内模控制
- 格式:ppt
- 大小:1.17 MB
- 文档页数:29
内模控制的概念
内模控制是一种控制理论和方法,旨在通过对控制系统内部模型进行建模和设计,来实现对系统的高性能控制。
它将系统模型与控制器相结合,以实现对系统输入输出信号的精确跟踪和鲁棒性。
与传统的外模控制不同,内模控制能够通过对系统内部结构和参数进行调整,控制系统的动态特性和稳定性质。
内模控制的核心思想包括两个关键概念:内模和内模控制器。
内模是指可以完全描述系统动态特性的模型,它能够准确地反映系统的输入输出关系。
内模控制器则是根据内模来设计的控制器,它能够根据系统的内部模型对输入信号进行调整,以实现对系统输出的精确控制。
内模控制的优点在于它能够适应各种复杂的现实控制系统,并具有一定的鲁棒性和适应性。
它能够实现对系统多变量输入输出的高性能控制,并具有抗干扰和鲁棒性强的特点。
此外,内模控制还能够利用系统内部的信息和模型来进行在线参数调整和自适应控制。
总的来说,内模控制是一种基于系统内部模型的高级控制方法,它通过对系统的内部结构和参数进行建模和设计,能够实现对复杂系统的高性能控制。
第五节 Smith 预估控制Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。
一、Smith 预估控制原理预估控制系统原理图如图7-24所示。
(a) 预估控制系统原理框图 (b) Smith 预估器图7-24 预估控制系统原理图 图中,s e s G τ−)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象;)(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ−−=1)()(p m ;)(s D 为(前馈)内模控制器;)(s d 为扰动;)(s R 为参考输入;)(s Y 为被控对象输出;)(m s Y 为内部模型输出。
由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。
在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。
现在,系统中假设没有补偿器(预估器),则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ−=)()()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。
若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即)()()()(m p s G e s G s U s Y s +=′−τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足)()())(()()(p m p s G s G e s s G s U s Y s =+=′−τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为()s e s G s G τ−−=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为)()(1)()()1)(()(1)()(1)1)(()(1)()()()(p p p p p p s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s s s s+=−++−+=−−−−−ττττ (7-54) 由上式可以明显看出,在系统的特征方程中,已经不含有s e τ−项。
基于内模原理的PID控制器参数整定仿真实验之迟辟智美创作1.内模控制内模控制器(IMC)是内部模型控制器(Internal model controller)的简称,由控制器和滤波器两部份组成,两者对系统的作用相对自力,前者影响系统的响应性能,后者影响系统的鲁棒性.它是一种实用性很强的控制方法,其主要特点是结构简单、设计直观简便,在线调节参数少,且调整方针明确,调整容易.特别是对鲁棒及抗扰性的改善和年夜时滞系统的控制,效果尤为显著.因此自从其发生以来,不单在慢响应的过程控制中获得了年夜量应用,在快响应的机电控制中也能取得了比PID更为优越的效果.IMC设计简单、跟踪性能好、鲁棒性强,能消除不成测干扰的影响,一直为控制界所重视内模控制(Internal Model Control IMC) 是一种基于过程数学模型进行控制器设计的新型控制战略.其设计简单、控制性能良好,易于在线分析.它不单是一种实用的先进控制算法,而且是研究预测控制等基于模型的控制战略的重要理论基础,也是提高惯例控制系统设计水平的有力工具.值得注意的是,目前已经证明,已胜利应用于年夜量工业过程的各类预测控制算法实质上都属于IMC类,在其等效的IMC结构中特殊之处只是其给定输入采纳了未来的超前值(预检控制系统),这不单可以从结构上说明预测控制为何具有良好的性能,而且为其进一步的深入分析和改进提供了有力的工具.