实验三 紫外线的诱变育种
- 格式:doc
- 大小:54.50 KB
- 文档页数:2
一、实验目的1. 掌握紫外诱变技术的原理和方法。
2. 了解紫外诱变在微生物育种中的应用。
3. 通过实验,筛选出具有较高产酶能力的突变菌株。
二、实验原理紫外诱变技术是利用紫外线照射微生物,使微生物DNA发生突变,从而获得具有优良性状的菌株。
紫外线照射能导致DNA分子中碱基对的改变、缺失或插入,进而影响基因的表达,产生新的遗传性状。
三、实验材料1. 菌种:产淀粉酶枯草芽孢杆菌。
2. 器材:紫外线照射装置、超净工作台、电磁力搅拌器、低速离心机、培养皿、涂布器、10mL离心管、(1、5、10mL)吸管、250mL三角瓶、恒温摇床、培养箱、直尺、棉签、橡皮手套、洗耳球。
3. 培养基和试剂:无菌水、75%酒精、0.5%碘液、碘片1g、碘化钾2g、蒸馏水200mL、可溶性淀粉2g、牛肉膏1g。
四、实验方法1. 菌种活化:将产淀粉酶枯草芽孢杆菌接种于牛肉膏蛋白胨培养基中,37℃培养24小时,得到活化菌种。
2. 菌悬液制备:将活化菌种接种于牛肉膏蛋白胨液体培养基中,37℃、180r/min 振荡培养3小时,制成菌悬液。
3. 紫外诱变:将菌悬液置于紫外照射装置下,距离20~30cm,照射时间分别为1、2、3分钟,设置对照组(未照射)。
4. 细菌复苏:将照射后的菌悬液涂布于牛肉膏蛋白胨培养基平板上,37℃培养24小时,观察菌落生长情况。
5. 初筛:挑选生长速度较快、菌落形态异常的菌落,进行进一步的淀粉酶活性测定。
6. 淀粉酶活性测定:将挑选的突变菌株接种于可溶性淀粉培养基中,37℃培养24小时,用碘液检测淀粉酶活性。
7. 验证与保存:对具有较高淀粉酶活性的突变菌株进行验证,并保存于甘油管中。
五、实验结果1. 紫外线照射时间对菌落生长的影响:照射1分钟时,菌落生长速度明显降低;照射2分钟时,菌落生长速度有所下降;照射3分钟时,菌落生长速度明显下降。
2. 淀粉酶活性测定结果:经过筛选,发现突变菌株A的淀粉酶活性最高,为对照组的1.5倍。
诱变育种流程及紫外诱变育种的详细步骤-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII诱变育种的一般步骤:1.首先是天然菌种的选育:调查研究及查阅充分的资料↓设计实验方案↓确定采集样品的生态环境采样↓确定特定的增殖条件增殖培养确定特殊的选择培养基及可能的定性或半定量快速检出法平板分离↓原种斜面↓确定发酵培养基础条件筛选↓初筛(1株1瓶)↓复筛(1株3~5瓶)↓结合初步工艺条件摸索再复筛(1株3~5瓶)↓3~5株↓单株纯种分离生产性能试验→毒性试验菌种鉴定2.诱变菌种:出发菌株----菌种纯化(出发菌株性能测定)----制备斜面孢子----制备单孢子悬液(悬液进行活菌计数)----诱变剂处理(存活菌数的测定并计算存活率)----平板分离(测定变异率)----挑取变异菌落并移植至斜面上----初筛(初筛数据分析,生产性状的粗测)----斜面传代----复筛(复筛数据分析,精确测定生产性状)----变异菌株(菌株参数分析)----小型或中型投产试验----大型投产试验。
诱变育种应把握的主要原则有以下几点:1)选择简便有效的诱变剂。
在选用理化因素作诱变剂时,在同样效果下,应选用最简便的因素;在同样简便的条件下,应选用最高效的因素。
2)挑选优良的出发菌株。
最好采用生产上已发生自变的菌株,选用对诱变剂敏感的菌株,选取有利于进一步研究或应用性状的菌株。
4)处理单细胞或孢子悬液。
单细胞悬液应均匀而分散,孢子、芽孢等应稍加萌发。
