固相反应动力学
- 格式:doc
- 大小:147.00 KB
- 文档页数:3
固相反应动力学的研究方法固相反应动力学是一门研究固体物质内部反应速率的领域,它在材料科学、化学、地球科学等众多领域具有重要的应用价值。
本文将介绍几种常见的固相反应动力学研究方法,包括热分析法、差示扫描量热法、X射线衍射法和傅里叶变换红外光谱法。
1. 热分析法热分析法是一种常用的固相反应动力学研究方法,它通过对固体样品在一定温升速率下的质量或尺寸的变化进行定量测量,得到反应速率与温度的关系。
常见的热分析仪器包括差热分析仪(Differential Thermal Analysis,DTA)和热重分析仪(Thermogravimetric Analysis,TGA)。
通过对样品在不同温度下的变化情况进行分析,可以确定固相反应的反应特征和反应动力学参数。
2. 差示扫描量热法差示扫描量热法是一种通过测量样品与参比物在温度变化过程中的热量差异来研究固相反应动力学的方法。
它能够定量地测定样品的吸放热效应,并根据反应过程中的热量变化确定反应速率常数和反应机理。
差示扫描量热法具有高灵敏度、快速测量等优点,被广泛应用于固相反应动力学的研究。
3. X射线衍射法X射线衍射法是一种通过测量晶体或非晶体材料对入射X射线的散射强度来研究固相反应动力学的方法。
通过分析样品在反应过程中晶格结构的变化情况,可以得到反应过程的动力学信息。
X射线衍射法具有非破坏性、精确度高等优点,被广泛应用于材料的相变、合成等领域。
4. 傅里叶变换红外光谱法傅里叶变换红外光谱法是一种通过测量样品在红外辐射下的吸收光谱来研究固相反应动力学的方法。
通过分析样品在反应过程中红外吸收峰的强度和频率的变化,可以研究固相反应的进程和反应机理。
傅里叶变换红外光谱法具有快速、灵敏度高等优点,广泛应用于催化剂、能源材料等领域的研究。
总结:固相反应动力学的研究方法包括热分析法、差示扫描量热法、X射线衍射法和傅里叶变换红外光谱法。
这些方法在研究固体内部反应速率、反应机理等方面起着重要的作用,对于材料科学、化学和地球科学等领域的发展具有重要的意义。
2.2.2气~固相催化反应动力学宏观动力学:工业反应器中实际反应速度(不排除外界因素影响)的动力学关系。
本征动力学(微观动力学):排除外界因素影响,进行动力学研究得出的规律。
(一)气-固相催化反应速率气~固相催化反应速度定义:单位催化剂质量(或体积),单位时间内反应物数量的变化。
()dtdN w r A A 1-=-=反应消耗A 的摩尔数/催化剂质量、反应时间()/A r -=反应消耗A 的摩尔数/催化剂体积,反应时间=dtdN V Ap 1-(2—9)Cat V p ~体积有时以单位床层体积为基准,()dtdN V r AB A 1//-=- (2—10)~B V 床层体积关系()()()BA pA A r r r ρρ///-=-=- ~p ρ催化剂密度粒子[][][]33/m mkg kg 密度质量体积=~B ρ 催化剂床层堆积密度 (二)双曲线型的反应速率式(L-H-H-W )型基本假设:①反应发生在吸附分子之间或吸附分子与气体分子之间 ②()A r -与各组分在催化剂表面上的覆盖率成正比 基本步骤:①已知:反应物,产物,设想反应机理 ②定出每种机理的动力学方程式③实验推定动力学方程式参数的最佳值 ④检验模型的准确性 (一)表面反应控制1.双分子不可逆反应 S R B A +→+ 设想机理步骤:A 的吸附:σσA ↔+A ~σ吸附位B 的吸附:σσB ↔+B表面反应:σσσσS R +→B +A (控制步骤) R 的脱附:σσ+↔R R 其它步骤达到平衡 S 的脱附:σσ+↔S A表面反应速度:()B A r A k r θθ=- r k ~反应速率常数 根据L-H 吸附模型:SS R R B B A A AA A p K p K p K p K p K ++++=1θ (2—11)SS R R B B A A BB B p K p K p K p K p K ++++=1θ (2—12)()()()21S S R R B B A A BA B A r A p K p K p K p K p p K K k r ++++=-则()21S S R R B B A A BA p K p K p K p K p kp ++++=(2—13)2.