2016年历年山东省德州市数学中考真题及答案
- 格式:docx
- 大小:2.57 MB
- 文档页数:14
2016年山东省德州市中考数学试卷及答案一、选择题:本大题共12个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.2的相反数是()A. B.C.﹣2 D.2【解析】根据相反数的概念解答即可.2的相反数是﹣2,故选C.2.下列运算错误的是()A.a+2a=3a B.(a2)3=a6 C.a2•a3=a5D.a6÷a3=a2【解析】根据“合并同类项,系数相加,字母及指数不变;幂的乘方,底数不变,指数相乘;同底数幂的乘法,底数不变,指数相加,同底数幂的除法,底数不变,指数相减”可得答案.A.合并同类项,系数相加,字母及指数不变,故A正确;B.幂的乘方,底数不变,指数相乘,故B正确;C.同底数幂的乘法,底数不变,指数相加,故C正确;D.同底数幂的除法,底数不变,指数相减,故D错误.故选D.3.2016年第一季度,我市“蓝天白云、繁星闪烁”天数持续增加,获得山东省环境空气质量生态补偿资金408万元,408万用科学记数法表示正确的是()A.408×104B.4.08×104C.4.08×105D.4.08×106【解析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于408万=4080000,是7位数,所以可以确定n=7﹣1=6.408万用科学记数法表示为4.08×106.故选D.4.图中三视图对应的正三棱柱是()A.B.C.D.【解析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.5.下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过有交通信号灯的路口,遇到红灯”是必然事件【解析】根据必然事件、不可能事件、随机事件的概念和事件发生的可能性大小判断相应事件的类型解答.为了审核书稿中的错别字,应选择全面调查,A错误;为了了解春节联欢晚会的收视率,应选择抽样调查,B错误;“射击运动员射击一次,命中靶心”是随机事件,C正确;“经过有交通信号灯的路口,遇到红灯”是随机事件,D错误.故选C.6.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和定理得到∠BAC=95°,即可得到结论.由题意可得MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°.故选A.7.化简﹣等于()A.B.C.﹣D.﹣【解析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.原式=+=+==,故选B.8.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计他们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定【解析】100个数据的中间的两个数为第50个数和第51个数,利用统计图得到第50个数和第51个数都落在第三组,于是根据中位数的定义可对各选项进行判断.100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6﹣8小时.故选B.9.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移 B.旋转 C.轴对称D.位似【解析】根据平移变换、旋转变换、轴对称变换和位似变换的性质进行判断即可.平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”;旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”;轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”;位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换,故选D.10.下列函数中,满足y的值随x的值增大而增大的是()A.y=﹣2x B.y=3x﹣1 C.y=D.y=x2【解析】根据一次函数、反比例函数、二次函数的性质考虑4个选项中函数的单调性,由此即可得出结论.A.在y=﹣2x中,k=﹣2<0,∴y的值随x的值增大而减小;B.在y=3x﹣1中,k=3>0,∴y的值随x的值增大而增大;C.在y=中,k=1>0,∴y的值随x的值增大而减小;D.二次函数y=x2,当x<0时,y的值随x的值增大而减小;当x>0时,y的值随x的值增大而增大.故选B.11.《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A .3步B .5步C .6步D .8步【解析】根据勾股定理求出直角三角形的斜边长,即可确定出内切圆半径. 根据勾股定理得斜边长为2281517+=,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步, 故选C .12.在矩形ABCD 中,AD=2AB=4,E 是AD 的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM=CN ;②∠AME=∠BNE ;③BN ﹣AM=2;④S △EMN =.上述结论中正确的个数是( )A .1B .2C .3D .4【解析】①作辅助线EF ⊥BC 于点F ,然后证明△AME ≌△FNE ,从而求出AM=FN ,所以BM 与CN 的长度相等.②由①知△AME ≌△FNE ,即可得到结论正确;③经过简单的计算得到BN ﹣AM=BC ﹣CN ﹣AM=BC ﹣BM ﹣AM=BC ﹣(BM+AM )=BC ﹣AB=4﹣2=2,④用面积的和和差进行计算,用数值代换即可.①如图,在矩形ABCD 中,AD=2AB ,E 是AD 的中点,作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN ,在△AME 和△FNE 中,AEM=FEN,AE=EF,MAE=NFE,∠∠⎧⎪⎨⎪∠∠⎩∴△AME ≌△FNE ,∴AM=FN ,∴MB=CN .∵AM 不一定等于CN ,∴AM 不一定等于CN ,∴①错误,②由①知△AME ≌△FNE ,∴∠AME=∠BNE ,∴②正确,③由①得BM=CN ,∵AD=2AB=4,∴BC=4,AB=2,∴BN ﹣AM=BC ﹣CN ﹣AM=BC ﹣BM ﹣AM=BC ﹣(BM+AM )=BC ﹣AB=4﹣2=2, ∴③正确,④由①得CN=CF ﹣FN=2﹣AM ,AE=AD=2,AM=FN ,∵tan α=,∴AM=AEtan α,∵cos α==,∴cos 2α=, ∴=1+=1+()2=1+tan 2α,∴=2(1+tan2α).∴S△EMN=S四边形ABNE﹣S△AME﹣S△MBN=(AE+BN)×AB﹣AE×AM﹣BN×BM=(AE+BC﹣CN)×2﹣AE×AM﹣(BC﹣CN)×CN=(AE+BC﹣CF+FN)×2﹣AE×AM﹣(BC﹣2+AM)(2﹣AM)=AE+BC﹣CF+AM﹣AE×AM﹣(2+AM)(2﹣AM)=AE+AM﹣AE×AM+AM2=AE+AEtanα﹣AE2tanα+AE2tan2α=2+2tanα﹣2tanα+2tan2α=2(1+tan2α)=.∴④正确.故选C.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分13.化简的结果是.【解析】先把分子、分母都乘以,然后约分即可.原式==.故答案为.14.正六边形的每个外角是度.【解析】正多边形的外角和是360度,且每个外角都相等,据此即可求解.正六边形的一个外角度数是360°÷6=60°.故答案为60.15.方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22=.【解析】根据根与系数的关系得出“x1+x2=﹣=,x1•x2==﹣”,再利用完全平方公式将x12+x22转化成﹣2x1•x2,代入数据即可得出结论.∵方程2x2﹣3x﹣1=0的两根为x1,x2,∴x1+x2=﹣=,x1•x2==﹣,∴x12+x22=﹣2x1•x2=﹣2×(﹣)=.故答案为.16.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O 重合,则图中阴影部分的面积是.【解析】如图,连接OM交AB于点C,连接OA、OB,由题意知OM⊥AB,且OC=MC=,在Rt△AOC中,∵OA=1,OC=,∴cos∠AOC==,AC==,∴∠AOC=60°,AB=2AC=,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB﹣S△AOB=﹣××=﹣,S阴影=S半圆﹣2S弓形ABM=π×12﹣2(﹣)=﹣.故答案为﹣.17.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【解析】写出部分A n点的坐标,根据坐标的变化找出变化规律“A2n+1((﹣2)n,2(﹣2)n)(n为自然数)”,依此规律即可得出结论.观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为(21008,21009).三、解答题:本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤18.解不等式组5x+23(x-1),2x+51>x-23≥⎧⎪⎨-⎪⎩.【解】解不等式5x+2≥3(x﹣1),得x≥﹣,解不等式1﹣>x﹣2,得x <,故不等式组的解集为﹣≤x <.19.在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.【解】(1)==83(分),==82(分).(2)选拔甲参加比赛更合适,理由如下:∵>,且S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.(3)列表如下:79 86 82 85 8388 88,79 88,86 88,82 88,85 88,8379 79,79 79,86 79,82 79,85 79,8390 90,79 90,86 90,82 90,85 90,8381 81,79 81,86 81,82 81,85 81,8372 72,79 72,86 72,82 72,85 72,83由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分的有12种,∴抽到的两个人的成绩都大于80分的概率为.20.2016年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭达到A点时,从位于地面R处雷达站测得AR的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°(1)求发射台与雷达站之间的距离LR;(2)求这枚火箭从A到B的平均速度是多少(结果精确到0.01).(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.91,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )【解】(1)在Rt△ALR中,AR=6km,∠ARL=42.4°,由cos∠ARL=,得LR=AR•cos∠ARL=6×cos42.4°≈4.44(km).答:发射台与雷达站之间的距离LR为4.44km.(2)在Rt△BLR中,LR≈4.44km,∠BRL=45.5°,由tan∠BRL=,得BL=LR•tan∠BRL≈4.44×tan45.5°≈4.44×1.02=4.5288(km),又∵sin∠ARL=,得AL=ARsin∠ARL=6×sin42.4°≈4.02(km),∴AB=BL﹣AL≈4.5288﹣4.02=0.5088≈0.51(km).答:这枚火箭从A到B的平均速度大约是0.51km/s.21.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:第1天第2天第3天第4天售价x(元/双)150 200 250 300销售量y(双)40 30 24 20(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?【解】(1)由表中数据得xy=6000,∴y=,∴y是x的反比例函数,故所求函数关系式为y=.(2)由题意得(x﹣120)y=3000,把y=代入得(x﹣120)•=3000,解得x=240.经检验,x=240是原方程的根.答:若商场计划每天的销售利润为3000元,则其单价应定为240元.22.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E 作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.【解】(1)直线l与⊙O相切.理由:如图1所示,连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴.∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.【证明】(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.【解】(3)由(2)得BE=EF=DE+DF=7.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴,即,解得AE=.∴AF=AE﹣EF=﹣7=.23.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)【证明】(1)如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG=BD ,∴EH ∥FG ,EH=GF ,∴中点四边形EFGH 是平行四边形.【解】(2)四边形EFGH 是菱形.证明:如图2中,连接AC ,BD .∵∠APB=∠CPD ,∴∠APB+∠APD=∠CPD+∠APD ,即∠APC=∠BPD ,在△APC 和△BPD 中,AP=PB,APC BPD,PC=PD,⎧⎪∠=∠⎨⎪⎩∴△APC ≌△BPD ,∴AC=BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF=AC ,FG=BD ,∴EF=FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)四边形EFGH 是正方形.24.已知,m ,n 是一元二次方程x 2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x 2+bx+c 的图象经过点A (m ,0),B (0,n ),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为C ,抛物线的顶点为D ,试求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P 为个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【解】(1)∵x2+4x+3=0,∴x1=﹣1,x2=﹣3,∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3.∵抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),∴1b+c0,c=-3.-=⎧⎨⎩∴b2,c 3.=-⎧⎨=-⎩∴抛物线的解析式为y=x2﹣2x﹣3.(2)令y=0,则x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴C(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为D(1,﹣4),如图,过点D作DE⊥y轴,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形.(3)如图,∵B(0,﹣3),C(3,0),∴直线BC的解析式为y=x﹣3,∵点P的横坐标为t,PM⊥x轴,∴点M的横坐标为t,∵点P在直线BC上,点M在抛物线上,∴P(t,t﹣3),M(t,t2﹣2t﹣3),过点Q作QF⊥PM,易得△PQF是等腰直角三角形,∵PQ=,∴QF=1,当点P在点M上方时,即0<t<3时,PM=t﹣3﹣(t2﹣2t﹣3)=﹣t2+3t,∴S=PM×QF=(﹣t2+3t)=﹣t2+t,当点P在点M下方时,即t<0或t>3时,PM=t2﹣2t﹣3﹣(t﹣3)=t2﹣3t,∴S=PM×QF=(t2﹣3t)=t2﹣t.。