5)选用合适的诱变剂量。
一般正变较多出现在低剂量中,负变较多地出现在高剂量中。
6)选用高效的筛选方法。
紫外线诱变育种:紫外线诱变一般采用15W紫外线杀菌灯,波长为253-265nm.灯与处理物的距离为30cm,照射时间依菌种而异,一般为几秒至几十分钟。
一般我们常以细胞的死亡率表示,希望照射的剂量死亡率控制在70~80%为宜。
被照射的菌悬液细胞数,细菌为106个/ml左右,霉菌孢子和酵母细胞为106~107个 /ml。
《微生物菌种选育实验》是一门涉及食品理化分析、微生物学实验且由学生自行设计实验方案的综合性、设计性实验课程,集中三周时间开课。
一、实验目的通过本环节训练,加深对发酵工程上游技术中菌种筛选的认识;学会常规选种方法;掌握微生物诱变育种的方法;掌握常规工业微生物菌种保藏法;树立科学认真仔细的态度,培养科研协作精神。
二、实验内容实验一工业微生物菌种分离根据一定的生产目的如产酶、产酸、产酯等,建立不同的筛选模型,并从特定的样品如曲药、酸乳、土壤中筛选出高产适宜的菌株。
1、分离培养基的配制2、无菌器材的准备3、菌悬液的制备4、接种5、培养6、初步鉴定(1) 菌落形态(2) 个体形态7、斜面接种培养实验二工业微生物菌种复筛通过摇瓶培养对实验一所得的菌株的生产性能进行精确的定量测定。
1、发酵培养基的配制;2、目的菌株的摇瓶培养;3、发酵液的生理活性测定。
实验三微生物的诱变育种用紫外线对实验一所得的高产菌株进行诱变,并测定诱变后的菌株的生产能力。
1、单细胞(或单孢子) 悬液的制备;2、致死曲线的测定;3、诱变处理;4、初筛;5、复筛;6、菌种保藏。
三、实验要求1.学生自行设计具体实验方案,在教师指导下由学生自主完成实验。
2.实验结束后,要求学生完成一篇微型小论文。
论文的撰写应本着实事求是的原则,对所做实验过程和数据进行认真、严格的记录和处理,并进行独立分析,不得抄袭他人的数据。
四、考核办法1、考核内容:实验方案、实验态度、操作技能、实验报告等。
2、考核办法:按照实验方案、实验态度、操作技能、实验报告等内容综合考核学生,得到学生该门实验课程的成绩。
成绩考核采用优秀、良好、中等、及格、不及格五级记分制。
3、考核标准:以实际操作技能和分析解决问题的技能为主,实验考核内容各单项所占分数比例为实验方案20%、实验态度10%、操作技能40%、实验报告30%。
微生物菌种选育概述微生物的菌种对进行微生物工作来讲是非常重要的。
没有“种”无法进行微生物的科学研究;没有良种,不能进行发酵工业的生产。
紫外线诱变育种高产纤维素菌实验方案诱变方案:纤维素酶活力较高菌株→紫外线诱变→初筛→复筛→稳定性试验.实验目的:对有一定能力产纤维素酶的菌种进行紫外线诱变,诱变出高产纤维素酶的菌种。
实验原理:紫外线诱变处理的有效波长为200~300×10nm,最适为254nm(此为核酸的吸收高峰)。
DNA和RNA的嘌呤和嘧啶吸收紫外光后,DNA分子形成嘧啶二聚体,即两个相邻的嘧啶共价连接,二聚体出现会减弱双键间氢键的作用,并引起双链结构扭曲变形,阻碍碱基间的正常配对,从而有可能引起突变或死亡.另外二聚体的形成,会妨碍双链的解开,因而影响DNA的复制和转录.总之紫外辐射可以引起碱基转换、颠换、移码突变或缺失,即是所谓的诱变。
材料和器皿:(1)菌种:木霉单孢子(2)培养基:牛肉膏蛋白胨培养基(液体和固体),生理盐水。
(3)器皿:无菌培养皿,无菌试管,无菌移液管(5ml,1ml),150ml三角瓶(内装有玻璃珠),无菌离心管等。
(4)仪器:紫外灯(装在无菌操作箱内),磁力搅拌器等。
