三视图绘制标准
- 格式:ppt
- 大小:225.50 KB
- 文档页数:7
《三视图》知识清单一、三视图的定义三视图是指能够正确反映物体长、宽、高尺寸的正投影工程图,分别是主视图、俯视图和左视图。
主视图是从物体的前面向后面投射所得的视图,能反映物体的前面形状;俯视图是从物体的上面向下面投射所得的视图,能反映物体的上面形状;左视图是从物体的左面向右面投射所得的视图,能反映物体的左面形状。
二、三视图的投影规律1、主视图和俯视图的长对正:也就是说,主视图和俯视图在水平方向上的长度是相等的。
2、主视图和左视图的高平齐:主视图和左视图在垂直方向上的高度是相等的。
3、俯视图和左视图的宽相等:俯视图和左视图在宽度方向上的尺寸是一致的。
这三个投影规律是绘制和阅读三视图的重要依据,必须牢记。
三、三视图的绘制步骤1、分析物体的结构形状:首先要仔细观察物体,了解其组成部分和各部分之间的相对位置关系。
2、确定主视图的方向:通常选择能最清晰地反映物体主要形状特征的方向作为主视图的投射方向。
3、绘制主视图:根据物体的实际尺寸和形状,按照投影规律画出主视图。
4、绘制俯视图:在主视图的下方,根据长对正的原则,画出俯视图。
5、绘制左视图:在主视图的右方,根据高平齐、宽相等的原则,画出左视图。
6、检查和修饰:完成三视图的绘制后,要仔细检查各视图之间的投影关系是否正确,尺寸是否标注完整,线条是否清晰等,并进行必要的修饰和整理。
四、三视图中的线条类型1、可见轮廓线:用粗实线绘制,表示物体的可见部分的轮廓。
2、不可见轮廓线:用虚线绘制,表示物体被遮挡的部分的轮廓。
3、中心线:用细点画线绘制,例如对称物体的对称中心线等。
五、由三视图还原立体图形这是三视图的一个重要应用,需要根据三视图所提供的信息,想象出物体的空间形状。
1、先从主视图入手,结合俯视图和左视图,确定物体的大致形状和结构。
2、分析各视图中线条的含义,特别是虚线所表示的不可见部分。
3、逐步构建物体的各个部分,注意它们之间的连接关系和相对位置。
六、三视图在实际生活中的应用1、机械制造:在设计和制造机械零件时,三视图是必不可少的工具,能够准确地表达零件的形状和尺寸,便于加工和装配。
第三视角标准三视图
首先,让我们来了解一下第三视角的概念。
第三视角是指观察者位于物体的后方,从后方向前方观察物体,这与我们日常生活中所使用的第一视角和第二视角是不同的。
在第三视角标准三视图中,正面图位于俯视图的上方,侧视图位于俯视图的右侧,这种排列顺序是按照从后方向前方观察物体的视角来确定的。
接下来,我们来看一下第三视角标准三视图的绘制方法。
首先,我们需要确定
物体的主轴方向,然后根据主轴方向来确定正面图、俯视图和侧视图的位置关系。
在确定了视图的位置之后,我们就可以根据物体的实际尺寸来绘制每个视图的轮廓。
在绘制过程中,需要确保各个视图之间的尺寸和比例是一致的,这样才能保证整个三视图的准确性和可读性。
除了以上的基本绘制方法外,第三视角标准三视图还有一些特点和注意事项。
首先,由于第三视角是从后方向前方观察物体,因此在绘制过程中需要特别注意物体的背面轮廓,确保它能够清晰地表达出来。
其次,在绘制过程中需要注意各个视图之间的对应关系,确保它们能够准确地反映出物体的形状和尺寸。
最后,在标注尺寸和注释时,也需要按照相关的标准和规范进行,以确保整个三视图的完整性和准确性。
总的来说,第三视角标准三视图是一种非常重要的技术图解,在工程设计和制
造领域中有着广泛的应用。
通过本文的介绍,相信大家对第三视角标准三视图的绘制方法和特点有了更清晰的了解,希望能对大家的工作和学习有所帮助。
1.轴套类零件这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。
为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。
在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。
由此注出图中所示的Ф14 、Ф11(见A-A断面)等。
这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。
而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。
如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。
2.盘盖类零件这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。