内模控制的结构框图如图1:图1-1 内模控制的结构图其中,IMC G —内模控制器;p G —实际被控过程对象;m G —被控过程的数学模型;d G —扰动通道传递函数.(1)那时0)(,0)(≠=s G s R d ,假若模型准确,即)()(s G s G m p =,由图可知,)]()(1)[()]()(1)[()(IMC IMC s G s G s G s G s G s G s Y m d d -=-=p ,假若“模型可倒”,即)(1s G m 可以实现,则可令)(1)(IMC s G s G m =,可得0)(=s Y ,不论)(s G d 如何变动,对)(s Y 的影响为零.标明控制器是克服外界扰动的理想控制器.(2)那时0)(,0)(≠=s R s G d ,假若模型准确,即)()(s G s G m p =,又因为0)(=s D ,则0)(ˆ=s D,有 )()()()(1)()()()(IMC s R s R s G s G s R s G s G s Y m ===pp , )()]()(1[)()()()(IMC IMC s G s G s G s R s G s G s Y d p p -+=.当模型没有误差,且没有外界扰动时,其反馈信号0)()()]()([m p =+-s D s U s G s G ,标明控制器是)(s Y 跟踪)(s R 变动的理想控制器2.基于IMC 的控制器的设计2.1 因式分解过程模型式中,)(S G +m 包括了所有的纯滞后和右半平面的零点,并规定其静态增益1.)(S G m -为过程模型的最小相位部份.2.2 设计IMC 控制器这里F(S)为IMC 滤波器.选择滤波器的形式,以保证内模控制器为真分式.对阶跃输入信号,可以确定Ⅰ型IMC 滤波器的形式为:对斜坡输入信号,可以确定Ⅱ型IMC 滤波器的形式为: f T 为滤波时间常数,r 为整数,选择原则是使)(IMC s G 成为有理传递函数.因此,假设模型没有误差,可得设0)(=s G d 时,)(*)()()(s F s G s R s Y +=m .标明:滤波器F(s)与闭环性能有非常直接的关系.滤波器中的时间常数f T 是个可调整的参数.时间常数越小,Y(s)对R(s)的跟踪滞后越小.事实上,滤波器在内模控制中还有另一重要作用,即利用它可以调整系统的鲁棒性.其规律是,时间常数f T 越年夜,系统鲁棒性越好.2.3 与Smith 预估控制器相比力由图1-1内模控制的结构图,可以与Smith 预估控制器相比力.Smith 预估赔偿是在系统的反馈回路中引入赔偿装置,将控制通道传递函数中的纯滞后部份与其他部份分离.其特点是预先估计出系统在给定信号下的静态特性,然后由预估器进行赔偿,力图使被延迟了的被调量超前反映到调节器,使调节器提前举措,从而减少超调量并加速调节过程.如果预估模型准确,该方法能后获得较好的控制效果,从而消除纯滞后对系统的晦气影响,使系统品质与被控过程无纯滞后时相同.在下图所示的单回路控制系统中,控制器的传递函数为D(s),被控对象传递函数为Gp(s)e-s ,被控对象中不包括纯滞后部份的传递函数为Gp(s),被控对象纯滞后部份的传递函数为e-s.图1.2 史密斯赔偿后的控制系统此时系统的传递函数为:由上式可以看出,系统特征方程中含有纯滞后环节,它会降低系统的稳定性.史密斯赔偿的原理是:与控制器D(s)并接一个赔偿环节,用来赔偿被控对象中的纯滞后部份,这个赔偿环节传递函数为Gp(s)(1-e-s),为纯滞后时间,赔偿后的系统如图1.3所示.图1.3 史密斯赔偿后的控制系统 +D(s)G p (s)e - s _R(s)U(s)C(s)由控制器D(s)和史密斯预估器组成的赔偿回路称为纯滞后赔偿器,其传递函数为由上式可以看出,经过赔偿后,纯滞后环节在闭环回路外,这样就消除纯滞后环节对系统稳定性的影响.拉氏变换的位移定理说明e-s 仅仅将控制作用在时间座标上推移了一个时间,而控制系统的过度过程及其它性能指标都与对象特性为Gp(s)时完全相同,其控制性能相当于无滞后系统2.4 比力IMC 和Smith 预估控制两种控制战略假设实际系统的s s s G 10e 1101)(-+=,在MATLAB 中利用simulink 构造IMC 和Smith 预估控制两种结构图,并对控制器存在和不存在模型误差的情况进行分析控制效果.IMC 控制器结构:图1.4 IMC 控制系统Smith 预估控制结构:(1) 当IMC 控制器和Smith 预估控制器不存在模型误差时,输出的波形如下图:由上图可知,在不存在模型误差的情况下,IMC 控制和Smith 预估控制器都能取得较好的控制效果,使输出值最终趋于稳定.同时smith 预估控制器调节速度较快,可是会有少许的超调量,而IMC 控制则上升时间比力长,可是波形比力平稳的趋于稳定.(2) IMC 控制器存在模型误差时,输出的波形如下图:由上图可知,在存在模型误差的情况下,IMC 控制器虽会发生超调,可是最终曲线稳定,使输出值最终趋于稳定.