实验步骤:紫外线诱变育种单孢子悬液制备:用生理盐水洗下出发菌株的斜面孢子摇床上震荡分散30min,4 层无菌擦镜纸过滤,制备单孢子悬液。
稀释对照菌液(未照射菌液)将未经照射的菌液稀释成10-1~10-6,然后从10-5,10-6两管中各吸取0.1ml菌液于牛肉膏蛋白胨平板上(每个稀释度做三个皿),用无菌涂布棒土布均匀后,倒置于32度条件下培养过夜,第二天取出,计算菌落数,将记得的结果记录于表格中。
UV 诱变:取单孢子悬液5mL 于直径9cm 的培养皿内,同时放入无菌搅拌子,在磁力搅拌器.....的搅拌下置于15W 紫外线灭菌灯下30cm 处分别处理0s.30s、1min、2min、3min、5min、7min、9min、11min。
在红灯下稀释适当倍数,0.1mL 涂PDA 平板,30℃避光培养过夜。
诱变致死率检测:分别取等量的不同诱变时间的菌液和未诱变菌液涂布于PDA 平板,30℃培养72h。
紫外线诱变育种摘要:紫外线诱变操作简单、对实验设备要求低,是目前被广泛运用的一种物理诱变剂,人们利用紫外线诱变得到了大量的优秀菌种。
本文论述了紫外线诱变的原理、操作流程、其适用范围及研究进展。
关键词:紫外线诱变育种微生物目前微生物发酵技术被广泛的应用到许多生产行业,如生产啤酒、白酒、乳制品、酶制剂、抗生素等行业,同时微生物在解决人类的粮食能源、健康、资源和环境保护等问题中正显露出越来越重要且不可替代的独特作用[1]。
但就目前被投入工业化使用的工业菌大多在生长周期、培养基、产率等方面不能满足工业生产的需求。
理想的工业菌种必须具备: 遗传性状稳定、纯净无污染、能产生许多繁殖单位、生长迅速、能于短时间内生产所要的产物、可以长期保存等特性。
诱变是最早在抗生素上应用的一种育种技术, 它通过物理、化学、生物因素作用于抗生菌, 人为的使其遗传物质发生变异, 从中选育高产菌株[2]。
紫外线诱变属于一种物理诱变剂,它是在微生物发酵技术育种中最早使用的一种诱变方法。
紫外线诱变可以用于大量不同的菌种育种中,如芽孢杆菌、链霉菌、镰刀菌等,通过紫外线对微生物进行诱变,得到了大量比较优秀的工业菌种。
由于紫外线诱变育种简便易行、对条件和设备要求较低并能较好地提高代谢产物的产量,故在微生物育种中仍广泛应用[3]。
本文对紫外线诱变的原理、操作流程、其适用范围、研究进展进行了概述。
一、紫外线诱变的原理紫外线属于一种物理诱变剂,它能使被照射的物质的分子或原子中的内层电子提高能级。
主要生化反应:1.DNA链和氢键的断裂 2.DNA分子间(内)的交联 3.嘧啶的水合作用 4.形成胸腺嘧啶二聚体 5.造成碱基对转换 6.修复后造成差错和缺失。
紫外线诱变处理的有效波长为200 - 300×10nm,最适为254nm(此为核酸的吸收高峰)。
DNA和 RNA的嘌呤和嘧啶吸收紫外光后,DNA 分子形成嘧啶二聚体,即两个相邻的嘧啶共价连接,二聚体出现会减弱双键间氢键的作用[4],并引起双链结构扭曲变形,阻碍碱基间的正常配对,从而有可能引起突变或死亡.另外二聚体的形成,会妨碍双链的解开,因而影响DNA 的复制和转录.总之紫外辐射可以引起碱基转换、颠换、移码突变或缺失,即是所谓的诱变[5],从而引起上述的生化反应。
一、实验目的1. 通过紫外线诱变技术,提高微生物的产酶能力。
2. 筛选出具有较高酶活性的突变菌株。
二、实验原理紫外线诱变是一种物理诱变方法,通过紫外线照射微生物细胞,导致DNA分子发生突变,从而产生具有新的遗传特性的菌株。
本实验采用紫外线照射枯草芽孢杆菌,通过透明圈法初筛,筛选出具有较高淀粉酶活性的突变菌株。