在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。
如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。
在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。
3.叉架类零件这类零件一般有拨叉、连杆、支座等零件。
由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。
对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。
踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。
在标注叉架类零件的尺寸时,通常选用安装基面或零件的对称面作为尺寸基准。
尺寸标注方法参见图。
4.箱体类零件一般来说,这类零件的形状、结构比前面三类零件复杂,而且加工位置的变化更多。
三视图和展开图的认识1.定义:三视图是指一个物体在三个不同方向上的投影,包括正视图、俯视图和侧视图。
2.作用:通过三视图可以全面了解物体的形状和结构,是工程制图和建筑设计中必不可少的一部分。
3.绘制方法:(1)正视图:物体正面朝向观察者,投影在水平面上。
(2)俯视图:物体上方朝向观察者,投影在垂直于水平面的竖直面上。
(3)侧视图:物体左侧或右侧朝向观察者,投影在垂直于水平面和俯视图所在平面的斜面上。
4.定义:展开图是将一个立体图形展开成平面图形,以便于观察和计算。
(1)矩形展开图:最常见的展开图类型,适用于各种矩形容器、包装盒等。
(2)圆形展开图:适用于圆形或近似圆形的物体,如圆筒、圆盘等。
(3)三角形展开图:适用于三角形的物体,如三角尺、三角形的包装盒等。
(4)其他多边形展开图:适用于各种多边形的物体,如六边形、八边形等。
5.绘制方法:(1)矩形展开图:将立体图形的侧面沿着高展开,得到一个长方形或正方形。
(2)圆形展开图:将立体图形的侧面沿着直径展开,得到一个扇形。
(3)三角形展开图:将立体图形的侧面沿着高展开,得到一个三角形。
(4)其他多边形展开图:根据立体图形的形状和结构,选择合适的方法将其展开。
三、三视图与展开图的相互关系1.展开图可以转化为三视图:通过观察展开图,可以确定物体的正视图、俯视图和侧视图。
2.三视图可以转化为展开图:根据三视图,可以绘制出物体的展开图。
3.展开图中的信息可用于三视图的绘制:展开图中的边长、角度等信息可以用于确定三视图中的尺寸和形状。
四、实际应用1.工程制图:在建筑设计、机械设计等领域,三视图和展开图是表达物体形状和结构的重要手段。
2.制造业:在制造过程中,通过三视图和展开图可以方便地切割、加工和组装物体。
3.教育:在三视图和展开图的教学中,有助于培养学生的空间想象能力和逻辑思维能力。
4.日常生活中:展开图在包装、折叠等方面有广泛应用,如纸箱、衣物等。
五、注意事项1.准确绘制:在绘制三视图和展开图时,要注意尺寸、形状和位置的准确性。
在GeoGebra中制作三视图肖建伟 2018.11.26GeoGebra具有3D绘图的功能,非常适合用来演示立体几何问题,譬如常见的三视图。
下面我们将以一个简单的例子来说明如何用GeoGebra制作三视图。
在此之前,我们首先要知道GeoGebra的三维坐标是如何设定的。
一般情况下,我们惯用的三维坐标系如以下左图所示,而GGB则是按照右图的方式进行设定的:在标准视图下,x轴(红色)的正方向水平向右,y轴(绿色)的正方向垂直向里;z轴(蓝色)的正方向向上。
两者的设定都遵循右手螺旋定则,并没有本质的不同,但对于软件绘图来说则会有所差别。
在GGB的坐标系中,几何体的主视图、侧视图、俯视图,分别是在以下三个平面上的投影:以上是GGB三维坐标系的一个简要说明。
下图是一个底边边长为1、高为1的正三棱锥,制作这个三棱锥的三视图,可按以下步骤进行。
首先把空间坐标系转到一个合适的角度,以方便绘图,大致位置如上图所示第1步,描点A、B.点A的坐标是(0,0,0),点B的坐标是(1,0,0)第2步,利用正多边形工具作正三角形ABC,把其记为poly1第3步,作poly1的中心D.输入指令:形心(poly1)第4步,作棱锥的顶点.输入指令:D + (0, 0, 1)第5步,作棱锥.利用3D绘图区的棱锥工具,依次选定poly1、点S即可几何体绘制好之后,要从三个不同的方向去观察它,可采用以下3种方法:方法1:用鼠标拖动视图。
由于难以调到刚好的位置,显得非常不便,故不宜采用。