(3)Smith 预估控制器存在模型误差时,输出的波形如下图:由上图可知,在Smith 预估控制器存在模型误差的情况下,其实不能取得良好的控制效果,最终波形发散,不能趋于稳定,说明Smith 预估器对控制器与模型的误差有着严格的要求,对存在的模型误差不能够及时消除.假设实际系统的s s s s G 42e )18(12)(-++-=,在MATLAB 中利用simulink 构造IMC 和Smith 预估控制两种结构图,并对控制器存在和不存在模型误差的情况进行分析控制效果.取Tf=2,4,6进行仿真,当不存在模型误差时,simulink框图如下:仿真结果如下图:从上面Tf 的分歧取值的仿真结果可以看出,Tf 越年夜,闭环输出响应减慢,可是到达稳定的时间会缩短,Tf 值越小,闭环输出响应越快,随着Tf 增加调节时间也随之增加.当IMC 控制器存在模型误差的时候,仿真结果如下图: 从仿真结果曲线可知,尽管存在模型误差,招致最终的输出曲线会有少量的超调,可是最终曲线都趋于稳定,说明IMC 控制器对存在的模型误差能够有较好的克服能力.3.基于IMC 的PID 控制器的设计3.1 具有内模控制结构的PID 控制器图1可以等价变换为如图2所示的简单反馈控制系统图1-2 IMC 的等价结构框图基于图2的内环反馈控制器有:系统输入输出关系可以表达为:系统扰动的输入输出关系可以表达为:由以上三个式子可以获得系统的闭环响应为:系统的反馈信号为:如果模型准确, 即)()(s G s G m p =, 无外部扰动, 即0)(=s d , 则模型的输入'y 与过程的输出y 相等, 此时反馈信号为零.这样, 在模型不确定和无未知输入的条件下, 内模控制系统具有开环结构.这就清楚地标明, 对开环稳定的过程而言, 反馈的目的是克服过程的不确定性.在工业实际过程控制时, 克服扰动是控制系统的主要任务, 而模型的不确定性是难免的.此时, 在图1-1所示的IMC 结构中, 反馈信号)(s d 就反映了过程模型的不确定性和扰动的影响,从而构成了闭环控制结构.理想的PID 控制器具有如下的形式:(1)由上图可得虚线框内等价的反馈控制器和内模控制器之间有如下关系:(2)内模控制器可分为三步进行设计.首先,暂不考虑系统的鲁棒性和约束,设计一个稳定的理想控制器;其次,引入滤波器,通过调整滤波器的结构和参数来获得期望的静态品质和鲁棒性;最后,对系统的抗干扰性进行验证.通常内模控制器的设计过程如下:第一步:把模型分解为全通部份和最小相位部份,即(3)式(3)中()M G s +是一个全通滤波器传递函数,对所有频率ω满足|()|0M G j ω=.在()M G s +中包括了所有时滞和右半平面零点.()M G s -是具有最小相位特征的传递函数,即()M G s -稳定且不包括预测项.第二步:模型误差的鲁棒性设计为抑制模型误差对系统的影响,增加系统的鲁棒性,在控制器中加入一个低通滤波器F( s) ,一般F( s) 取最简单形式如下:(4)式中阶次n 取决于的阶次以使控制可实现,为时间常数.这样两步设计所得的内模控制器为:(5)将式(5)代入式(1),得(6)当过程模型已知时,根据上式和PID 控制算式,由s 多项式各项幂次系数对应相等的原则,求解可得基于内模控制原理的PID 控制器各参数. 与单回路控制系统相比力,由于系统在结构上多了一个副回路,所以提高了系统抑制二次干扰的能力,可用信噪比来衡量系统的抗干扰能力.式(2)可以转化为下式:)()()(1)()(1)(m s F s G s G s F s G s G ---=m m c (7) 在S=0时,F (s )=1,)(m )(G m s G s =-,则有∞==0|)(s s G c .可以看到控制器的零频增益为无穷年夜.因此可以消除由外界阶跃扰动引起的余差.这标明尽管内模控制器自己没有积分功能,但由内模控制的结构保证了整个内模控制可以消除余差.设计 如果给定的被控对象形式为()1s M P M K G s e T s τ-=+,其中s e τ-的近似为1212s s e s τττ--=+,那么原被控对象近似为(12)()(1)(12)M M M K s G s T s s ττ-=++,根据以上的分析,我们可以获得()(1)(12)M M M K G s T s s τ-=++,()12M G s s τ+=-. 根据以上公式,推算内模控制器和PID 参数之间的关系: 由此可以得出2(2)M P M T K K τλτ+=+,2I M T T τ=+,2(2)M D M T T T ττ=+. 因此,在整个整定过程中,只有滤波器的时间常数λ需要调整,其他所有控制器的参数如比例增益P K ,积分时间I T 和微分时间D T 都与λ有关.关于λ的取值问题: 一般情况下,考虑形如()()()s P N s G s e D s τ-=的高阶加纯滞后过程,此处()N s 和()D s 为s 的多项式.该式的过程模型一般用来近似多变量系统中某个特定过程变量在一个或更多的其它过程变量处于边环控制状态下对一个控制作用的响应.当()N s 没有s 平面右侧零点时,对上述过程而言,其内模控制器可以由下式给出:()()()(1)IMC D s G s N s s γλ=+.