三、实验材料1. 菌种:枯草芽孢杆菌2. 器材:紫外线灯、培养皿、涂布器、吸管、恒温摇床、培养箱、直尺、棉签、橡皮手套、洗耳球3. 培养基:可溶性淀粉培养基、牛肉膏培养基、0.5%碘液四、实验方法1. 紫外线照射:将枯草芽孢杆菌接种于牛肉膏培养基中,培养至对数生长期。
将培养好的菌液用无菌水稀释至一定浓度,取适量菌液均匀涂布于培养皿上,放入紫外灯照射箱中,照射距离为20-30cm,照射时间为1-3分钟。
照射过程中,严格控制死亡率在50%-80%。
2. 初筛:将照射后的菌落用无菌水洗涤,制成菌悬液。
取适量菌悬液涂布于可溶性淀粉培养基上,37℃培养24小时。
观察透明圈的大小,筛选出具有较大透明圈的突变菌株。
3. 酶活性测定:采用淀粉酶活力测定方法,测定筛选出的突变菌株的淀粉酶活性,并与原始菌株进行对比。
五、实验结果1. 紫外线照射后,部分菌株出现透明圈,且透明圈大小不一。
2. 经过初筛,筛选出10株具有较大透明圈的突变菌株。
3. 酶活性测定结果显示,筛选出的10株突变菌株的淀粉酶活性均高于原始菌株,其中菌株A的淀粉酶活性最高,达到原始菌株的1.8倍。
六、讨论与分析1. 紫外线照射能够有效诱导枯草芽孢杆菌产生淀粉酶活性突变菌株,且突变频率较高。
2. 初筛过程中,透明圈大小与淀粉酶活性具有一定的相关性,透明圈越大,酶活性越高。
3. 实验结果表明,通过紫外线诱变技术,可以有效地提高枯草芽孢杆菌的产酶能力,为微生物育种提供了一种新的方法。
七、结论1. 紫外线诱变技术是一种有效提高微生物产酶能力的方法。
2. 本实验筛选出的突变菌株具有较高淀粉酶活性,为后续的发酵生产和应用提供了有利条件。
微生物的诱变育种一、教学目标及基本要求:1. 理解诱变剂对微生物的杀菌和诱变双重生物学效应;2. 学习紫外线诱变的方法和测定诱变剂最适剂量的方法。
二、实验原理紫外线的生物学效应主要是它能引起DNA结构的变化而造成的。
紫外线具有杀菌和诱变双重生物学效应,随着紫外线照射时间的增加,杀菌率和突变率随之提高。
但当照射时间延长到某一程度时,继续延长照射时间,其杀菌率虽然增加,突变率却下降。
紫外线的强度单位(剂量)为尔格/mm2,由于测定困难,在实际诱变育种中,常用紫外线照射时间或细胞的死亡率表示相对剂量,其中以细胞死亡率表示具有实际意义。
本实验以枯草芽孢杆菌为出发菌株,以营养缺陷的突变作为诱变效应的指标,测定紫外线诱变剂的最适剂量。
以照射时间为横坐标,以细胞存活率或死亡率和突变率为纵坐标作图,突变率最高值相对应的照射时间即为最适剂量。
三、实验材料1. 菌种枯草芽孢杆菌(Bacillus subtilis)2. 培养基肉汤培养基(附录Ⅱ-1.1),细菌基本培养基(附录Ⅱ-1.9)3. 其它生理盐水,诱变箱,磁力搅拌器,涂布棒,离心管,离心机,培养皿等。
四、方法与步骤1. 菌体的培养取斜面菌种1环,接种于盛有20ml肉汤培养基的250ml三角瓶中,37℃振荡培养(120r/min)16~18h。
取1ml培养液转接于另一只盛有20ml肉汤培养基的250ml三角瓶中,37℃振荡培养(120r/min)6~8h。
2. 细胞悬浮液的制备取10ml培养液,3500/min离心10min,收集菌体,沉淀用10ml 生理盐水洗涤离心2次,之后将菌体充分悬浮于12ml生理盐水中。
3. 活菌计数法测定细胞悬浮液的浓度取1ml细胞悬浮液,逐步稀释为10-1、10-2、10-3……。
取最后3个稀释度的菌液各1ml,置于无菌空平皿中,然后倾注15ml融化并冷却至45~50℃的肉汤固体培养基,轻轻充分混匀,凝固后于37℃倒置培养1~2天,计数每皿的菌落数(每个稀释度作三个平行)。
