第2章 光纤传输特性 损耗 色散
- 格式:ppt
- 大小:5.58 MB
- 文档页数:36
光纤的传输特性光纤的传输特性包括损耗、色散、衰减、偏振和非线性效应等,其中,损耗和色散是光纤最重要的传输特性。
损耗限制系统的传输距离,色散限制系统的传输容量。
(1)光纤的损耗特性。
在光发射机和接收机之间由光缆吸收、反射、散射和辐射的信号功率被认为是损耗。
光纤损耗是光纤传输系统中限制中继距离的主要因素之一。
下表列出了3种石英光纤的典型损耗值。
(2)光纤的色散特性。
色散是光纤的一个重要参数,它会引起传输信号的畸变,使通信质量变差,限制通信容量与距离,特别是对高速和长距离光纤通信系统的影响更为突出。
光纤色散的产生涉及多方面的原因,这里只介绍模式色散、材料色散和波导色散。
①模式色散。
模式色散是指光在多模光纤中传输时会存在许多种传播模式,因为每种传播模式在传输过程中都具有不同的轴向传输速度,所以虽然在输入端同时发送光脉冲信号,但光脉冲信号到达接收端的时间却不同,于是产生了时延,使光脉冲发生展宽与畸变。
②材料色散。
材料色散是由构成纤芯的材料对不同波长的光波所呈现的不同折射率造成的,波长短则折射率大,波长长则折射率小。
就目前的技术水平而言,光源尚不能达到严格单频发射的程度,因此无论谱线宽度多么狭窄的光源器件,它所发出的光也会包含多根谱线(多种频率成分),只不过光波长的数量以及各光波长的功率所占的比例不同而已。
每根谱线都会受到光纤色散的作用,而接收端不可能对每根谱线受光纤色散作用所造成的畸变进行理想均衡,故会产生脉冲展宽现象。
③波导色散。
波导色散是指由光纤的波导结构对不同波长的光产生的色散作用。
波导结构是指光纤的纤芯与包层直径的大小、光纤的横截面折射率分布规律等。
这种色散通常很小,可以忽略不计。
光纤的基本特性衰耗、色散1、光纤的损耗光纤的衰减或损耗是一个非常重要的、对光信号的传播产生制约作用的特性。
光纤的损耗限制了没有光放大的光信号的传播距离。
光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗。
1)吸收损耗光纤吸收损耗是制造光纤的材料本身造成的,包括紫外吸收、红外吸收和杂质吸收。
a:红外和紫外吸收损耗光纤材料组成的原子系统中,一些处于{氐能的电子会吸收光波能量而跃迁到高能级状态,这种吸收的中心波长在紫外的0.16μm处,吸收峰很强,其尾巴延伸到光纤通信波段,在短波长区,吸收峰值达ldB/km,在长波长区则小得多,约O.O5dB∕km.在红外波段光纤基质材料石英玻璃的Si-O键因振动吸收能量,这种吸收带损耗在9.1μm,12.5μm及21μm处峰值可达IOdB∕km以上,因此构成了石英光纤工作波长的上限。
红外吸收带的带尾也向光纤通信波段延伸。
但影响小于紫外吸收带。
在λ=L55μm时,由红外吸收引起的损耗小于0.01dB∕kmβb:氢氧根离子(OH-)吸收损耗在石英光纤中,O-H键的基本谐振波长为2.73μm,与Si-O键的谐振波长相互影响,在光纤的传输频带内产生一系列的吸收峰,影响较大的是在1.39、1.24及0.95μm波长上,在峰之间的低损耗区构成了光纤通信的三个传输窗口。
目前,由于工艺的改进,降低了氢氧根离子(OH-)浓度,这些吸收峰的影响已很小。
c:金属离子吸收损耗光纤材料中的金属杂质,如:金属离子铁(Fe3+)、铜(Cu2+)、镒(Mn3+)、镇(Ni3+)、钻(Co3+)、铭(Cr3+)等,它们的电子结构产生边带吸收峰(0.5~Llμm),造成损耗。
现在由于工艺的改进,使这些杂质的含量低于10-9以下,因此它们的影响已很小。
在光纤材料中的杂质如氢氧根离子(OH・)、过渡金属离子(铜、铁、铭等)对光的吸收能力极强,它们是产生光纤损耗的主要因素。
因此要想获得低损耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格的化学提纯,使其纯度达99.9999%以上。
光纤的损耗及色散一、光纤的损耗光纤的损耗是光纤的重要特性,它是光在光纤中传输一定距离后其能量损失的程度,用单位长度的光纤对光信号损失的分贝数表示,单位为dB/k。
光纤的损耗与光的波长有关,在石英类光纤的损耗与传输光的光波长的变化曲线中,有三个极小值,常把这三个波长称为石英光纤传输的三个窗口。
这三个波长中,0.85μm处损耗最大,1.31um处损耗次之,1.55μm处损耗最小。
光纤损耗产生的原因,一是光纤材料本身的吸收、散射的内因,二是与制造工艺有关的外因,例如材料不纯、水汽、气泡的原因,以及结构不齐的原因。
有一种无水峰光纤。
性能比较好。
光纤的温度系统很小,光纤损耗随温度的变化可以不予考虑,但在较低温度下,损耗有明显增加。
二、光纤的色散光纤的色散是指输入信号中包含的不同频率或不同模式的光在光纤中传播的速度不同:不能同时到达输出端,使输出波形展宽变形、形成失真的现象。
色散是时域上的反映,带宽是频域上的反映。
由于色散的存在,光信号在传输一定距离后,就会使展宽波形到不可辨认的程度,严重影响模拟信号的传输。
在数字信号传输时,由于色散会使脉冲变形。
色散的存在限制了光信号一次传输的距离,在传输距离相同的情况下,色散越大,单位时间内传输的信息容量越小,还会引起二次失真。
色散常用色散常数D来描写。
是指单位波长间隔的光传输单位距离的群时延差(群时延是波束的群速度的倒数,也就是波束传输单位距离所需的时间)。
色散常数表达式,如下:色散的种类有模式色散、材料色散、结构色散:1)模式色散一不同模式的光传输时间不同。
2)材料色散一折射率、波长不同,引起传输速度不同。
3)结构色散一光进入包层而造成的。
根据色散的不同,有不同的光纤,例如色散位移光纤、色散平坦光纤、折射率渐变型光纤。