双分子可逆反应S R B A +⇔+表面反应为 σσσσS R +⇔B +A 其它吸附、脱附同不可逆反应()SR k k r θθθθ21-=-B A A()2211S S R R B B A A SR S R B A B A p K p K p K p K p p K K k p p K K k ++++-=B A K K k k 1=令()221S S R R B B A A RS S R B A p K p K p K p K p p K K k k kp kp ++++-= SR B A K K k K K k K 21=令 ()()21/S S R R B B A A S R B A p K p K p K p K K p p p p k ++++-=(2—14)k K K k K SR 21=SS R R B B A A R R R p K p K p K p K p k ++++=1θ SS R R B B A A SS S p K p K p K p K p k ++++=1θ说明:分子有两项→可逆反应分母 A 、B 、R 、S→四种物质被吸附括号上的平方项→控制步骤是三步及到两个吸附位之间的反应(双分子反应) 3.2A 在吸附时解离 +⇔B +A R 2S 与上不同的是:*2σσσσσ++⇔B +A S R 反应速率式:()V S R A A k k r θθθθθ221-=-B ~V θ裸露率整理 ()()32221/SS R R B B A A S R B A p K p K p K p K K p p p p k ++++-=(2—15)说明:分母222A →A A p K 是解离吸附 4.吸附的A 与气相的B 进行不可逆反应 S R +→B +A 机理:σσA ⇔+Aσσ++→B +A S R反应速率:()AA BA A rB A r A p K p p K k p k r +==-1θ (2—16)其中 AA AA A p K p K +=1θ5.两类不同吸附位的情况 R →B +A机理11σσA ⇔+A22σσB ⇔+B 1σ吸附A *1221σσσσ+→B +A R 2σ吸附B 22σσ+⇔R R反应速率 ()B A r A k r θθ=-其中A θRR B B BB B A A A A p K p K p K p K p K ++=+=11θ()()()R R B B A A BA A p K p K p K p kp r +++=-11 (2—17)B A r K K k k = 说明:分母两个因子→两类不同吸附位吸附(二)吸附控制 化学反应式R ⇔B +A 若A 的吸附是控制步骤设想,机理: σσA ⇔+A σσB ⇔+Bσσσσ+⇔B +A R σσ+⇔R R反应速率(为A 的净吸附速度): ()b a A r r r -=-A d V A A k p k θθ-=其余各步达平衡:V B B B p K θθ= (2—18)V R R R p K θθ= (2—19) 而:1=+++V R B A θθθθ (2—20)令BB A VR R B R B A V R r p K p K K θθθθθθθθ⎪⎪⎭⎫ ⎝⎛=代入 BA VR r K R θθθθσσσσ=∴+⇔B +A 则V BRB r R A p p K K K θθ=(2—21) V V R R B B B RB r R R B A p K p K p p K K K θθθθθ-=⎪⎪⎭⎫⎝⎛++=++1 (2—22)RR B B BRB r R V p K p K p p K K K +++=∴11θ (2—23)则()A d A A a A k p k r θθ-=- (2—24)V B RB r R d A a p p K K K k p k θ⎪⎪⎭⎫⎝⎛-= (2—25)RR B B BR B r R BR B r r d A a p K p K p p K K K p p K K K k p k ++⎪⎪⎭⎫ ⎝⎛+-=1RR B B BRRB B R A a p K p K p p K K p p p k +++⎪⎪⎭⎫ ⎝⎛-=1 (2—26)其中R b B r a K k K K k K =Br RRB K K K K =⎪⎪⎭⎫⎝⎛=B A θθθθVR r K (三)脱附控制设:R 的脱附为控制步骤:④*σσ+⇔R RR ⇔B +A (①σσA ⇔+A ②σσB ⇔+B ③σσσR →B +A ) 推导结果:()()BA AB B B A A R B A A p p K p K p K Kp p p k r +++-=-1 (2—27)式中:B A r AB K K K K =;B A r b K K K k k =;BA r b aK K K k k K =例1镍催化剂在200℃进行苯加氢反应,若催化剂的平均孔径0510d m=⨯,p,4τ=,求系统总压力为3039.3kpa时,氢在催化剂内的有效扩散系数e D。