准紫外线诱变育种1.准紫外线诱变育种备孢子悬浮液取新采收的无菌孢子,放入装有生理盐水的三角瓶中(瓶中可放少量玻璃球),摇荡,使孢子分散.孢子液浓度以每毫升含孢子..诱变处理处理要放在能折光的箱中,箱内顶部装15瓦紫外灯管.把孢子液放在培养皿底部.盖好盖,培养皿距灯管30厘米,处理前先开灯30分钟左右,使波长稳定,然后打开皿盖,照射时间为0.5—4分钟(由于各种菌类的孢子不同,照射时间也应有所不同),选定对孢子杀伤在90﹪--99﹪的适当处理时间.照射结束盖上皿盖,稀释,然后取稀释液0.1毫升涂平板,适温黑暗培养,待长出是芒状菌落后立即挑出,供进一步试验用.(二)硫酸二乙脂诱变处理硫酸二乙酯属烷化剂,对人体有毒,使用时要注意安全.1.准备孢子悬浮液同前2.诱变处理取硫酸二乙酯原液2毫升,加乙醇2毫升溶解,吸取0.4毫升硫酸二乙酯溶液放入20毫升孢子悬浮液中,让其作用.作用时间,至数小时不等,选出孢子杀伤在90﹪以上的适当处理时间,采用大量稀适法中止反复.最后取0.1毫升涂平板或斜面,适温培养,挑出星芒状菌落作进一步试验.(三)单孢杂交方法1.分离单孢采集孢子,采用连续稀释法稀释孢子,以达到镜检每视野1---2个孢子为好;涂布平板,,适温培养;挑起单个菌落,继续培养.2.单核菌丝鉴定(1)海登海因氏铁矾苏木精染色法①苏木精处理:取苏木精0.5克,溶于10毫升95%乙醇内,再加90毫升蒸馏水,用纱布扎住瓶口,置光亮处,3—4个月成熟后方能使用.氧化完成的苏木精呈酒红色.为防止苏木精过度氧化,可将苏木精溶于95%乙醇内配成原液,使用前加水稀释.如在乙醇中加少量甘油效果会更好.②媒染液准备:这种染色法要用铁矾作媒染液.配方为铁矾2.5克,溶于100毫升蒸馏水中即可.③褪色剂制备:将上述媒染液加水稀释一倍即可.④铁矾苏木精染色步骤:将石蜡切片从二甲苯经各级乙醇到水,冲洗,媒染1—4小时,蒸馏水洗2—3次,用退色剂处理至镜检细胞核清晰为止.(2)锁状联合鉴定取菌丝镜检,观察3—5个视野,以找不到锁状联合为准,确认为单核菌丝.(3)出菇试验鉴定利用单核菌丝不结实的特征,相同条件下以双核菌丝作对照鉴定单核菌丝.3.杂交采用两点接种法进行杂交,杂交可在平板上也可在试管内进行.方法是将两个不同亲本的单核菌丝分别接种在平板或试管斜面上,两点相距1厘米左右,适温培养,待两亲本菌丝生长入空白试管斜面,培养.镜检有无锁状联合,如有锁状联合说明已杂交上,留下作出菇筛选.4.初筛,复筛,中试推广取有锁状联合的试管,扩制原种,栽培种,进行小面积出菇筛选,为初筛.把初筛中综合性状表现较好的菌株扩大面积进行复筛,选出优良菌株作中试推广.(四)多孢杂交方法1.亲本孢子萌发时间测试分别制备两亲本孢子悬浮液,同时分别接入培养基上,适温培养,定时观察孢子萌动情况,纪录萌动时间.2.孢子杂交根据亲本孢子萌动时间,同时(孢子萌动时间基本一致)或先后接入孢子液同一试管斜面上,培养,当两亲本菌丝接触,发生自然杂交.培养过程中经常检查,见有单菌落出现就挑出,接入马铃薯葡萄糖培养基上培养.3.拮抗试验取杂交菌株与两亲本作3点拮抗试验,选取有2条拮抗线的菌株扩大培养,作初筛,复筛,中试推广.(五)原生质体融合所谓原生质体是细胞去除细胞壁后的细胞核和细胞质的部分.原生质体融合则是把具有一定遗传标记的两种不同遗传类型的原生质体,通过细胞核和细胞质的融合,进行遗传重组成为新的类型的一种方法.它是生物技术领域的重大突破,它为远缘杂交育种开辟了新的途径.1.原生质体制备(1)培养适龄的菌丝体可以用液体培养,也可用试管斜面培养,一般要求生长旺盛的幼嫩菌丝体.