按底数的取值范围对应单调性,有针对性地解不等式.函数y =x ln(1-x )的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选B.因为y =x ln(1-x ),所以⎩⎪⎨⎪⎧x ≥0,1-x >0,解得0≤x <1.1.下列函数是对数函数的是( ) A .y =log a (2x ) B .y =log 22xC .y =log 2x +1D .y =lg x解析:选D.选项A 、B 、C 中的函数都不具有“y =log a x (a >0且a ≠1)”的形式,只有D 选项符合.2.函数f (x )=11-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,+∞B.⎝⎛⎭⎪⎫-∞,-13 C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-13,1解析:选D.由⎩⎪⎨⎪⎧1-x >0,3x +1>0,可得-13<x <1.3.函数y =a x与y =-log a x (a >0,且a ≠1)在同一坐标系中的图像形状可能是( )解析:选A.函数y =-log a x 恒过定点(1,0),排除B 项;当a >1时,y =a x是增函数,y =-log a x 是减函数,排除C 项,当0<a <1时,y =a x为减函数,y =-log a x 为增函数,排除D 项,故A 项正确.4.若a >0且a ≠1,则函数y =log a (x -1)+1的图像过定点为________. 解析:函数图像过定点,则与a 无关,故log a (x -1)=0,所以x -1=1,x =2,y =1,所以y =log a (x -1)+1过定点(2,1). 答案:(2,1)5.比较下列各组数的大小: (1)log 22________log 23; (2)log 32________1; (3)log 134________0.解析:(1)底数相同,y =log 2x 是增函数,所以log 22<log 2 3.(2)log 32<log 33=1.(3)log 134<log 131=0.答案:(1)< (2)< (3)<[A 基础达标]1.函数f (x )=11-x+lg (1+x )的定义域是( ) A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)解析:选C.由题意知⎩⎪⎨⎪⎧1+x >0,1-x ≠0,解得x >-1且x ≠1.2.对数函数的图像过点M (16,4),则此对数函数的解析式为( ) A .y =log 4x B .y =log 14xC .y =log 12xD .y =log 2x解析:选D.由于对数函数的图像过点M (16,4),所以4=log a 16,得a =2.所以此对数函数的解析式为y =log 2x ,故选D.3.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)解析:选A.因为3x>0,所以3x+1>1.所以log 2(3x+1)>0. 所以函数f (x )的值域为(0,+∞). 4.函数y =lg(x +1)的图像大致是( )解析:选C.由底数大于1可排除A 、B ,y =lg(x +1)可看作是y =lg x 的图像向左平移1个单位(或令x =0得y =0),而且函数为增函数,故选C.5.已知函数f (x )=log a (x -m )的图像过点(4,0)和(7,1),则f (x )在定义域上是( ) A .增函数 B .减函数 C .奇函数D .偶函数解析:选A.将点(4,0)和(7,1)代入函数解析式,有⎩⎪⎨⎪⎧0=log a (4-m ),1=log a (7-m ).解得a =4和m=3,则有f (x )=log 4(x -3).由于定义域是x >3,则函数不具有奇偶性,很明显函数f (x )在定义域上是增函数.6.若f (x )=log a x +(a 2-4a -5)是对数函数,则a =________. 解析:由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5. 答案:57.已知函数y =log a (x -3)-1的图像过定点P ,则点P 的坐标是________. 解析:y =log a x 的图像恒过点(1,0),令x -3=1,得x =4,则y =-1. 答案:(4,-1)8.若f (x )是对数函数且f (9)=2,当x ∈[1,3]时,f (x )的值域是________. 