此处γ为()()N s D s 的相对阶次,即()N s 的阶次与()D s 的阶次之差. 假设被控对象为:s s s s G 10e 180)151(2)(-+-=,采纳simulink 进行仿真实验.分别取Tf=20,40,60进行仿真,计算出Kp,TI,Td 后,simulink 框图如下:当Tf 值分歧时,控制量仿真曲线结果如下图:当Tf 值分歧时,输出仿真曲线结果如下图:仿真曲线分析:由每种系统在分歧滤波器时间常数Tf 的值下的仿真结果图可以看出,Tf 值越年夜,闭环输出响应越慢,操纵量的变动缓和.Tf 值越小,闭环输出响应越快,能使闭环系统更快到达稳定.实际上,Tf 取值不能太年夜也不能太小,要权衡响应速度与稳定性之间的关系.与图 2-2比力图像基本一致,由于s τ-e 是取的近似,所以 IMC-PID 调节与 IMC 调节不能完全一致,图像有一些偏差与变动,但系统仍能取得较好的控制效果,输出曲线最终稳定在1.令被控对象参数发生变动,进行仿真来检验系统的鲁棒性能.对我们所研究的被控过程的数学模型为s s s s G 10e 180)151(2)(-+-=,取Tf=60,但令被控对象的参数发生变动,再利用MATLAB 进行仿真,分析输出曲线.Tf=60时,系统的simulink 框图如下:Tf=60 ,令K 减少25%时的系统的simulink 框图为:Tf=60 ,令T 减少25%时的系统的simulink 框图为:仿真曲线为:仿真曲线分析:在滤波器时间常数Tf取值合理的情况下,被控对象参数发生变动25%,仍能坚持较好的性能,具有较好的静态响应速度,曲线能在短时间内到达稳定,具有良好的鲁棒性.3.4 总结内模控制具有良好的鲁棒性能,当实际生产过程参数发生变动时,系统均能在可以容忍的时间范围内到达稳态值,而且无较年夜振荡,只是静态过渡时间有所不同;可是分歧ε还是会影响到系统响应的,ε越小,单元阶跃响应超调量越年夜,ε越年夜,超调量越小.从以上内模PID 控制器的设计过程可以看出,只有滤波器的时间常数是需要整定的参数,方法比力简单,而且在系统特性变动的情况下具有很强的鲁棒性和抗干扰能力,输出超调很小或基本无超调,理论分析和仿真结果均标明控制量变动十分平稳,有利于现场执行机构的呵护.该方法为广泛使用的PID 控制器的参数整定提供了新的方法,具有较高的工程应用价值.。
第五节 Smith 预估控制Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。
一、Smith 预估控制原理预估控制系统原理图如图7-24所示。
(a) 预估控制系统原理框图 (b) Smith 预估器图7-24 预估控制系统原理图 图中,s e s G τ−)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象;)(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ−−=1)()(p m ;)(s D 为(前馈)内模控制器;)(s d 为扰动;)(s R 为参考输入;)(s Y 为被控对象输出;)(m s Y 为内部模型输出。
由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。
在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。
现在,系统中假设没有补偿器(预估器),则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ−=)()()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。
若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即)()()()(m p s G e s G s U s Y s +=′−τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足)()())(()()(p m p s G s G e s s G s U s Y s =+=′−τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为()s e s G s G τ−−=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为)()(1)()()1)(()(1)()(1)1)(()(1)()()()(p p p p p p s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s s s s+=−++−+=−−−−−ττττ (7-54) 由上式可以明显看出,在系统的特征方程中,已经不含有s e τ−项。
内模控制内模控制是一种基于过程数学模型进行控制器设计的新型控制策略。
它与史,控制器设计可由过程模型直接求取。