2017年山东省德州市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)﹣2的倒数是()A .﹣B .C.﹣2 D.22.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.(3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×1064.(3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A .B .C .D .5.(3分)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣26.(3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数7.(3分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣8.(3分)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>49.(3分)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P10.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=411.(3分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG 边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结=a2+b2;论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN⑤A,M,P,D四点共圆,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)计算:﹣=.14.(4分)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是.15.(4分)方程3x(x﹣1)=2(x﹣1)的解为.16.(4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.17.(4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)先化简,再求值:÷﹣3,其中a=.19.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.20.(8分)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(10分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)22.(10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?23.(10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B 点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.24.(12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得∴直线PA的解析式为请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB 的面积.2017年山东省德州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)(2017•德州)﹣2的倒数是()A.﹣ B.C.﹣2 D.2【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2017•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•德州)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:477万用科学记数法表示4.77×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•德州)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形.【解答】解:两个等直径圆柱构成如图所示的T型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•德州)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣2【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=8a3,故B不正确;(C)原式=a﹣2,故C不正确;(D)原式=a8,故D不正确;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A .平均数B.方差C.众数D.中位数【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.(3分)(2017•德州)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣【分析】A、由k=﹣3可得知y随x值的增大而减小;B、由k=2可得知y随x值的增大而增大;C、由a=2可得知:当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大;D、由k=﹣1可得知:当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大.此题得解.【解答】解:A、y=﹣3x+2中k=﹣3,∴y随x值的增大而减小,∴A选项符合题意;B、y=2x+1中k=2,∴y随x值的增大而增大,∴B选项不符合题意;C、y=2x2+1中a=2,∴当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大,∴C选项不符合题意;D、y=﹣中k=﹣1,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大,∴D选项不符合题意.故选A.【点评】本题考查了一次函数的性质、二次函数的性质以及反比例函数的性质,根据一次(二次、反比例)函数的性质,逐一分析四个选项中y与x之间的增减性是解题的关键.8.(3分)(2017•德州)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>4【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+9≥3,得:x≥﹣3,解不等式>x﹣1,得:x<4,∴不等式组的解集为﹣3≤x<4,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)(2017•德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论.【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选A.【点评】本题考查了一次函数的应用,比较L0和K的值,找出短而硬的弹簧是解题的关键.10.(3分)(2017•德州)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=4【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选D.【点评】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.(3分)(2017•德州)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()AMFNA.2 B.3 C.4 D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是=AM2=a2+b2;故④正确;正方形,于是得到S四边形AMFN⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,=AM2=a2+b2;故④正确;∴S四边形AMFN⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠ABP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选D.【点评】本题考查了四点共圆,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质旋转的性质,勾股定理,正确的理解题意是解题的关键.12.(3分)(2017•德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729【分析】根据题意找出图形的变化规律,根据规律计算即可.【解答】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,故选:C.【点评】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)(2017•德州)计算:﹣=.【分析】原式化简后,合并即可得到结果.【解答】解:原式=2﹣=,故答案为:【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2017•德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.(4分)(2017•德州)方程3x(x﹣1)=2(x﹣1)的解为x=1或x=.【分析】移项后分解因式得到(x﹣1)(3x﹣2)=0,推出方程x﹣1=0,3x﹣2=0,求出方程的解即可.【解答】解:3x(x﹣1)=2(x﹣1),移项得:3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,∴x﹣1=0,3x﹣2=0,解方程得:x1=1,x2=.故答案为:x=1或x=.【点评】本题主要考查对解一元一次方程,等式的性质,解一元二次方程等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.16.(4分)(2017•德州)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.【分析】先画树状图展示所有9种等可能的结果数,再找出淘淘与丽丽同学同时抽到物理的结果数,然后根据概率公式求解即可.【解答】解:画树状图为:因为共有9种等可能的结果数,其中淘淘与丽丽同学同时抽到物理物的结果数为1,所以他们两人都抽到物理实验的概率是.故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.(4分)(2017•德州)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.【分析】把透光部分看作是两个直角三角形与四个45°的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果.【解答】解:设⊙O与矩形ABCD的另一个交点为M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=1,=+2××1×1=+1,∴S透明区域过O作ON⊥AD于N,∴ON=FG=,∴AB=2ON=2×=,=2×=2,∴S矩形∴==.故答案为:.【点评】本题考查了矩形的性质、扇形的面积、直角三角形的面积,将透光部分化分为几个熟知图形的面积是关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)(2017•德州)先化简,再求值:÷﹣3,其中a=.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣3==a﹣3,当a=时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)(2017•德州)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.