实验20 固相反应动力学
一、实验目的
验证固相反应理论,通过本实验达到进一步了解固相反应机理。
通过测定BaCO3-SiO2系统中给定组成的固相反应速度常数,熟悉测定固相反应速度的仪器及方法。
二、实验内容
1.原理
固态物质中的质点(分子、原子或离子)是不断振动的(除绝对零度外),随着温度升高,振幅增大,当达到一定温度时(各种物质不同),由于存在热起伏,使某些质点具有了一定的能量,以至于可以跳离其原来的位置,而产生质点的迁移。
这一过程对于单元系统来说就是烧结的开始。
这一过程在无气相和液相时也能进行,这就是狭义的固相反应。
从广义上讲,所谓固相反应就是有固体物质参加的反应。
固相反应全部过程可分为扩散过程、反应过程及晶核形成过程这三个部分。
其中进行得最慢的一个过程控制着整个过程的进行。
许多固相反应是由扩散过程控制的,在这种情况下,等温固相反应动力学有三种可能性:
1. 1.新形成的反应产物层阻碍扩散作用:此时反应速度与产物层的厚度y成反比:
dy/dt=K/y (1)
2. 2.新形成的反应产物层与扩散作用无关:
dy/dt=K (2)
3..新形成的反应产物层能促进扩散作用:
dy/dt=Ky (3)
实际上大部分固相反应属于第一种类型.由(1)式积分得:
y2=Kt (4)
由于实际测量反应产物层厚度比较困难,因此,通常用反应产物百分数x来表示反应程度.设颗粒为球形且反应物与产物的比重相等,则可推得如下方程:
[1-3
100
100x
]2=Kt
对于BaCO3-SiO2系统,可以用测量反应时放出得气体体积或系统重量损失(重量法)来计算反应产物百分数。
但因重量法灵敏度差,故常采用量气法。
量气法一般都在负压下(-40mmHg)进行,这样实验结果准确度高。
本实验为便于控制和操作,在常压下进行。
2. 实验装置
实验装置如图20-1所示。
3. 实验步骤
(1) 在分析天平上称0.4~0.5克样品于白金小筒内,塌实,接上悬丝,然后置于炉内反应管中,挂于小钩上。
(2) 检查仪器密封情况,不漏气方可进行实验。
采用提高(或降低)水准瓶,使之产生一个水位差(压力差)的方法来检查漏气情况。
(3) 检查线路后,接通电源,按10℃/min的升温速度升温至800℃,并保温10分钟,旋三通开关使反应管与量气筒接通(到指定温度前,反应管放空),记下量气筒的起始读数。
(4) 作好准备工作后,将悬丝脱开,使白金小量筒落到反应管中,同时按动秒表记录时间。
第一分钟内每20秒记录一次量气管上的读数。
注意读数时应将水准瓶与量气管中的液面保持在同一水平上(为什么?),一分钟以后,每分钟读一次,10分钟后二分钟读一次,20分钟后每5分钟读一次,至60分钟实验结束。
注意整个实验中应严格控制温度,波动范围为<5℃。
1. 高温炉;
2. 反应管;
3. 反应小筒;
4. 热电偶;
5. 挂筒钩;
6. 三通开关;
7. 温度控制器;
8. 水银温度计;9. 量气筒;10. 水套管;11. 水准瓶;12. 电流表;13. 调压变压器
图20-1 量气法装置线路图
样品制备
将BaCO 3和石英砂研细,过4900孔筛,SiO 2在空气中加热至800℃,保温5小时,BaCO 3在CO 2气氛中加热到400℃,保温4小时,除去其颗粒表面的吸附水和其它气体,并消除研磨时表面产生的应力。
把热处理后BaCO 3和SiO 2按分子比1:2配好混匀,防于干燥器内备用。
4. 实验结果与处理
(1) 根据实验时的气压及水温,将记录的气体体积换算成为标准状态下气体的体积。
(2) 按反应方程式计算反应的x 和2
31001001⎥⎦⎤⎢⎣⎡
--
x x 的求法:
因BaCO 3:SiO 2=1:2,
RT PV n CO =2 , 2332S i O B a C O B a C O M M W n +=试样 有: 10032⨯=BaCO CO n n x
其中: n CO 2、n BaCO3分别为CO 2和BaCO 3的摩尔数
M BaCO3、M SiO2分别为BaCO 3和SiO 2的分子量
W 试样表示试样的重量。
(3) 以231001001⎥⎦⎤⎢⎣⎡
--
x 为纵坐标,时间t 为横坐标作图。
并由所作曲线的斜率计算在给定温度下反应速度常数K 。
三、思考题
1. 把BaCO 3与SiO 2的分子比由1:2改为2:1对实验有何影响?
2. 影响本实验准确性的因素有哪些?在实验的后期数据为什么偏离直线?
3. 根据本实验可以获得固相反应动力学中哪些数据?如何获得?。