大学物理多普勒效应讲解
- 格式:ppt
- 大小:442.50 KB
- 文档页数:8
多普勒效应实验报告学院化学与生物工程学院班级化学1701 学号姓名一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。
2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械能转化的规律。
实验仪器ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。
二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)1、声波的多普勒效应当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为f0=U0/λ0则观测频率f、观测波长λ和观测波速U的关系f=U/λ当接收器以一定的速率向声源移动时U=U0+V0,则f=(U0+V0)/λ0联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0当声源以一定的速率向接收器移动时V =U0-V0,则f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f当声源与接收器运动如图时f=(U0+V1COSθ1)/( U0-V2 COSθ2)2、马赫锥a=arcsin(U0/V0)=arcsin(1/M)U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数3、天文学中的多普勒效应观察两波面的时间t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2)=(1-V2c/C2c)1/2/((1+Vc/Cc)fc)三、实验步骤(要求与提示:限400字以内)1、超声波的多普勒效应(1)、组装仪器(2)、打开实验控制箱,调至室温,记录共振频率f0(3)、选择多普勒效应验证实验(4)、修改测试总数(5)、为仪器充电,确定失锁指示灯处于灯灭状态(6)、选定滑车速率,开始测试(7)、选择存入或者重测(8)、重新选择速度,重复(6)、(7)(9)、记录实验数据2、用多普勒效应研究恒力下物体的运动规律(1)、测量钩码质量和滑车质量(2)、连接仪器(3)、选中变速运动测量(4)、修改测量总次数(5)、选中开始测试,立即松开钩码(6)、记录测量数据(7)、改变砝码质量,重复(1)到(6)四、数据处理(要求与提示:对于必要的数据处理过程要贴手算照片)表4.12-1 多普勒效应的验证与声速的测量t c = 24 ℃f0 = 40001 Hz次数i 1 2 3 4 5v/(m/s) 0.41 0.59 0.75 0.87 0.98Fi/Hz 40049 40070 40089 40103 40116斜率k=f0/u0=117.6声速u0= 340.1m/s当t= 24℃时,u t = 345.7 m/s误差|σ|= 1.6 %表4.12-2 滑车在钩码驱动作用下的运动规律测量滑车质量m0= 595.2 g 采样步距t0= 0.05 s序号i 1 2 3 4 5 6 7 8 9 10 砝码质量m1/gt i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 56.4f i/Hz 40040 40042 40051 40048 40053 40057 40063 40065 40067 40075t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 92.6f i/Hz 40067 40075 40077 40083 40087 40095 40102 40112 40118 40124t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 104.5f i/Hz 40073 40077 40083 40087 40097 40100 40114 40118 40126 40132t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 116.4f i/Hz 40067 40069 40081 40087 40100 40100 40114 40120 40130 40136m1= 56.4 g v-t 关系表t i/(s) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.337 0.354 0.432 0.406 0.449 0.484 0.536 0.553 0.570 0.640理论值:a0= 0.848 m/s2实验值:a= 0.638 m/s2误差|σ|= 24.8%m1= 92.6 g v-t 关系表t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.570 0.640 0.657 0.709 0.743 0.812 0.873 0.960 1.011 1.063理论值:a0= 1.319 m/s2实验值:a= 1.104 m/s2误差|σ|= 16.3%t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.622 0.657 0.709 0.743 0.830 0.856 0.977 1.011 1.080 1.132理论值:a0= 1.464 m/s2实验值:a= 1.187 m/s2误差|σ|= 18.9 %t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.570 0.588 0.691 0.743 0.856 0.856 0.977 1.028 1.115 1.167理论值:a0= 1.603 m/s2实验值:a= 1.387 m/s2误差|σ|= 13.5%五、分析讨论(提示:分析讨论不少于400字)研究相对运动的速度与接收到的频率之间的关系的实验时1、应该先调好皮带松紧度(1)皮带过松,带动皮带的转轮与皮带之间打滑,使小车速度发生变化,且容易导致小车自动返回后与控制器存在碰撞。
多普勒效应原理多普勒效应是一种物理现象,描述了当波源与观察者相对运动时,观察者接收到的波的频率和波长会发生变化的现象。
这种变化是由于运动引起的相对速度而产生的,主要用于衡量物体的速度和距离等信息。
多普勒效应广泛应用于天文学、雷达探测、声学测量等领域,对于人类在探索宇宙、研究物体运动等方面起到了重要作用。
多普勒效应的原理可以通过以下几个方面来解释:一、声音多普勒效应原理:当发出声音的物体运动时,其声波传播到观察者所在的位置时,波的频率和波长会发生变化。
当波源靠近观察者时,观察者接收到的波的频率会变高,波长会变短,所谓"升调"。
当波源远离观察者时,观察者接收到的波的频率会变低,波长会变长,所谓"降调"。
这是因为波源与观察者之间的相对运动导致了波的传播速度的变化,从而产生了频率和波长的变化。
二、光学多普勒效应原理:多普勒效应同样适用于光波。
当光源与观察者相对运动时,光的频率和波长也会发生变化。