【分析】(1)根据C的人数除以C所占的百分比,可得答案;(2)根据人数比抽查人数,所占的百分比乘以抽查人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)从C可看出5÷0.1=50人,答:次被调查的学生有50人;(2)m==0.2,n=0.2×50=10,p=0.4×50=20,,(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(8分)(2017•德州)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴=,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x•3x,解得:x=,即AE=.【点评】本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解此题的关键.21.(10分)(2017•德州)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)【分析】(1)如图作AD⊥BC于D.则AD=10m,求出CD、BD即可解决问题.(2)求出汽车的速度,即可解决问题,注意统一单位;【解答】解:(1)如图作AD⊥BC于D.则AD=10m,在Rt△ACD中,∵∠C=45°,∴AD=CD=10m,在Rt△ABD中,∵∠B=30°,∴tan30°=,∴BD=AD=10m,∴BC=BD+DC=(10+10)m.(2)结论:这辆汽车超速.理由:∵BC=10+1027m,∴汽车速度==30m/s=108km/h,∵108>80,∴这辆汽车超速.【点评】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(10分)(2017•德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?【分析】(1)以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为y=a(x﹣1)2+h,代入(0,2)和(3,0)得出方程组,解方程组即可,(2)求出当x=1时,y=即可.【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为:y=a(x﹣1)2+h,代入(0,2)和(3,0)得:,解得:,∴抛物线的解析式为:y=﹣(x﹣1)2+;即y=﹣x2+x+2(0≤x≤3);(2)y=﹣x2+x+2(0≤x≤3),当x=1时,y=,即水柱的最大高度为m.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(10分)(2017•德州)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【解答】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【点评】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.24.(12分)(2017•德州)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为(k,1);(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得﹣1∴直线PA的解析式为y=x+﹣1请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB 的面积.【分析】(1)根据正、反比例函数图象的对称性结合点A的坐标即可得出点B 的坐标;(2)①设P(m,),根据点P、A的坐标利用待定系数法可求出直线PA的解析式,利用一次函数图象上点的坐标特征可求出点M的坐标,过点P作PH⊥x 轴于H,由点P的坐标可得出点H的坐标,进而即可求出MH的长度,同理可得出HN的长度,再根据等腰三角形的三线合一即可证出PM=PN;②根据①结合PH、MH、NH的长度,可得出△PAB为直角三角形,分k>1和0<k<1两种情况,利用分割图形求面积法即可求出△PAB的面积.【解答】解:(1)由正、反比例函数图象的对称性可知,点A、B关于原点O对。
山东省德州市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项选出来。
每个小题选对得3分,选错、不选或选出的答案超过一个均记零分。
满分36分,。
)1. |-|的结果是()A. -B.C.-2D.2【答案】B考点:绝对值2.某几何体的三视图如图所示,则此几何体是()A. 圆锥B.圆柱C.长方体D.四棱柱第2题图【答案】B考点:三视图3. 德州市农村中小学校舍标准化工程开工学校项目356个,开工面积56.2万平方米,开工面积量创历年最高,56.2万平方米用科学记数法表示正确的是()A.5.62×104m2B. 56.2×104m2C. 5.62×105m2D. 0.562×106m2【答案】C考点:科学记数法4.下列运算正确的是()A. B. b3·b2=b6 C.4a-9a=-5 D.(ab2)3=a3b6【答案】D考点:科学记数法5.一组数1,1,2,x,5,y,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8B.9C.13D.15【答案】A考点:探求规律6.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【答案】C考点:旋转7.若一元二次方程x2+2x+a=0有实数解,则a的取值范围是()A.a<1B. a≤4C.a≤1D.a≥1【答案】C考点:一元二次方根的判别式8.下列命题中,真命题的个数是()①若-1<x< -, 则-2<<-1;②若-1≤x≤2,则1≤x2≤4;③凸多边形的外角和为360°;④三角形中,若∠A+∠B=90°,则sinA=cosB.A. 4B. 3C. 2D.1【答案】B考点:解不等式;多边形的内角和;锐角三角函数间的关系.9.如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°第9题图【答案】A考点:圆的周长;扇形的弧长10.经过某十字路口的汽车,可能直行,也可能左转或者右转。
2016年山东省德州市中考数学试卷一.选择题:1.(2016•德州)2的相反数是()A. B. C. ﹣2 D. 2【答案】C【考点】相反数【解析】【解答】解:2的相反数是﹣2,故选:C.【分析】根据相反数的概念解答即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(2016•德州)下列运算错误的是()A. a+2a=3aB. =C. =D.【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、合并同类项系数相加字母及指数不变,故A正确;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的乘法底数不变指数相加,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:D.【分析】根据合并同类项系数相加字母及指数不变,幂的乘方底数不变指数相乘,同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.(2016•德州)2016年第一季度,我市“蓝天白云、繁星闪烁”天数持续增加,获得山东省环境空气质量生态补偿资金408万元,408万用科学记数法表示正确的是()A. 408×B. 4.08×C. 4.08×D. 4.08×【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:408万用科学记数法表示正确的是4.08×106.故选:D.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于408万有7位,所以可以确定n=7﹣1=6.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(2016•德州)图中三视图对应的正三棱柱是()A. B. C. D.【答案】A【考点】由三视图判断几何体【解析】【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.5.(2016•德州)下列说法正确的是()A. 为了审核书稿中的错别字,选择抽样调查B. 为了了解春节联欢晚会的收视率,选择全面调查C. “射击运动员射击一次,命中靶心”是随机事件D. “经过由交通信号灯的路口,遇到红灯”是必然事件【答案】C【考点】全面调查与抽样调查,随机事件【解析】【解答】解:为了审核书稿中的错别字,应选择全面调查,A错误;为了了解春节联欢晚会的收视率,选择抽样调查,B错误;“射击运动员射击一次,命中靶心”是随机事件,C正确;“经过由交通信号灯的路口,遇到红灯”是随机事件,D错误.故选:C.【分析】根据必然事件、不可能事件、随机事件的概念和事件发生的可能性大小判断相应事件的类型解答.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(2016•德州)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A. 65°B. 60°C. 55°D. 45°【答案】A【考点】线段垂直平分线的性质【解析】【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.7.(2016•德州)化简﹣等于()A. B. C. ﹣ D. ﹣【答案】B【考点】分式的加减法【解析】【解答】解:原式= + = + = = ,故选B【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(2016•德州)某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A. 4﹣6小时B. 6﹣8小时C. 8﹣10小时D. 不能确定【答案】B【考点】频数(率)分布直方图【解析】【解答】解:100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6﹣8(小时).故选B.【分析】100个数据的中间的两个数为第50个数和第51个数,利用统计图得到第50个数和第51个数都落在第三组,于是根据中位数的定义可对各选项进行判断.本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.9.(2016•德州)对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A. 平移B. 旋转C. 轴对称D. 位似【答案】D【考点】位似变换【解析】【解答】解:平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”;旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”;轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”;位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换,故选:D.【分析】根据平移、旋转变换、轴对称变换和位似变换的性质进行判断即可.本题考查的是平移、旋转变换、轴对称变换和位似变换,理解“等距变换”的定义、掌握平移、旋转变换、轴对称变换和位似变换的性质是解题的关键.10.(2016•德州)下列函数中,满足y的值随x的值增大而增大的是()A. y=﹣2xB. y=3x﹣1C. y=D. y=x2【答案】B【考点】反比例函数的性质,二次函数的性质,一次函数的性质【解析】【解答】解:A、在y=﹣2x中,k=﹣2<0,∴y的值随x的值增大而减小;B、在y=3x﹣1中,k=3>0,∴y的值随x的值增大而增大;C、在y= 中,k=1>0,∴y的值随x的值增大而减小;D、二次函数y=x2,当x<0时,y的值随x的值增大而减小;当x>0时,y的值随x的值增大而增大.故选B.【分析】根据一次函数、反比例函数、二次函数的性质考虑4个选项的单调性,由此即可得出结论.本题考查了一次函数的性质、反比例函数的性质以及二次函数的性质,解题的关键是根据函数的性质考虑其单调性.本题属于基础题,难度不大,解决该题型题目时,熟悉各类函数的性质及其图象是解题的关键.11.(2016•德州)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A. 3步B. 5步C. 6步D. 8步【答案】C【考点】三角形的内切圆与内心【解析】【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r= =3(步),即直径为6步,故选C【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径.此题考查了三角形的内切圆与内心,Rt△ABC,三边长为a,b,c(斜边),其内切圆半径r= .12.(2016•德州)在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△EMN= .上述结论中正确的个数是()A. 1B. 2C. 3D. 4 【答案】C【考点】全等三角形的判定与性质,旋转的性质【解析】【解答】解:①如图,在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,则有AB=AE=EF=FC,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.∵AM不一定等于CN,∴AM不一定等于CN,∴①错误,②由①有Rt△AME≌Rt△FNE,∴∠AME=∠BNE,∴②正确,③由①得,BM=CN,∵AD=2AB=4,∴BC=4,AB=2∴BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,∴③正确,④如图,由①得,CN=CF﹣FN=2﹣AM,AE= AD=2,AM=FN∵tanα= ,∴AM=AEtanα∵cosα= ,∴cos2α= ,∴=1+ =1+()2=1+tan2α,∴=2(1+tan2α)∴S△EMN=S四边形ABNE﹣S△AME﹣S△MBN= (AE+BN)×AB﹣AE×AM﹣BN×BM= (AE+BC﹣CN)×2﹣AE×AM﹣(BC﹣CN)×CN= (AE+BC﹣CF+FN)×2﹣AE×AM﹣(BC﹣2+AM)(2﹣AM)=AE+BC﹣CF+AM﹣AE×AM﹣(2+AM)(2﹣AM)=AE+AM﹣AE×AM+ AM2=AE+AEtanα﹣AE2tanα+ AE2tan2α=2+2tanα﹣2tanα+2tan2α=2(1+tan2α)= .