如香菇原生质体制备采用25℃液体培养,也可用试管斜面培养4天的菌丝体最佳.培养基以马铃薯葡萄糖酵母粉培养基为最好,不但菌丝生长不好,同时原生质体释放量有也大.(2)酶系统与酶浓度选择真菌细胞壁的主要成分是纤维素、半纤维素和几丁质等多糖物质,合适的脱壁酶系统是这些多糖物质降解的关键,常用的有溶壁酶、脱壁酶、蜗牛酶等.中国科学院广东微生物研究所研制的脱壁酶具有较好的酶解效果,香菇菌丝脱壁采用1%脱壁酶,其原生质释放量可达到10/7%毫升以上 . (3)渗透压稳定剂选择脱去细胞壁的原生质体必须在相应的渗透压条件下才不至于破裂,因此,合适的渗透压稳定剂是影响菌丝释放原生质体的重要因素.常用的有0.6摩/升氯化钾、0.6摩/升硫酸镁及0.6摩/升甘露醇.香菇菌丝脱壁的渗透压稳定剂以0.6摩/升氯化钾或0.6摩/升硫酸镁为宜,原生质释放量均在10/7/毫升以上.(4)酸碱度一般担子菌的脱壁在中性条件下效果最好,香菇则要在较酸[氢离子浓度100微摩/升(PH4)]的酶解反应系统中才能达到高的脱壁率.2.原生质体再生脱壁的原生质体虽然失去原有的形态而变成球形,但细胞质膜和整个基因团仍然存在,它具有原来的生理功能,在适宜的条件下,细胞壁能在形成,恢复为一个细胞,在培养基上形成菌落,这就是再生.再生培养基有麦芽糖10%,葡萄糖4%,酵母粉4%(MDY);麦芽糖10%,葡萄糖4%,酵母粉4%,菌丝提取液15%(MDYM);纤维二糖1.5%,蛋白胨0.2%,菌丝提取液20%.香菇原生质体再生方法:将制备好的原生质体经过滤和洗涤后,置于再生培养基MDYM中浅层培养(25℃),2天后把开始萌动的原生质体涂布在固体再生培养基表面,经10至15天后即开始出现微小的再生菌落,把这些菌落转移到马铃薯葡萄糖琼脂培养基上培养,10至14天可长满斜面.再生滤可达10%左右,若采用再生培养基MDY,则再生率只有1%左右,说明不同营养成分对原生殖体再生的影响.再在生培养中,渗透压稳定剂以蔗糖为好.3原生质体融合(以香菇为例) 将两个单核亲本的原生质体以1:1混合(每个原生质体数目在5×10/6毫升以上),混匀后缓慢加入等体积的聚乙二醇溶液[ 聚乙二醇溶液4000,30%,10毫摩/升氯化钙 ,氢离子浓度3136纳摩/升(PH5.5)],与24℃静止30分钟,用0.05摩/升甘氨酸,50毫摩/ 升氯化钙,氢离子浓度 0.316纳摩/升(PH9.5)的缓冲液冲洗2至3次,稀释后取0.1毫升放入0.5%软琼脂融合子再生培养基中,混匀后把它薄薄地铺在 1.5%琼脂的融合子再生培养平板上,25℃培养.4. 融合子的检出于鉴定待培养基上出现肉眼可见的微小再生菌落时,将其分别转移到马铃薯葡萄糖琼脂斜面培养基上,镜检菌丝有无锁状联合.融合子的鉴定可做以下试验:镜检有无锁状联合;融合子与亲本菌株的拮抗试验;酯酶同工酶谱;多酚氧化酶谱;DNA扩增仪分析;出菇试验.㈥单核和同核原生质体杂方法由于单核和同和原生质体是直接来源于营养菌丝 ,没有经过减数分裂的无性后代,所以这一材料为食用菌的遗传和育种研究提供了一个十分重要的基础材料.单核和同核原生质体与孢子单核体相比,有它自己的特点:它是自己从菌丝体得到的;只存在两种交配型(亲本型AXBX,AYBY);在菌落形态、菌丝生长速度﹑羧甲基纤维素酶相对活性和酯酶同工酶这4种性状上,都具有相对的稳定性,变异范围小,亲本性状不易在单核原生质体中分散和稀释,这就可以使人们在一个比较小的变异范围内去选择具有亲本性状的单核体.单核原生质体的这一特点在食用菌菌种改良中具有重要意义,同时也为遗传育种中充分利用野生种质资源提供了一个十分光明的前景.