第五章 固相反应动力学
- 格式:pdf
- 大小:944.18 KB
- 文档页数:27
第五章 固相反应动力学固相反应是多相反应的一种,狭义上指固-固反应(包括固态相变),广义上讲包括固-固,固-液,固-气等之间的反应。
热力学是解决反应进行的方向和可能性,而动力学是讨论反应进行的过程,固相反应动力学研究固相之间反应速度、机理和影响反应速度的因素。
固相反应一般是发生在相界面上,反应物、生成物并不是均匀分布于介质中,因此为非均相反应,其反应速度是时间和空间的函数。
对于均相反应 D C B A +→+反应速率可以描述为:ωεβαD C B A C C k C kC n '-=严格来说不能直接由反应方程式写出反应速度式来,因为一般情况下b a ≠≠βα,。
当反应为基元反应时,即分子碰撞后一步即可完成的反应,可以认为相等,而非基元反应不同。
对于上述反应速度表达式,忽略逆反应,βαB A C kC dtdC n =-= βα+为表观反应级数⎪⎭⎫⎝⎛∆-=RT G A k *expA 为频率因子,*G ∆为表观活化能※ 杨德尔方程考虑如图模型,颗粒原始粒径为R ,反应进行了t 时间后,产物层厚度为x 。
当1<<R x时, xk dt dx = 这就是平板反应模型(杨德尔方程),即反应物的生成速度与生成层的厚度成反比。
定义反应转化率α33331134)(3434⎪⎭⎫ ⎝⎛--=--=R x R x R R πππα∴()[]3/111α--=R x杨德尔方程在反应初期或颗粒较小时与实验比较吻合,在反应中后期就有较大偏差。
※ 金斯特林格方程对于球状质点的扩散动力学进行分析,如果有C B A →+,假设在高温下反应速度很快,A 在C中的扩散成为了反应的控速环节。
边界条件:=-===A A A C r R r C C R r在产物层R-x < r < R 中取一个微体积元 r r ∆24π()dtdC rr r J r r J AA A ∆=-∆+222444πππ dt dC drdJ r AA =21∴dt dC dr dC r dr d r D AA =⎪⎭⎫ ⎝⎛22 由于反应只是发生在产物层与反应物的界面处,假定整个扩散过是稳态过程。
第五章 气-固相催化反应动力学本章核心内容:介绍了气-固相催化反应的特点、固体催化剂的特征参数和均匀及不均匀吸附等温方程的要点,在此基础上,阐述了不同控制步骤的气-固相催化反应本征动力学方程。
本章的重点在于讨论有关固体催化剂的反应-传质-传热耦合的宏观过程、宏观动力学方程的建立及求解方法。
前已述及,化学反应可分为均相反应和非均相反应两大类。
均相反应动力学因无相间传质传热阻力属于本征动力学范畴,而气固两相催化反应存在相间传递阻力,使可测的主体气流温度和浓度与实际反应值不同,为了描述真实的反应速率,进行有效的气固催化反应器设计,从第五章开始,将学习和讨论气固非均相反应动力学及其反应器设计内容。
本章从它的机理方程入手,详细讨论气固相催化反应宏观动力学规律。
5-1 气-固相催化反应 5-1-1 气-固相催化反应概述所谓气固相催化反应是指在反应条件下,在固体催化剂表面上进行的、反应物和产物均呈气态的一类化学反应。
例如,氮气和氢气在固体铁催化剂表面上进行的合成反应,二氧化硫在固体钒催化剂表面上转化为三氧化硫的反应,合成气在铜基催化剂表面上进行合成甲醇的反应等等,都属于气固相催化反应。
这一类型的催化反应在化工生产中所占的份额相当大,因此气固相催化反应动力学研究及其反应器设计等相关内容成为化学反应工程学的核心内容之一。
气固相催化反应的最大特点莫过于固体催化剂表面这个反应平台,它不仅可以改变反应路径、降低反应活化能,加快反应速率。
因此,在定义气固相催化反应速率时,离不开固体催化剂表面积S 这个参变量的引入,即dtdn S r ii 1±= (5-1) 固体催化剂表面积是固体催化剂的重要性能参数之一,对于特定的催化剂而言,单位质量催化剂所具有的表面积几乎是一个常量,两者之间具有高度的对应关系,所以在定义气固相催化反应速率时,也常常用固体催化剂质量W 替代式(5-1)中的S 。
气-固相催化反应动力学研究的目的就是要建立气固相催化反应动力学方程,为气固相催化反应器的开发设计、选型、优化操作与控制提供理论依据。
实验四 固相反应动力学一、目的:1.探讨Na 2CO 3-SiO 2系统的固相反应动力学; 2.熟悉运用失重法进行固相反应的研究。
二、原理:固态物质中的质点,在温度升高时,振动相应增大,而达到一定温度时,其中若干原子或离子具有一定的活度,以至可以跳离原来位置,与周围的其它离子产生换位作用。
在一元系统中表现为烧结的开始,如果是二元或多元系统则表现为表面相接触的物质间有新化合物的产生,亦即固相反应的存在。
这时的反应是在没有气相和液相参加的情况下进行的,反应发生的温度低于液相出现的温度。
测定固相反应速度的问题,实际上就是测定反应过程中各反应阶段的反应量的问题,因此有许多方法,对于反应中有气体产生的反应可以用重量法或量体积法即测量反应过程中生成的气体的量,进而计算出物质的反应量。
本实验是测定Na 2CO 3-SiO 2系统的固相反应速度,采用的方法是重量法,该反应式可以表示为:Na 2CO 3+SiO 2=Na 2O ·SiO 2+CO 2↑在反应进行的过程中,在某一温度下随时间的增长,Na 2SiO 2量增多,生成的CO 2气量也越多,若测得系统各时间下失去的CO 2的重量,则可按杨德公式的要求先算出各时间下对应的G 值,再根据杨德尔公式(1-31G -)2=K τ可求出(1-31G -)2~τ的关系曲线。
若此曲线是一直线,则表示杨德尔公式具有正确性,说明K 是常数。
二、仪器装置:1.WZK-1可控硅温度控制器; 2.1/万光电天平; 3.管式电阻炉; 4.温控热电偶 三、操作步骤:1.用差重法准确称取按分子量比1:1配制成的Na 2CO 3+SiO 2混合物0.3-0.4克,置于小铂金皿中(注意:不可装得太满)。
2.打开WZK 温度控制器电源开关,将黑色定温指针定于700℃,将控制开关拨到“手图4-1 固相反应原理图 图4-2 固相反应装置动”位置,用调节旋扭调电压至150V ,此时炉子开始升温,当温度升到300℃时,电压加大到200V ,温度升到500℃时,将控制小开关拨到“自动”位置,炉子将继续升温。