解析:设f (x )=log a x ,因为log a 9=2,所以a =3,即f (x )=log 3x .又因为x ∈[1,3],所以0≤f (x )≤1.答案:[0,1]9.若函数y =log a (x +a )(a >0且a ≠1)的图像过点(-1,0). (1)求a 的值;(2)求函数的定义域.解:(1)将(-1,0)代入y =log a (x +a )(a >0,a ≠1)中, 有0=log a (-1+a ),则-1+a =1,所以a =2. (2)由(1)知y =log 2(x +2),由x +2>0,解得x >-2, 所以函数的定义域为{x |x >-2}. 10.求下列函数的定义域与值域: (1)y =log 2(x -2); (2)y =log 4(x 2+8).解:(1)由x -2>0,得x >2,所以函数y =log 2(x -2)的定义域是(2,+∞),值域是R . (2)因为对任意实数x ,log 4(x 2+8)都有意义, 所以函数y =log 4(x 2+8)的定义域是R . 又因为x 2+8≥8,所以log 4(x 2+8)≥log 48=32,即函数y =log 4(x 2+8)的值域是⎣⎢⎡⎭⎪⎫32,+∞.[B 能力提升]11.函数y =2+log 2x (x ≥1)的值域为( ) A .(2,+∞) B .(-∞,2) C .[2,+∞)D .[3,+∞)解析:选C.当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2. 所以函数y =2+log 2x 的值域为[2,+∞).12.函数f (x )=x -4lg x -1的定义域是( )A .[4,+∞)B .(10,+∞)C .(4,10)∪(10,+∞)D .[4,10)∪(10,+∞)解析:选D.由⎩⎪⎨⎪⎧x -4≥0,lg x -1≠0,x >0,解得⎩⎪⎨⎪⎧x ≥4,x ≠10,x >0,所以x ≥4且x ≠10,所以函数f (x )的定义域为[4,10)∪(10,+∞).故选D.13.如果函数f (x )=(3-a )x,g (x )=log a x 的增减性相同,则a 的取值范围是________.解析:若f (x ),g (x )均为增函数,则⎩⎪⎨⎪⎧3-a >1,a >1,即1<a <2,若f (x ),g (x )均为减函数,则⎩⎪⎨⎪⎧0<3-a <1,0<a <1无解.所以a 的取值范围是(1,2).答案:(1,2) 14.已知f (x )=log 3x . (1)作出这个函数的图像;(2)若f (a )<f (2),利用图像求a 的取值范围.解:(1)作出函数y =f (x )=log 3x 的图像如图所示. (2)令f (x )=f (2), 即log 3x =log 32,解得x =2. 由图像知:当0<a <2时, 恒有f (a )<f (2).所以所求a 的取值范围为(0,2).[C 拓展探究]15.求y =(log 12x )2-12log 12x +5在区间[2,4]上的最大值和最小值.解:因为2≤x ≤4,所以log 122≥log 12x ≥log 124,即-1≥log 12x ≥-2.设t =log 12x ,则-2≤t ≤-1,所以y =t 2-12t +5,其图像的对称轴为直线t =14,所以当t =-2时,y max =10;当t =-1时,y min =132.。
《对数函数图像与性质》的教学设计必修1的《对数函数图像与性质》。
设计分为:教材分析、学情分析、教学目标、教学重点与难点、教法与学法、教学过程六个部分。
第一部分:教材分析函数是一种重要的数学思想,是实际生活中数学建模的重要工具。
本节的主要内容就是函数x y 2log =的图像和性质。
它是函数x y a log =的直观体现,是进一步学习对数函数的图像和性质的准备,又是学习函数图像作法的载体,学习它也是培养和建立数形结合思想的有效途径。
本节内容还涉及到前面的指数函数,所以它应该是从指数函数向对数函数过渡的有效纽带。
第二部分:学情分析。
在学习本节课之前,学生们已经学习了二次函数、指数函数图像画法及有关性质,经历了作图、观察、比较、归纳、应用,以及猜想、验证的学习过程,已经了解如何去分析函数式到作图,研究性质去应用,初步具有对数学问题进行合作探究的意识与能力。
但是学生对指、对数及运算还不灵活,函数定义不甚理解,也不能灵活应用图像及有关性质去解题。