∴④正确.故选C.【分析】①作辅助线EF⊥BC于点F,然后证明Rt△AME≌Rt△FNE,从而求出AM=FN,所以BM与CN的长度相等.②由①Rt△AME≌Rt△FNE,即可得到结论正确;③经过简单的计算得到BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,④用面积的和和差进行计算,用数值代换即可.此题是全等三角形的性质和判定题,主要考查了全等三角形的性质和判定,图形面积的计算锐角三角函数,解本题的关键是Rt△AME≌Rt△FNE,难点是计算S△EMN.二.填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分13.(2016•德州)化简的结果是________.【答案】【考点】分母有理化【解析】【解答】解:原式= = .故答案为.【分析】先把分子分母都乘以,然后约分即可.本题考查了分母有理化:分母有理化是指把分母中的根号化去.14.(2016•德州)正六边形的每个外角是________度.【答案】60【考点】多边形内角与外角【解析】【解答】解:正六边形的一个外角度数是:360÷6=60°.故答案为:60.【分析】正多边形的外角和是360度,且每个外角都相等,据此即可求解.本题考查了正多边形的外角的计算,理解外角和是360度,且每个外角都相等是关键.15.(2016•德州)方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22=________.【答案】【考点】根与系数的关系【解析】【解答】解:∵方程2x2﹣3x﹣1=0的两根为x1,x2,∴x1+x2=﹣= ,x1•x2= =﹣,∴x12+x22= ﹣2x1•x2= ﹣2×(﹣)= .故答案为:.【分析】根据根与系数的关系得出“x1+x2=﹣= ,x1•x2= =﹣”,再利用完全平方公式将x12+x22转化成﹣2x1•x2,代入数据即可得出结论.本题考查了根与系数的关系以及完全平方公式,解题的关键是求出x1+x2= ,x1•x2=﹣.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积,再利用完全平方公式将原代数式转化成只含两根之和与两根之积的代数式是关键.16.(2016•德州)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.【答案】32−π6【考点】扇形面积的计算,翻折变换(折叠问题)【解析】【解答】解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC= 12 ,在RT△AOC中,∵OA=1,OC= 12 ,∴cos∠AOC= OCOA = 12 ,AC= OA2-OC2 = 32∴∠AOC=60°,AB=2AC= 3 ,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB﹣S△AOB= 120π×12360 ﹣12 × 3 × 12= π3 ﹣34 ,S阴影=S半圆﹣2S弓形ABM= 12 π×12﹣2(π3 ﹣34 )= 32 ﹣π6 .故答案为:32 ﹣π6 .【分析】连接OM交AB于点C,连接OA、OB,根据题意OM⊥AB且OC=MC= 12 ,继而求出∠AOC=60°、AB=2AC= 3 ,然后根据S弓形ABM=S扇形OAB﹣S△AOB、S阴影=S半圆﹣2S弓形ABM计算可得答案.本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.17.(2016•德州)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为________.【答案】(21008,21009)【考点】正比例函数的图象和性质,探索数与式的规律【解析】【解答】解:观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009).【分析】写出部分A n点的坐标,根据坐标的变化找出变化规律“A2n+1((﹣2)n,2(﹣2)n)(n为自然数)”,依此规律即可得出结论.本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A2n+1((﹣2)n,2(﹣2)n)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,写出部分A n点的坐标,根据坐标的变化找出变化规律是关键.三.解答题:18.(2016•德州)解不等式组:.【答案】解:解不等式5x+2≥3(x﹣1),得:x≥-,解不等式1﹣>x﹣2,得:x,故不等式组的解集为:﹣≤x<【考点】解一元一次不等式组【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(2016•德州)在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是________,乙成绩的平均数是________;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.【答案】(1)83;82(2)解:选拔甲参加比赛更合适,理由如下:∵>,且S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适(3)解:列表如下:79 86 82 85 8388 88,79 88,86 88,82 88,85 88,8379 79,79 79,86 79,82 79,85 79,8390 90,79 90,86 90,82 90,85 90,8381 81,79 81,86 81,82 81,85 81,8372 72,79 72,86 72,82 72,85 72,83由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分有12种,∴抽到的两个人的成绩都大于80分的概率为【考点】列表法与树状图法,算术平均数,方差【解析】【解答】解:(1)甲= =83(分),乙= =82(分);故答案为:(1)83,82.【分析】(1)根据平均数的定义可列式计算;(2)由平均数所表示的平均水平及方差所衡量的成绩稳定性判断可知;(3)列表表示出所有等可能的结果,找到能使该事件发生的结果数,根据概率公式计算可得.本题主要考查平均数、方差即列表或画树状图求概率,根据题意列出所有等可能结果及由表格确定使事件发生的结果数是解题的关键.20.(2016•德州)2016年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭达到A点时,从位于地面R处雷达站测得AR 的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°(1)求发射台与雷达站之间的距离LR;(2)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?(参考数据:son42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )【答案】(1)解:在Rt△ALR中,AR=6km,∠ARL=42.4°,由cos∠ARL= ,得LR=AR•cos∠ARL=6×cos42.4°≈4.44(km).答:发射台与雷达站之间的距离LR为4.44km(2)解:在Rt△BLR中,LR=4.44km,∠BRL=45.5°,由tan∠BRL= ,得BL=LR•tan∠BRL=4.44×tan45.5°≈4.44×1.02=4.5288(km),又∵sin∠ARL= ,得AL=ARsin∠ARL=6×sin42.4°≈4.02(km),∴AB=BL﹣AL=4.5288﹣4.02=0.5088≈0.51(km).答:这枚火箭从A到B的平均速度大约是0.51km/s.【考点】勾股定理的应用【解析】【分析】(1)根据题意直接利用锐角三角函数关系得出LR=AR•cos∠ARL求出答案即可;(2)根据题意直接利用锐角三角函数关系得出BL=LR•tan∠BRL,再利用AL=ARsin∠ARL,求出AB的值,进而得出答案.此题主要考查了解直角三角形的应用,正确选择锐角三角函数关系是解题关键.21.(2016•德州)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:第1天第2天第3天第4天售价x(元/双) 150 200 250 300销售量y(双) 40 30 24 20(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?【答案】(1)解:由表中数据得:xy=6000,∴y= ,∴y是x的反比例函数,故所求函数关系式为y= ;(2)解:由题意得:(x﹣120)y=3000,把y= 代入得:(x﹣120)• =3000,解得:x=240;经检验,x=240是原方程的根;答:若商场计划每天的销售利润为3000元,则其单价应定为240元【考点】分式方程的应用,一次函数的应用,反比例函数的应用【解析】【分析】(1)由表中数据得出xy=6000,即可得出结果;(2)由题意得出方程,解方程即可,注意检验.本题考查了反比例函数的应用、列分式方程解应用题;根据题意得出函数关系式和列出方程是解决问题的关键.22.(2016•德州)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.【答案】(1)直线l与⊙O相切.理由:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴ BE^=CE^ .∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切(2)解:∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=7.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴ DEBE=BEAE ,即47=7AE ,解得;AE= 494 .∴AF=AE﹣EF= 494 ﹣7= 214【考点】等腰三角形的判定与性质,圆的综合题【解析】【分析】(1)连接OE、OB、OC.由题意可证明BE∧=CE∧,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;(2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得∠EBF=∠EFB是解题的关键.23.(2016•德州)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)【答案】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH= 12 BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG= 12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,{AP=PB∠APC=∠BPDPC=PD ,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF= 12 AC,FG= 12 BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)解:四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.【考点】全等三角形的判定与性质,平行四边形的判定与性质,菱形的判定与性质,正方形的判定与性质【解析】【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线,属于中考常考题型.24.(2016•德州)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c 的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2 个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【答案】(1)解:∵x2+4x+3=0,∴x1=﹣1,x2=﹣3,∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),∴ {1−b+c=0c=−3 ,∴ {b=−2c=−3 ,∴抛物线解析式为y=x2﹣2x﹣3,(2)解:令y=0,则x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴C(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标D(1,﹣4),过点D作DE⊥y轴,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形(3)解:如图,∵B(0,﹣3),C(3,0),∴直线BC解析式为y=x﹣3,∵点P的横坐标为t,PM⊥x轴,∴点M的横坐标为t,∵点P在直线BC上,点M在抛物线上,∴P(t,t﹣3),M(t,t2﹣2t﹣3),过点Q作QF⊥PM,∴△PQF是等腰直角三角形,∵PQ= 2 ,∴QF=1,当点P在点M上方时,即0<t<3时,PM=t﹣3﹣(t2﹣2t﹣3)=﹣t2+3t,∴S= 12 PM×QF= 12 (﹣t2﹣3t)=﹣12 t2+ 32 t,如图3,当点P在点M下方时,即t<0或t>3时,PM=t2﹣2t﹣3﹣(t﹣3),∴S= 12 PM×QF= 12 (t2﹣3t)= 12 t2﹣32 t【考点】待定系数法求二次函数解析式,二次函数的应用,等腰三角形的判定与性质【解析】【分析】(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x轴的交点,再判断出△BOC和△BED都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P在点M上方和下方,分别计算即可.此题是二次函数综合题,主要考查了一元二次方程的解法,待定系数法求函数解析式,等腰直角三角形的性质和判定,解本题的关键是判定△BCD是直角三角形.。