密斯预估控制很相似,有一个被称为内部模型的过程模型设计简单、控制性能好、鲁棒性强,并且便于系统分析。
内模控制方法由Garcia 和Morari 于1982年首先正式提出。
可以和许多其它控制方式相结合,如内模控制与神经网络、内模控制与模糊控制、内模控制和自适应控制、内模控制和最优控制、预测控制的结合使内模控制不断得到改进并广泛应用于工程实践中,取得了良好的效果。
内模控制结构:内模控制器的设计思路是从理想控制器出发,然后考虑了某些实际存在的约束,再回到实际控制器的。
讨论两种不同输入情况下,系统的输出情况:(1)当 0)(,0)(≠=s D s R 假若模型准确,即 由图可见)()(ˆs G s G p P =)()(ˆs D s D =)](ˆ)(1)[()]()(1)[()(IM C IM C s G s G s D s G s G s D s Y pp -=-= 可以实现 )(ˆ1s p)(=s Y 可得 不管如何变化,对 的影响为零。
表明控制器是克服外界扰动的理想控制器。
则令 )(s D )(s Y——实际对象; ——对象模型; ——给定值; ——系统输出; ——在控制对象输出上叠加的扰动。
)(s G p )(ˆs G p)(s R )(s Y )(s D(2)当时: 0)(,0)(≠=s R s D )()(ˆs G s G pP =假若模型准确,即 0)(=s D 0)(ˆ=s D表明控制器是 跟踪 变化的理想控制器。
)(s R )(s Y 当模型没有误差)()]()(1[)()()()(IMC IMC s D s G s G s R s G s G s Y p p -+=其反馈信号 0)()()](ˆ)([)(ˆpp =+-=s D s U s G s G s D ——内模控制系统具有开环结构。
目录摘要 (I)Abstract (II)1绪论 (1)1.1选题背景和意义 (1)1.2国内外同类研究或同类设计的概况综述 (1)1.3立题依据 (3)1.4本文所做的主要工作 (3)2神经网络的基本原理 (5)2.1人工神经元模型 (5)2.2神经网络的学习方式和学习规则 (6)2.3神经网络的特点 (7)3基于神经网络的内模控制系统 (8)3.1内模控制的简介 (8)3.2内模控制的发展现状 (8)3.3内模控制的基本原理 (8)3.5线性内模控制器的设计 (9)3.6神经非线性内模控制 (11)4基于BP神经网络的内模控制 (14)4.1BP神经网络 (14)4.1.1BP神经网络的结构 (14)4.1.2BP神经网络的算法 (15)4.2基于BP网络的内模控制仿真研究 (20)4.1.1BP网络的算法流程 (20)4.2.2神经网络模型结构和算法 (21)4.3具体对象的仿真 (22)4.3.1线性系统的内模控制 (22)4.3.2非线性系统的内模控制 (24)参考文献 (28)致谢.......................................................................................................................................错误!未定义书签。
附录A. (30)附录B (34)基于神经网络的非线性内模控制摘要本毕业设计主要研究了基于神经网络的非线性内模控制系统。
内模控制从其诞生开始就因为结构简单、参数调节灵活等优点表现出了强大的生命力,并且得到了广泛的应用。
神经网络内模控制融合了内模控制鲁棒性(指在不确定因素存在情况下,系统保持其原有性质的能力)、抗干扰能力强的优点和神经网络自适应控制的优点,受到了自动控制理论界的普遍关注。
本文主要针对基于神经网络的线性与非线性内模控制展开研究,探测其鲁棒性,抗干扰能力,以及跟踪逼近各种信号的能力。
内模控制原理介绍如下:
内模控制是一种先进控制策略,内模控制器的设计是基于被控对象过程数学模型的。
内模控制具有设计结构简单、调节参数方便的特点;特别是增强了控制系统的鲁棒性,并且提高了系统的抗干扰能力。
内模控制方法在工业过程控制中应用广泛,与传统的控制方法相比内模控制方法具有更好的控制效果,具有实际的应用价值。
可以互相转换,但单位负反馈系统与内模控制系统的设计思路存在本质不同。
在单位负反馈系统中,将过程的输出作为反馈,使得外部扰动在反馈量中与其它因素混在一起影响输出,有时得不到及时的补偿。
在内模控制系统中,反馈量变为扰动估计量,在模型与对象不匹配时,扰动估计量包含模型失配的一些信息,使系统的鲁棒性更强,当模型与对象匹配时,系统相当于幵环。
的主要作用是实现对设定值。
的良好跟踪,保证控制系统的跟踪性、鲁棒性和抗干扰性。
线性系统内模控制器设计简单,分为模型完全可逆和模型不堯全可逆两种情况;当模型完全可逆时控制器由模型的逆和合适的滤波器组成;当模型不完全可逆时,模线性系统内模控制器设计简单,分为模型完全可逆和模型不堯全可逆两种情况;当模型完全可逆时控制器由模型的逆和合适的滤波器组成;当模型不完全可逆时,模型可以分解为可逆和不可逆两部分,控制器由可逆部分的逆和合适的滤波器组成。