第三部分:教学目标:知识与技能,过程与方法,情感、态度、价值观:(1)学生经历学习,掌握函数图像求作的两种基本方法,即描点法和图像变换法,并会用它们作函数x y 2log =的图像;学生经历作图的过程,感受到图像对函数性质的探究非常重要,并会通过图像获知互为反函数的两个函数的图像关于直线y = x 对称,会用x y 2log =的图像特征概括出函数x y 2log =的性质,会用研究x y 2log =的图像和性质的方法类比研究函数x y a log =的图像和性质。
(2)学生能从作函数x y2log =和x y 2=的图像的过程中较深刻的体会出图像变换法作图的特点和意义,并以此感悟出转化思想在数学中的重要意义;学生在不断感受用图形解题的过程中,会逐步建立起数形结合的思想意识;学生在自己做出的美妙的曲线中感悟出数学的美,并知道数学也具有形象的一面和很感性的地方,学生会更加喜爱数学这门学科。
3.2.2对数函数一、教学目标:1、理解对数函数的概念。
2、掌握对数函数的图像和性质。
3、对数函数性质的应用。
重点:对数函数的图像和性质。
难点:对于底数a>1与0<a<1时,对数函数的不同性质。
二、知识梳理1、函数 叫做对数函数,其中自变量是 ,因变量是 。
2、对数函数的定义域是 ,值域是 。
3、对数函数y= log a x ,当a>1时,其是 ;当0<a<1时,其是 。
4、对数函数y=log a x (a>0且a ≠1)恒过定点 。
5、在同一坐标系下作出对数函数y=2log x 与y=12log x 的图像:6、常用的结论:(1)当a>1,x>1时,函数值y>0,当a>1,0<x<1时,函数值y<0;(2)当0<a<1,x>1时,函数值y<0,当0<a<1,0<x<1时,函数值y>0;(3)直线y=1与对数函数图像交点的横坐标等于底数。
三、例题解析题型一 对数函数的定义域例1求下列函数的定义域(a>0,a ≠1):(1)y 2log a x = (2)y log (4)a x =-(3)y= (4)y= (1)log (164)xx +-变式训练:课本104页练习A 第2题。
题型二 对数函数的单调性例2、(1)比较2log 3与2log 3.5的大小;(2)已知0.7log (2)m < 0.7log (1)m -,求m 的取值范围。
变式训练1:课本104页练习A 第3题。
变式训练2:若a 2>b>a>1,试比较log a a b ,log b b a,log b a ,log a b 的大小。
题型三 求与对数函数有关的复合函数的单调区间例3求函数y= 20.1log (253)x x --的递减区间。
变式训练:已知f (x )= log (1)x a a -(a>0,a ≠1).(1) 求函数f (x )的定义域;(2) 判断函数f (x )的单调性。
学生思考得:能。
x=log a y
教师询问:将上述x、y互换一下表达得到y=log a x后,请判断y=log a x 是否为函数?
学生思考得:每给一个x,都有唯一的y与之对应,所以y=log a x是函数。
1min 新
课
教师引导学生给出对数函数的定义:一般地,函数y=log a x称为对数函数,
其中a是常数,a>0且a≠1。
6min 对
数
函
数
的
性
质
学生探究对数函数的性质(不同学生对a取不同的值,对于多个x值分别利用对数运算求出相应的y值,观察数据,归纳出对数函数的性质)教师提升,帮助学生整理得到对数函数的性质:
(1)定义域是( 0,+∞);
(2)值域是R;
(3)奇偶性是非奇非偶函数;
(4)单调性是a>1时,增函数;0<a<1时,减函数;
(5)过定点(1.,0)。
8min 对
数
函
数
的
图
像
教师引导设问,学生画出(描点法)对数函数y=log
2x
和y=log0.5x或y
=log
3x
和y=log⅓x的图像:
并验证上述根据解析式及计算观察出的对数函数性质是正确的。
6min 课
堂
例
题
例1.比较下列各组数中两个值的大小:
⑴log 23.4 , log23.5
⑵log0.31.8 , log0.32.7
⑶log22.1 , log0.52.5
例2. 已知log0.7(2m)<log0.7(m-1),求m的取值范围。
例3.求下列函数的定义域:
(1) y=log a x2 (2) y=log(x-1)(9-x2) (3) y=x
3
log
1min 课
堂
小
结
及
布
置
作
业
小结:1.对数函数的定义;2.对数函数图像的作法;
3.对数函数y=log
a x
的图像与性质:布置作业:1.读课本P24-P27;2.完成课后练习BP28。