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前山东省德州市2017年初中学业水平考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的倒数是( )A .12-B .12C .2-D .2 2.下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD 3.2016年,我市“全面改薄”和解决“大班额”工程成绩突出,两项工程累计开工面积达477万米,各项指标均居全省前列.477万用科学记数法表示正确的是( )A .54.7710⨯B .547.710⨯C .64.7710⨯D .60.47710⨯4.如图,两个等直径圆柱构成如图所示的“T ”形管道,则其俯视图正确的是 ( )(第4题)ABCD5.下列运算正确的是( ) A .22()m m a a = B .33(2)2a a =C .3515a a a --=D .352a a a --÷= 6.该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是( )A .平均数B .方差C .众数D .中位数7.下列函数中,对于任意实数1x ,2x ,当12x x >时,满足12y y <的是 ( )A .32y x =-+B .21y x =+C .221y x =+D .1y x=- 8.不等式组293,1213x x x +⎧⎪+⎨-⎪⎩≥>的解集是( )A .3x -≥B .34x -≤<C .32x -≤<D .4x >9.公式0L L KP =+表示当重力为P 的物体作用在弹簧上时弹簧的长度.0L 代表弹簧的初始长度,用厘米(cm )表示,K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm )表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是 ( )A .100.5L P =+B .105L P =+C .800.5L P =+D .805L P =+10.若某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料.若设第一次买了x 本资料,列方程正确的是( )A .240120420x x -=- B .240120420x x -=+ C .120240420x x -=-D .120240420x x -=+11.如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为()b a b >,点M 在BC 边上,且BM b =.连接AM ,MF ,MF 交CG 于点P ,将ABM △绕点A 旋转至ADN △,将MEF △绕点F 旋转至NGF △. 给出以下5个结论:①MAD AND∠=∠;②2bCP ba=-;③ABM NGF △≌△;④22AMFN S a b =+四边形;⑤A ,M ,P ,D 四点共圆. 其中正确的个数是( )A .2B .3C .4D .512.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页) 形,挖去中间的一个小三角形(如图1);对剩下的3个小三角形再分别重复以上做法,……将这种做法继续下去(如图2、图3……),则图6中挖去三角形的个数为( )A .121B .362C .364D .729第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5小题,每小题4分,共20分.) 13.= .14.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是 .15.方程3(1)2(1)x x x -=-的根为 .16.淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是 .17.某景区修建一栋复古建筑,其窗户设计如图所示.O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点).图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,根据设计要求,若45EOF ∠=︒,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为 .三、解答题(本大题共7小题,共64分.解答应写出必要的文字说明、证明过程或演算步骤)18.(本小题满分6分)先化简,在求值:222442342a a a a a a -+-÷--+,其中72a =.19.(本小题满分8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分.为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B .学习;C .购物;D .游戏;E .其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如: 根据以上信息解答下列问题: (1)这次被调查的学生有多少人?(2)求表中m ,n ,p 的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人.并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.20.(本小题满分8分)如图,已知Rt ABC △,90C ∠=︒,D 为BC 的中点.以AC 为直径的O 交AB 于点E .(1)求证:DE 是O 的切线.(2)若:1:2AE EB =,6BC =,求AE 的长.21.(本小题满分10分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共16页) 数学试卷 第6页(共16页)如图所示,某公路检测中心在一事故多发地带安装了一个测速仪器,检测点设在距离公路10m 的A 处,测得一辆汽车从B 处行驶到C 处所用的时间为0.9s .已知30B ∠=︒,45C ∠=︒.(1)求B ,C 之间的距离.(保留根号)(2)如果此地限速为80km/h ,那么这辆汽车是否超速?请说明理由.(1.71.4)22.(本小题满分10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽.小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高2m 的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,水柱落地处离池中心3m . (1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式. (2)求出水柱的最大高度.23.(本小题满分10分)如图1,在矩形纸片ABCD 中,3cm AB =,5cm,AD =折叠纸片使点B 落在边AD 上的点E 处,折痕为PQ .过点E 作EF AB ∥交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形.(2)当点E 在AD 边上移动时,折痕的端点P ,Q 也随着移动. ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长.②若限定P ,Q 分别在BA ,BC 上移动,求出点E 在边AD 上移动的最大距离.24.(本小题满分12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数1y x k=与()0ky k x=≠的图象性质. 小明根据学习函数的经验,对函数1y x k=与k y x =,当0k >时的图象性质进行了探究.下面是小明的探究过程: (1)如图所示,设函数1y x k=与k y x =图像的交点为A ,B .已知A 的坐标为(),1k --,则B 点的坐标为 .(2)若P 点为第一象限内双曲线上不同于点B 的任意一点.①设直线PA 交x 轴于点M ,直线PB 交x 轴于点N . 求证:PM PN =. 证明过程如下:设(,)kP m m,直线PA 的解析式为(0)y ax b a =+≠. 则1,.ka b k ma b m -+=-⎧⎪⎨+=⎪⎩解得a b =⎧⎨=⎩, . ∴直线PA 的解析式为 .请你把上面的解答过程补充完整,并完成剩余的证明.②当P 点坐标为(1,)(1)k k ≠时,判断PAB △的形状,并用k 表示出PAB △的面积.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共16页) 数学试卷 第8页(共16页)山东省德州市2016年初中毕业学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】2的相反数是2-,故选C .【提示】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案. 【考点】相反数 2.【答案】D【解析】合并同类项系数相加字母及指数不变,故A 正确;幂的乘方底数不变指数相乘,故B 正确;同底数幂的乘法底数不变指数相加,故C 正确;同底数幂的除法底数不变指数相减,故D 错误,故选D .【考点】合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方 3.【答案】D【解析】6408 4.0810=⨯万.【提示】科学记数法的表示形式为n10a ⨯的形式,其中11|a |0≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【考点】科学记数法表示较大的数 4.【答案】A【解析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A 选项正确,故选A .【提示】根据各个几何体的三视图的图形易求解. 【考点】简单几何体的三视图 5.【答案】C【解析】为了审核书稿中的错别字,应选择全面调查,A 错误;为了了解春节联欢晚会的收视率,选择抽样调查,B 错误;“射击运动员射击一次,命中靶心”是随机事件,C 正确;“经过由交通信号灯的路口,遇到红灯”是随机事件,D 错误.【考点】必然事件,不可能事件,随机事件的概率【解析】100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6~8(小时),故选B . 【考点】中位数,频数 9.【答案】D【解析】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”;旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”;轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”;位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换.【考点】平移,旋转变换,轴对称变换,位似变换 10.【答案】B【解析】在2y x =-中,20k =-<,所以y 的值随x 的值增大而减小;在31y x =-中,30k =>,所以y 的值随x 的值增大而增大;在1y x=中,10k =>,所以y 的值随x 的值增大而减小;二次函数2y x =,当0x <时,y 的值随x 的值增大而减小;当0x >时,y 的值随x 的值增大而增大,故选B .【考点】反比例函数的性质,一次函数的性质,反比例函数的性质和二次函数的性质 11.【答案】C【解析】根据勾股定理得:,则该直角三角形能容纳的圆形(内切圆)半径8151732r +-==(步),即直径为6步,故选C . 【考点】三角形的内切圆与圆心 12.【答案】C数学试卷 第9页(共16页) 数学试卷 第10页(共16页)()AM BC BM AM BC =-+=()22221tan ,αα=+)()2,A M B C A M A M-+-④正确,故选C .【解析】如图,连接OM 交AB 于点C ,连接OA ,OB ,由题意知,OM AB ⊥,12OC MC ==,在Rt AOC △中, 111,cos 22OC OA OC AOC AC OA ==∴∠==== ,,2120,AOB AOC ∴∠=∠=︒则弓形ABM 的面积=扇形OAB的面积-三角形AOB 的面积212011=3602π⨯-123π⨯=-,所以阴影面积=半圆面积-两倍的弓形ABM 的面积2112236πππ⎛=⨯-=- ⎝⎭.【考点】扇形面积的计算,图形的翻折变换17.【答案】()100810092,2 【解析】观察,发现规律,()()()()12341,2,2,2,2,4,4,4,A A A A ----…()()()2+1A -2,22,20171008∴-=n nn 21,⨯+所以2017A 的坐标为()100810092,2.【考点】一次函数图象上点的坐标特征,规律型中坐标的变【解析】()5231x x +≥-,解得:2x ≥-2512x x +->-,解得:4x < 22,x x S S < 乙乙甲甲>数学试卷 第11页(共16页) 数学试卷 第12页(共16页)所以甲的平均成绩高于乙,且甲的成绩更稳定,由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分有12种,所以抽到的两个人的成绩都大于80分的概率为1225.45,.,,AE BAC ABF CBF OB OC OE BC ∠∴∠=∠=∴⊥ 平分 O 23.【答案】(1)如图1中,连接BD .∵点E 、H 分别为边AB ,DA 的中点,1,2EH BD EH BD ∴=∥.∵点F ,G 分别为边BC ,CD 的中点,1,2FG BD FG BD ∴=∥.∴中点四边形EFGH 是平行四边形. (2)四边形EFGH 是菱形. 证明:如图2中,连接AC ,BD .数学试卷 第13页(共16页) 数学试卷 第14页(共16页)APB CPD ∠=∠ ,+=APB APD CPD APD ∴∠∠∠+∠,即APC BPD ∠=∠. 在APC △和BPD △中,,,,AP PB PC PD APC BPD =⎧⎪=⎨⎪∠=∠⎩.APC BPD ∴∽△△AC BD ∴=.又点E ,F ,G 分别为边AB ,BC ,CD 的中点,11,22EF AC FG BD ∴==,3,1,OB OC BE DE ====BOC ∴△与BED △都是等腰直角三角形,45,90,OBC DBE CBD ∴∠=∠=︒∠=︒∴BCD △是直角三角形.(3)()()0,3,C 3,0,B -3y x ∴=-为直线BC 解析式.因为点P 的横坐标为t ,PM x ⊥轴,所以点M 的横坐标为t ,因为点P 在直线BC 上,点M 在抛物线上,所以()()22,3,M ,23P t t t t t ---过点Q 作QF PM ⊥,所以PQF △是等腰直角三角形,1.PQ QF ==讨论:如图2,当点P 在点M 上方时,即03t <<时,2t 3PM t =-+213t 22S t=-+ 如图3,当点P 在点M 下方时,即0t <或3t >时,()2t 233,PM t t =----213t .22=-S t【考点】二次函数,一元二次方程的解法待定系数法求函数解析式,等腰直角三角形的性质和判定数学试卷第15页(共16页)数学试卷第16页(共16页)数学试卷第17页(共18页)数学试卷第18页(共18页)。