杂交的具体方法:同前法制备原生质体.分别取不同亲本的单核原生质体进行杂交(杂交方法同单孢杂交),得到杂交株后进行初筛﹑复筛,中试推广.(七)单双核杂交方法选用两个亲本,其中一个用其双核菌丝,另一个分离单核原生质体,在平板上先接种单核原生质体,待菌落长到1厘米左右时,相距0.5∽1厘米处接种双核菌丝,适温培养.数天后,挑取单核菌丝一边.少许菌丝镜检,如有锁状联合,说明已杂交成功,可行扩管培养,进行筛选.四﹑基因工程育种基因工程就是基因水平上的遗传工程.它是用人工方法把人们所需要的某一供体生物的遗传物质---- 脱氧核糖核酸(DNA)大分子提取出来,在离体条件下切割后,把它和作为载体的脱氧核糖核酸分子连接起来,然后导入某一受体细胞中,以让外来的遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得符合人们预先设计要求的新物种.基因工程主要包括以下步骤︰准备材料,如“目的”基因﹑载体及工具酶等;体外重组;载体传递﹑复制表达.基因工程育种在医﹑工﹑农方面有较多的研究,食用菌育种上研究甚少.。
实验三紫外线的诱变育种(学时:4)
一、目的要求
通过实验,观察紫外线对枯草芽孢杆菌的诱变效应,并学习物理因素诱变育种的方法。
二、基本原理
紫外线对微生物有诱变作用,主要引起的是DNA分子结构发生改变(同链DNA的相邻嘧啶间形成共价结合的胸腺嘧啶二聚体),从而引起菌体遗传性变异。
三、菌种与仪器
菌种:枯草芽孢杆菌;
仪器:血球计数板,显微镜,紫外线灯(15W),电磁搅拌器,离心机
四、操作步骤
1.菌悬液的制备
A、取培养48小时的枯草芽孢杆菌的斜面4—5支,用无菌生理盐水将菌苔洗下,并倒入盛有玻璃珠的小三角烧瓶中,振荡30分钟,以打碎菌块。
B、将上述菌液离心(3000r/min,离心15分钟),弃去上清液,将菌体用无菌生理盐水洗涤2—3次,最后制成菌悬液。
C、用显微镜直接计数法计数,调整细胞浓度为每毫升108个。
2.平板制作将淀粉琼脂培养基溶化后,冷至55℃左右时倒平板,凝固后待用。
3.紫外线处理
A、将紫外线灯开关打开预热约20分钟。
B、取直径9cm无菌平皿2套,分别加入上述菌悬液5ml,并放入无菌搅拌棒于平皿中。
C、将盛有菌悬液的2平皿置于磁力搅拌器上,在距离为30cm,功率为15W的紫外线灯下分别搅拌照射1分钟及3分钟。
4.稀释在红灯下,将上述经诱变处理的菌悬液以10倍稀释法稀释成10-1-10-6(具体可按估计的存活率进行稀释)。
5.涂平板取10-4、10-5、10-6三个稀释度涂平板,每个稀释度涂平板3只,每只平板加稀释菌液0.1ml,用无菌玻璃刮棒涂匀。
以同样操作,取未经紫外线处理的菌稀释液涂平板作对照。
6.培养
将上述涂匀的平板,用黑布(或黑纸)包好,置37℃培养48小时。
注意每个平皿背面要标明处理时间和稀释度。
7.计数将培养48小时后的平板取出进行细菌计数,根据对照平板上菌落数,计算出每毫升菌液中的活菌数。
同样计算出紫外线处理1分钟、3分钟后的存活细胞数及其致死率。
8.观察诱变效应
将细胞计数后的平板,分别向菌落数在5—6个左右的平板内加碘液数滴,在菌落周围将出现透明圈。
分别测量透明圈直径与菌落直径并计算其比值(HC值)。
与对照平板进行比较,根据结果,说明诱变效应。
并选取HC比值大的菌落移接到试管斜面上培养。
此斜面可作复筛用。
五、实验结果(将实验结果填入下表)
六、思考题
1.用于诱变的菌悬液(或孢子悬液)为什么要充分振荡?
2.经紫外线处理后的操作和培养为什么要在暗处或红光下进行?。