方法2:利用3D绘图区的快捷键来切换视图方向。
具体操作是,点击3D绘图区左侧的三角形,再点击下图所示的图标,便可以快速地切换视图方向。
里面提供了俯视图、主视图、右视图三种视图方向以及旋转复位(返回标准视图),但侧视图一般我们需要的是左视图,这个方法也稍微有点不便。
方法3:利用按钮脚本来控制视图方向。
在GeoGebra指令中,提供了一个可以精确地设定视图方向的指令:设置视图方向(SetViewDirection)。
三视图简介从不同方向看就是工程(机械)制图中所说的“三视图”的初步,这也是《标准》新增加的内容,后面在初三学习时还会涉及到,就此介绍一点相关知识供老师参考:一、视图通常把互相平行的投影射线看作人的视线,而把物体在投影面上的投影称为视图。
为此有专门的国家标准GB/T14692-1993规定:物体的图形按正投影绘制,并采用第一角(坐标)投影法。
在正投影中,一般来说一个视图只能反映物体的一个方位的形状而不能完整地表达物体的形状和大小,也不能区分不同的物体。
如下图中三个不同的物体在同一投影面上的视图完全相同。
二、三视图三视图是从三个不同方向对同一个物体进行投影的结果,能较完整地表达物体的形状和大小。
1.三投影体系在机械制图中通常采用与零件(物体)长、宽、高相对应的三个互相垂直的投影面,分别是:正立投影面--直立在观察者正对面的投影面,简称正面,如下图V;水平投影面--水平位置的投影面,简称水平面,如下图H;侧立投影面--右侧的投影面,简称侧面,如下图W。
课本竖放在课桌上,可以建立一个简易而形象的三投影面体系。
2.三视图由前向后投影,在正面V上所得视图称为主视图——能反映物体的前面形状;由上向下投影,在水平面H上所得视图称为俯视图——能反映物体的上面形状;由左向右投影,在侧面W上所得视图称为左视图——能反映物体的左面形状。
3.三视图的画法:为了方便,三面视图都画在同一张图纸上。
可将三投影面展开,正面V保持不动,水平面H沿Y轴剪开然后绕OX轴向下转90°,W面沿Y轴剪开绕Z轴然后向右转90°。
4.三视图的图形位置:主视图在图纸的左上角,左视图在主视图的正右方,俯视图在主视图的正下方三、三视图的投影特性(三等关系)主视图反映物体的长度和高度(不反映宽度,原因:宽度方位与主视的投影方向重合),俯视图反映物体的长度和宽度(不反映高度,原因:高度方位与俯视的投影方向重合),左视图反映物体的宽度和高度(不反映长度,原因:长度方位与左视的投影方向重合)。
1.1 基本视图画法1.2 正投影与三视图1.3 简单叠加体的三视图 本章小结结束放映1.1 基本视图有两种画法:第一角法(第一象限法)Z凡将物体置於第一象限内,以「视点(观察者)」→「物体」→「投影面」关系而投影视图的画法,即称为第一角法。
亦称第一象限法。
第三角法(第三象限法)Z凡将物体置於第三象限内,以「视点(观察者)」→「投影面」→「物体」关系而投影视图的画法,即称为第三角法。
亦称第三象限法。
1.1.1 第一角画法欧洲各国盛行第一角法投影制,所以第一角法投影亦有「欧式投影制」之称呼。
例如德国(DIN)、瑞士(VSM)、法国(NF).挪威(NS)等国家使用之。
我国的投影体制:技术图样应采用正投影法绘制,并优先采用第一角画法,必要时才允许使用第三角画法。
一般在国营企业,所有的图纸都是采用第一角画法。
第一角法在图纸中的标记:第一角画法:左视图放右边,右视图放左边,上视图放下面,依此类推(如下图)右视图后视图a)主视图俯视图仰视图左视图1.1.2 第三角画法美国采用第三角投影制,故有「美式投影制」之称呼。
除美国(ANSI)外,尚盛行於美洲地区。
第三角法在图纸中的标记:第三角画法:左视图放左边,右视图放右边,上视图放上面,依此类推(如下图)左视1.1.3 第三角画法与第一角画法的比较⑴视图的名称和位置关系不同⑵反映机件的部位有所不同前前后后前前后后上上上上下下下下左左左左右右右右第一角画法第三角画法顶视前视右视主视俯视1.2 正投影与三视图1正投影法:投影光线相互平行并且投影光线与投影平面垂直时,在投影平面上得到物体视图的方法。
1.2.1 正投影的基本特征真实性积聚性收缩性思考题:下面是一物体正投影得到的一张图,你能看出它是什么形状嘛?问题:1.一个方向的投影能不能完整地表达物体的形状和大小,能不能区分不同的物体?答案:不能怎样才能更完整地表达物体的形状和大小呢?答案:多方向投影(三视图).1.2.2 三视图的形成a.正面投影面用“V”标记;b.侧面投影面用“W”标记;c.水平投影面用“H”标记;三投影面之间两两的交线称为投影轴,分别用OX、OY、OZ表示;三根轴的交点O称为原点。