2017年山东省德州市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)﹣2的倒数是()A .﹣B .C.﹣2 D.22.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.(3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×1064.(3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A .B .C .D .5.(3分)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣26.(3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数7.(3分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣8.(3分)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>49.(3分)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P10.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=411.(3分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG 边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结=a2+b2;论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN⑤A,M,P,D四点共圆,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)计算:﹣=.14.(4分)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是.15.(4分)方程3x(x﹣1)=2(x﹣1)的解为.16.(4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.17.(4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)先化简,再求值:÷﹣3,其中a=.19.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.20.(8分)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(10分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)22.(10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?23.(10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B 点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.24.(12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得∴直线PA的解析式为请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB 的面积.2017年山东省德州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)(2017•德州)﹣2的倒数是()A.﹣ B.C.﹣2 D.2【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2017•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•德州)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:477万用科学记数法表示4.77×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•德州)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形.【解答】解:两个等直径圆柱构成如图所示的T型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•德州)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣2【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=8a3,故B不正确;(C)原式=a﹣2,故C不正确;(D)原式=a8,故D不正确;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A .平均数B.方差C.众数D.中位数【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.(3分)(2017•德州)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣【分析】A、由k=﹣3可得知y随x值的增大而减小;B、由k=2可得知y随x值的增大而增大;C、由a=2可得知:当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大;D、由k=﹣1可得知:当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大.此题得解.【解答】解:A、y=﹣3x+2中k=﹣3,∴y随x值的增大而减小,∴A选项符合题意;B、y=2x+1中k=2,∴y随x值的增大而增大,∴B选项不符合题意;C、y=2x2+1中a=2,∴当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大,∴C选项不符合题意;D、y=﹣中k=﹣1,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大,∴D选项不符合题意.故选A.【点评】本题考查了一次函数的性质、二次函数的性质以及反比例函数的性质,根据一次(二次、反比例)函数的性质,逐一分析四个选项中y与x之间的增减性是解题的关键.8.(3分)(2017•德州)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>4【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+9≥3,得:x≥﹣3,解不等式>x﹣1,得:x<4,∴不等式组的解集为﹣3≤x<4,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)(2017•德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论.【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选A.【点评】本题考查了一次函数的应用,比较L0和K的值,找出短而硬的弹簧是解题的关键.10.(3分)(2017•德州)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=4【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选D.【点评】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.(3分)(2017•德州)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()AMFNA.2 B.3 C.4 D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是=AM2=a2+b2;故④正确;正方形,于是得到S四边形AMFN⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,=AM2=a2+b2;故④正确;∴S四边形AMFN⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠ABP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选D.【点评】本题考查了四点共圆,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质旋转的性质,勾股定理,正确的理解题意是解题的关键.12.(3分)(2017•德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729【分析】根据题意找出图形的变化规律,根据规律计算即可.【解答】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,故选:C.【点评】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)(2017•德州)计算:﹣=.【分析】原式化简后,合并即可得到结果.【解答】解:原式=2﹣=,故答案为:【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2017•德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.(4分)(2017•德州)方程3x(x﹣1)=2(x﹣1)的解为x=1或x=.【分析】移项后分解因式得到(x﹣1)(3x﹣2)=0,推出方程x﹣1=0,3x﹣2=0,求出方程的解即可.【解答】解:3x(x﹣1)=2(x﹣1),移项得:3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,∴x﹣1=0,3x﹣2=0,解方程得:x1=1,x2=.故答案为:x=1或x=.【点评】本题主要考查对解一元一次方程,等式的性质,解一元二次方程等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.16.(4分)(2017•德州)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.【分析】先画树状图展示所有9种等可能的结果数,再找出淘淘与丽丽同学同时抽到物理的结果数,然后根据概率公式求解即可.【解答】解:画树状图为:因为共有9种等可能的结果数,其中淘淘与丽丽同学同时抽到物理物的结果数为1,所以他们两人都抽到物理实验的概率是.故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.(4分)(2017•德州)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.【分析】把透光部分看作是两个直角三角形与四个45°的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果.【解答】解:设⊙O与矩形ABCD的另一个交点为M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=1,=+2××1×1=+1,∴S透明区域过O作ON⊥AD于N,∴ON=FG=,∴AB=2ON=2×=,=2×=2,∴S矩形∴==.故答案为:.【点评】本题考查了矩形的性质、扇形的面积、直角三角形的面积,将透光部分化分为几个熟知图形的面积是关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)(2017•德州)先化简,再求值:÷﹣3,其中a=.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣3==a﹣3,当a=时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)(2017•德州)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.【分析】(1)根据C的人数除以C所占的百分比,可得答案;(2)根据人数比抽查人数,所占的百分比乘以抽查人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)从C可看出5÷0.1=50人,答:次被调查的学生有50人;(2)m==0.2,n=0.2×50=10,p=0.4×50=20,,(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(8分)(2017•德州)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴=,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x•3x,解得:x=,即AE=.【点评】本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解此题的关键.21.(10分)(2017•德州)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)【分析】(1)如图作AD⊥BC于D.则AD=10m,求出CD、BD即可解决问题.(2)求出汽车的速度,即可解决问题,注意统一单位;【解答】解:(1)如图作AD⊥BC于D.则AD=10m,在Rt△ACD中,∵∠C=45°,∴AD=CD=10m,在Rt△ABD中,∵∠B=30°,∴tan30°=,∴BD=AD=10m,∴BC=BD+DC=(10+10)m.(2)结论:这辆汽车超速.理由:∵BC=10+1027m,∴汽车速度==30m/s=108km/h,∵108>80,∴这辆汽车超速.