第二章时域离散时间信号与系统
- 格式:pptx
- 大小:2.96 MB
- 文档页数:40
第二章离散时间信号与系统的变换域分析 2.1 序列的Z变换 Z变换的定义 Z变换的收敛域逆Z 变换 Z变换的性质与定理 Z变换与拉氏变换的关系 Z变换的定义抽样信号进行拉氏变换得: Z变换的定义 Z变换的定义例1:求序列 x (n)= an u(n) 的Z变换。
解:为保证收敛,则若 a = 1, 则 Z变换的定义例2:求序列x(n)= -an u(-n-1)的Z变换。
解: Z变换的定义例3:求序列 x (n)= (1/3)|n| 的Z变换。
解: Z变换的收敛域 Z 变换的收敛域对于任意给定的序列x(n) ,使其Z变换收敛的所有z值的集合称为X(z)的收敛域。
其收敛的充要条件是满足绝对可和条件,即:根据级数收敛的阿贝尔定理 Z变换的收敛域 1.有限长序列 x(n)仅在有限长的时间间隔n1≤n ≤ n2内,序列值不全为零,其它时间全为零,即 Z变换的收敛域2.右边序列 x(n)在n ≥n1时,序列值不全为零,在n n1时序列值全为零,此时有收敛域为如为因果序列,其收敛域为 Z变换的收敛域 3.左边序列 x(n)在n n2以外序列值全为零,仅在n ≤ n2时有非零值,其z变换为Z变换的收敛域 4.双边序列双边序列的序列值n可取任何整数值,其z变换为 Z变换的收敛域如果序列Z变换可表达成有理分式的形式:称分子多项式的零点为X(z)的零点,分母多项式的零点为X(z)的极点,因为极点z变换不存在,因此在收敛域内应没有极点,故可通过取X(z)的极点为边界来确定其收敛半径。
Z变换的收敛域例求单位阶跃序列 u(n) 的z变换,并确定其收敛域。
解:由于u(n)为因果序列,其Z变换收敛域为,因函数在z=1处有一极点,极点应在收敛域外,因此可取,求得u(n)的z变换收敛域为。
Z变换的收敛域例求序列逆Z变换逆Z变换从给定的Z变换表达式(包括收敛域)求原序列的过程称为逆z变换。
其实质是求X(z)的幂级数展开式各项的系数。