【点评】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(10分)(2017•德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?【分析】(1)以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为y=a(x﹣1)2+h,代入(0,2)和(3,0)得出方程组,解方程组即可,(2)求出当x=1时,y=即可.【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为:y=a(x﹣1)2+h,代入(0,2)和(3,0)得:,解得:,∴抛物线的解析式为:y=﹣(x﹣1)2+;即y=﹣x2+x+2(0≤x≤3);(2)y=﹣x2+x+2(0≤x≤3),当x=1时,y=,即水柱的最大高度为m.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(10分)(2017•德州)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【解答】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【点评】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.24.(12分)(2017•德州)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为(k,1);(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得﹣1∴直线PA的解析式为y=x+﹣1请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB 的面积.【分析】(1)根据正、反比例函数图象的对称性结合点A的坐标即可得出点B 的坐标;(2)①设P(m,),根据点P、A的坐标利用待定系数法可求出直线PA的解析式,利用一次函数图象上点的坐标特征可求出点M的坐标,过点P作PH⊥x 轴于H,由点P的坐标可得出点H的坐标,进而即可求出MH的长度,同理可得出HN的长度,再根据等腰三角形的三线合一即可证出PM=PN;②根据①结合PH、MH、NH的长度,可得出△PAB为直角三角形,分k>1和0<k<1两种情况,利用分割图形求面积法即可求出△PAB的面积.【解答】解:(1)由正、反比例函数图象的对称性可知,点A、B关于原点O对。
德州市初中学业考试一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. 下列运算正确的是( )2= (B )()23-=9- (C )328-= (D )020=2.不一定在三角形内部的线段是( )(A )三角形的角平分线 (B )三角形的中线 (C )三角形的高 (D )三角形的中位线 3.如果两圆的半径分别为6和4,圆心距为10,那么这两圆的位置关系是( ) (A )内含 (B )内切 (C )相交 (D )外切4.由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是( )5.已知24,328.a b a b +=⎧⎨+=⎩则a b +等于( )(A )3 (B )8 (C )2 (D )1AP BD C O1l 2(A )(C )(D )(B )第4题图(A )3 (B )4 (C )92(D )5 二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.-1, 0, 0.2,71, 3 中正数一共有 个. 10.化简:6363a a ÷= . 1112.(填“>”、 “<”或“=”)12.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成. 已知正三角形的边长为1,则凸轮的周长等于_________.13.在四边形ABCD 中,AB =CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写一种情况)14.在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如下不完整的统计图.其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是_______元.15.若关于x 的方程22(2)0ax a x a +++=有实数解,那么实数a 的取值范围是_____________.16.如图,在一单位为1的方格纸上,△123A A A ,△345A A A ,△567A A A ,……,都是斜边在x 轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△123A A A 的顶点坐标分别为1A (2,0),2A (1,-1),3A (0,0),则依图中所示规律,2012A 的坐标为 .三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 17. (本题满分6分)已知:1x =,1y =,求22222x xy y x y -+-的值.10518. (本题满分8分)解方程:111122=++-x x .19.(本题满分8分)有公路1l 同侧、2l 异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路1l ,2l 的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法)20. (本题满分10分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.121. (本题满分10分)如图,点A ,E 是半圆周上的三等分点,直径BC =2,AD BC ,垂足为D ,连接BE 交AD 于F ,过A 作AG ∥BE 交BC 于G .(1)判断直线AG 与⊙O的位置关系,并说明理由. (2)求线段AF 的长.22. (本题满分10分)现从A ,B 向甲、乙两地运送蔬菜,A ,B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.(1)设A 地到甲地运送蔬菜x 吨,请完成下表:A BCED FGO(2)设总运费为W 元,请写出W 与x 的函数关系式. (3)怎样调运蔬菜才能使运费最少?23. (本题满分12分)如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB =∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论;(3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.A B CDEFG H PABCDEFGH P(备用图)德州市初中学业考试数学试题参考解答及评分意见一、选择题:(本大题共8小题,每小题3分,共24分)二、填空题:(本大题共8小题,每小题4分,共32分)9.3; 10.32a ;11 .>;12.π;13.不唯一,可以是:AB //CD 或AD =BC ,∠B +∠C=180º, ∠A +∠D =180º等; 14.20; 15.1a ≥-;16.(2,1006). 三、解答题:(本大题共7小题, 共64分) 17.(本小题满分6分)解:原式 =2()()()x y x y x y --+ ……(2分)=x y x y -+ .当1x =,1y =时,原式3==. 18.(本题满分8分)解:方程两边同乘x 2-1整理得 022=--x x 解得 .2,121=-=x x经检验:2121=-=x x 是增根,是原方程的根. 所以原方程的根是.2=x 19.(本题满分8分)解:根据题意知道,点C 应满足两个条件,一是在线段AB 在两条公路夹角的平分线上,所以点C 应是它们的交点. ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是所求的位置.注:本题学生能正确得出一个点的位置得6分,得出两个点的位置得8分. 20.(本题满分10分)解:(1)树状图如下:所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432. ……(5分) (2)这个游戏不公平.理由如下:组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,所以,甲胜的概率为81243=, 而乙胜的概率为162243=,这个游戏不公平. 21.(本题满分10分) 解:(1)AG 与⊙O 相切.证明:连接OA ,∵点A ,E 是半圆周上的三等分点,∴ BA = AE = EC∴点A 是 BE 的中点,∴OA ⊥BE . 又∵AG ∥BE ,∴OA ⊥AG .∴AG 与⊙O 相切. (2)∵点A ,E 是半圆周上的三等分点, ∴∠AOB =∠AOE =∠EOC =60°.又O A =OB , ∴△ABO 为正三角形.又AD ⊥OB ,OB =1,∴BD =OD =12, ADEBC =12EOC ∠=30,在Rt △FBD 中, FD =BD ⋅tan ∠EBC = BD ⋅ tan30°=6, ∴AF =AD -DF22.(本题满分10分)解:(1)…………(3分)2 4 43 1 3 2 3 14 4 3 2 3 1 3 1 4 4 2 3 2 1 2 1 3 32 42 1 2A CEDFGO(2)由题意,得5030146015451W x x x x =+-+-+-()()() 整理得,51275W x =+.(3)∵A ,B 到两地运送的蔬菜为非负数,∴0,140,150,10.x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ 解不等式组,得114x ≤≤在51275W x =+中,W 随x 增大而增大,∴当x 最小为1时,W 有最小值 1280元. 23.(本题满分12分)解:(1)∵PE=BE ,∴∠EBP=∠EPB .又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP .即∠PBC=∠BPH .又∵AD ∥BC , ∴∠APB=∠PBC .∴∠APB=∠BPH .(2)△PHD 的周长不变,为定值 8. 证明:过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP , ∴△ABP ≌△QBP .∴AP=QP , AB=BQ .又∵ AB=BC ,∴BC = BQ . 又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .∴CH=QH . ∴△PHD 的周长为:PD+DH+PH =AP+PD+DH+HC =AD+CD =8. (3)过F 作FM ⊥AB ,垂足为M ,则FM BC AB ==.又EF 为折痕,∴EF ⊥BP .∴90EFM MEF ABP BEF ∠+∠=∠+∠=︒, ∴EFM ABP ∠=∠.又∵∠A=∠EMF=90°,∴△EFM ≌△BP A .∴EM AP ==x .∴在Rt △APE 中,222(4)BE x BE -+=.解得,228x BE =+.∴228x CF BE EM x =-=+-. 又四边形PEFG 与四边形BEFC 全等,∴211()(4)4224xS BE CF BC x =+=+-⨯.即:21282S x x =-+.配方得,21(2)62S x =-+,∴当x =2时,S 有最小值6.ABC DEFG H PQABCDE F G HPM ABC DEFGH P。
实用文档文案大全2016年山东省德州市中考数学试题一、选择题:本大题共12个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.2的相反数是()A. B. C.﹣2 D.22.下列运算错误的是()A.a+2a=3a B.(a2)3=a6 C.a2?a3=a5 D.a6÷a3=a23.2016年第一季度,我市“蓝天白云、繁星闪烁”天数持续增加,获得山东省环境空气质量生态补偿资金408万元,408万用科学记数法表示正确的是()A.408×104 B.4.08×104 C.4.08×105 D.4.08×106 4.图中三视图对应的正三棱柱是()A. B. C. D.5.下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查; B.为了了解春节联欢晚会的收视率,选择全面调查; C.“射击运动员射击一次,命中靶心”是随机事件; D.“经过由交通信号灯的路口,遇到红灯”是必然事件6.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()实用文档文案大全A.65° B.60° C.55° D.45°7.化简﹣等于()A. B. C.﹣ D.﹣8.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时 B.6﹣8小时 C.8﹣10小时 D.不能确定9.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移 B.旋转 C.轴对称 D.位似10.下列函数中,满足y的值随x的值增大而增大的是()A.y=﹣2x B.y=3x﹣1C.y= D.y=x211.《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步 B.5步 C.6步 D.8步12.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△EMN=.上述结论中正确的个数是()实用文档文案大全A.1 B.2 C.3 D.4二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分13.化简的结果是14.正六边形的每个外角是度.15.方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22=16.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是17.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为三、解答题:本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤18.解不等式组:.实用文档文案大全19.在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83 乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.20.2016年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭达到A点时,从位于地面R处雷达站测得AR的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°(1)求发射台与雷达站之间的距离LR;(2)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?(参考数据:son42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )实用文档文案大全21.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:第1天第2天第3天第4天售价x(元/双) 150 200 250 300 销售量y(双) 40302420(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?22.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.实用文档文案大全23.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;实用文档文案大全(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)24.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;实用文档文案大全(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x 轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.实用文档文案大全参考答案一、选择题:1.2的相反数是()A.B.C.﹣2D.2解:2的相反数是﹣2,故选:C.2.下列运算错误的是()A.a+2a=3a B.(a2)3=a6 C.a2?a3=a5D.a6÷a3=a2解:A、合并同类项系数相加字母及指数不变,故A正确;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的乘法底数不变指数相加,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:D.3.2016年第一季度,我市“蓝天白云、繁星闪烁”天数持续增加,获得山东省环境空气质量生态补偿资金408万元,408万用科学记数法表示正确的是()A.408×104B.4.08×104C.4.08×105D.4.08×106解:408万用科学记数法表示正确的是4.08×106.故选:D.4.图中三视图对应的正三棱柱是()A.B.C.D.解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.5.下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过由交通信号灯的路口,遇到红灯”是必然事件实用文档文案大全解:为了审核书稿中的错别字,应选择全面调查,A错误;为了了解春节联欢晚会的收视率,选择抽样调查,B错误;“射击运动员射击一次,命中靶心”是随机事件,C正确;“经过由交通信号灯的路口,遇到红灯”是随机事件,D错误.故选:C.6.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.7.化简﹣等于()A.B.C.﹣D.﹣解:原式=+=+==,故选B8.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()实用文档文案大全A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定解:100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6﹣8(小时).故选B.9.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移B.旋转C.轴对称D.位似解:平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”;旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”;轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”;位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换,故选:D.10.下列函数中,满足y的值随x的值增大而增大的是()A.y=﹣2x B.y=3x﹣1 C.y= D.y=x2解:A、在y=﹣2x中,k=﹣2<0,∴y的值随x的值增大而减小;B、在y=3x﹣1中,k=3>0,∴y的值随x的值增大而增大;C、在y=中,k=1>0,∴y的值随x的值增大而减小;D、二次函数y=x2,当x<0时,y的值随x的值增大而减小;当x>0时,y的值随x的值增大而增大.故选B.11.《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步实用文档文案大全解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故选C12.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△EMN=.上述结论中正确的个数是()A.1 B.2 C.3 D.4 解:①如图,在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,则有AB=AE=EF=FC,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.∵AM不一定等于CN,∴AM不一定等于CN,实用文档文案大全∴①错误,②由①有Rt△AME≌Rt△FNE,∴∠AME=∠BNE,∴②正确,③由①得,BM=CN,∵AD=2AB=4,∴BC=4,AB=2∴BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,∴③正确,④如图,由①得,CN=CF﹣FN=2﹣AM,AE=AD=2,AM=FN∵tanα=,∴AM=AEtanα∵cosα=,∴cos2α=,∴=1+=1+()2=1+tan2α,∴=2(1+tan2α)∴S△EMN=S四边形ABNE﹣S△AME﹣S△MBN=(AE+BN)×AB﹣AE×AM﹣BN×BM=(AE+BC﹣CN)×2﹣AE×AM﹣(BC﹣CN)×CN=(AE+BC﹣CF+FN)×2﹣AE×AM﹣(BC﹣2+AM)(2﹣AM)=AE+BC﹣CF+AM﹣AE×AM﹣(2+AM)(2﹣AM)=AE+AM﹣AE×AM+AM2实用文档文案大全=AE+AEtanα﹣AE2tanα+AE2tan2α=2+2tanα﹣2tanα+2tan2α=2(1+tan2α)=.∴④正确.故选C.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分13.化简的结果是解:原式==.故答案为14.正六边形的每个外角是60度.解:正六边形的一个外角度数是:360÷6=60°.故答案为:6015.方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22=解:∵方程2x2﹣3x﹣1=0的两根为x1,x2,∴x1+x2=﹣=,x1?x2==﹣,∴x12+x22=﹣2x1?x2=﹣2×(﹣)=.故答案为:.16.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是﹣解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=,在RT△AOC中,∵OA=1,OC=,∴cos∠AOC==,AC==∴∠AOC=60°,AB=2AC=,实用文档文案大全∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB﹣S△AOB=﹣××=﹣,S阴影=S半圆﹣2S弓形ABM=π×12﹣2(﹣)=﹣.故答案为:﹣.17.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为(21008,21009)解:观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009).三、解答题:本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤18.解不等式组:.解:解不等式5x+2≥3(x﹣1),得:x≥﹣,解不等式1﹣>x﹣2,得:x<,故不等式组的解集为:﹣≤x<.19.在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83 乙:88,79,90,81,72.回答下列问题:实用文档文案大全(1)甲成绩的平均数是83,乙成绩的平均数是82;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.解:(1)==83(分),==82(分);(2)选拔甲参加比赛更合适,理由如下:∵>,且S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.90,82 90,8590,83 81 81,79 81,86 81,82 81,85 81,83 7272,7972,8672,8272,8572,83由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分有12种,∴抽到的两个人的成绩都大于80分的概率为.故答案为:(1)83,82.20.2016年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭达到A点时,从位于地面R处雷达站测得AR的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°(1)求发射台与雷达站之间的距离LR;(2)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?(参考数据:son42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )实用文档文案大全解:(1)在Rt△ALR中,AR=6km,∠ARL=42.4°,由cos∠ARL=,得LR=AR?cos∠ARL=6×cos42.4°≈4.44(km).答:发射台与雷达站之间的距离LR为4.44km;(2)在Rt△BLR中,LR=4.44km,∠BRL=45.5°,由tan∠BRL=,得BL=LR?tan∠BRL=4.44×tan45.5°≈4.44×1.02=4.5288(km),又∵sin∠ARL=,得AL=ARsin∠ARL=6×sin42.4°≈4.02(km),∴AB=BL﹣AL=4.5288﹣4.02=0.5088≈0.51(km).答:这枚火箭从A到B的平均速度大约是0.51km/s.21.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:第1天第2天第3天第售价x(元/双)150 200 250 300 销售量y(双) 40302420(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?解:(1)由表中数据得:xy=6000,∴y=,∴y是x的反比例函数,故所求函数关系式为y=;(2)由题意得:(x﹣120)y=3000,文案大全把y=代入得:(x﹣120)?=3000,解得:x=240;经检验,x=240是原方程的根;答:若商场计划每天的销售利润为3000元,则其单价应定为240元.22.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.解:(1)直线l与⊙O相切.理由:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴.∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=7.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴,即,解得;AE=.∴AF=AE﹣EF=﹣7=..23.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.文案大全(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,实用文档文案大全∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.24.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.实用文档文案大全解(1)∵x2+4x+3=0,∴x1=﹣1,x2=﹣3,∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),∴,∴,∴抛物线解析式为y=x2﹣2x﹣3,(2)令y=0,则x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴C(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标D(1,﹣4),过点D作DE⊥y轴,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形;(3)如图,实用文档文案大全∵B(0,﹣3),C(3,0),∴直线BC解析式为y=x﹣3,∵点P的横坐标为t,PM⊥x轴,∴点M的横坐标为t,∵点P在直线BC上,点M在抛物线上,∴P(t,t﹣3),M(t,t2﹣2t﹣3),过点Q作QF⊥PM,∴△PQF是等腰直角三角形,∵PQ=,∴QF=1,当点P在点M上方时,即0<t<3时,PM=t﹣3﹣(t2﹣2t﹣3)=﹣t2+3t,∴S=PM×QF=(﹣t2﹣3t)=﹣t2+t,如图3,当点P在点M下方时,即t<0或t>3时,PM=t2﹣2t﹣3﹣(t﹣3),∴S=PM×QF=(t2﹣3t)=t2﹣t。