与声音的多普勒效应类似,当光源靠近观察者时,观察者接收到的光的频率会变高,波长会变短,所谓"蓝移"。
当光源远离观察者时,观察者接收到的光的频率会变低,波长会变长,所谓"红移"。
这种光学多普勒效应在天文学中起到了重要的作用,可以通过光的频率和波长的变化来判断星体的运动状态和速度。
三、雷达多普勒效应原理:多普勒效应在雷达探测中也得到了广泛应用。
雷达通过发射电磁波并接收回波的方式来检测目标物体的位置和运动状态。
当物体静止时,接收到的回波频率和发射频率相同。
但当物体运动时,回波的频率会发生变化。
与声波和光波的多普勒效应类似,当物体靠近雷达时,回波频率会变高;当物体远离雷达时,回波频率会变低。
通过测量回波频率的变化,可以计算出目标物体的速度和运动方向。
总结:多普勒效应是一种描述波相对运动引起的频率和波长变化的现象。
通过声音、光学和雷达等领域的应用,我们可以利用多普勒效应来测量物体的速度、方向和距离等信息。
《多普勒效应》讲义一、什么是多普勒效应在我们的日常生活中,有一种有趣的现象,那就是当一辆汽车鸣着喇叭从我们身边疾驰而过时,我们会听到喇叭声音的音调发生变化。
当汽车靠近我们时,喇叭声听起来音调较高;而当汽车远离我们时,喇叭声的音调则会变低。
这种现象就是多普勒效应。
多普勒效应不仅仅局限于声音,对于电磁波,如光,也存在类似的现象。
简单来说,多普勒效应是指当波源和观察者之间存在相对运动时,观察者接收到的波的频率会发生变化。
如果波源朝着观察者运动,观察者接收到的频率会升高;反之,如果波源远离观察者运动,接收到的频率就会降低。
二、多普勒效应的原理为了更好地理解多普勒效应的原理,我们先来了解一下波的特性。
波是一种能量传递的形式,它具有频率和波长。
频率是指单位时间内波振动的次数,而波长则是相邻两个波峰或波谷之间的距离。
当波源和观察者相对静止时,观察者接收到的波的频率等于波源发出的频率。
然而,当两者存在相对运动时,情况就变得不同了。
假设波源以速度 v 朝着观察者运动,在一个固定的时间间隔内,波源发出的波的个数是固定的。
但由于波源在运动,这使得相邻波峰之间的距离在观察者看来变短了,也就是波长变短了。
根据频率、波长和波速之间的关系(波速=频率 ×波长),波长变短,而波速不变(在同一介质中,波速通常是恒定的),所以观察者接收到的频率就会升高。
相反,当波源远离观察者运动时,相邻波峰之间的距离在观察者看来变长,波长增大,从而导致观察者接收到的频率降低。
三、多普勒效应在声音中的应用声音是一种常见的机械波,多普勒效应在声音领域有着广泛的应用。
比如,在交通领域,警察常常使用多普勒雷达来测量车辆的速度。
雷达向车辆发射电磁波,当车辆行驶时,反射回来的电磁波频率会发生变化,通过测量这种频率变化,就可以计算出车辆的速度。
在医学中,多普勒超声技术被用于检测血液的流动速度。
通过向血管发射超声波,并检测反射回来的频率变化,医生可以了解血液流动的情况,诊断血管疾病。
多普勒效应实验报告学院化学与生物工程学院班级化学1701 学号姓名一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。
2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械能转化的规律。
实验仪器ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。
二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)1、声波的多普勒效应当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为f0=U0/λ0则观测频率f、观测波长λ和观测波速U的关系f=U/λ当接收器以一定的速率向声源移动时U=U0+V0,则f=(U0+V0)/λ0联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0当声源以一定的速率向接收器移动时V =U0-V0,则f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f当声源与接收器运动如图时f=(U0+V1COSθ1)/( U0-V2 COSθ2)2、马赫锥a=arcsin(U0/V0)=arcsin(1/M)U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数3、天文学中的多普勒效应观察两波面的时间t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2)=(1-V2c/C2c)1/2/((1+Vc/Cc)fc)三、实验步骤(要求与提示:限400字以内)1、超声波的多普勒效应(1)、组装仪器(2)、打开实验控制箱,调至室温,记录共振频率f0(3)、选择多普勒效应验证实验(4)、修改测试总数(5)、为仪器充电,确定失锁指示灯处于灯灭状态(6)、选定滑车速率,开始测试(7)、选择存入或者重测(8)、重新选择速度,重复(6)、(7)(9)、记录实验数据2、用多普勒效应研究恒力下物体的运动规律(1)、测量钩码质量和滑车质量(2)、连接仪器(3)、选中变速运动测量(4)、修改测量总次数(5)、选中开始测试,立即松开钩码(6)、记录测量数据(7)、改变砝码质量,重复(1)到(6)四、数据处理(要求与提示:对于必要的数据处理过程要贴手算照片)表4.12-1 多普勒效应的验证与声速的测量t c = 24 ℃f0 = 40001 Hz次数i 1 2 3 4 5v/(m/s) 0.41 0.59 0.75 0.87 0.98Fi/Hz 40049 40070 40089 40103 40116斜率k=f0/u0=117.6声速u0= 340.1m/s当t= 24℃时,u t = 345.7 m/s误差|σ|= 1.6 %表4.12-2 滑车在钩码驱动作用下的运动规律测量滑车质量m0= 595.2 g 采样步距t0= 0.05 s序号i 1 2 3 4 5 6 7 8 9 10 砝码质量m1/gt i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 56.4f i/Hz 40040 40042 40051 40048 40053 40057 40063 40065 40067 40075t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 92.6f i/Hz 40067 40075 40077 40083 40087 40095 40102 40112 40118 40124t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 104.5f i/Hz 40073 40077 40083 40087 40097 40100 40114 40118 40126 40132t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 116.4f i/Hz 40067 40069 40081 40087 40100 40100 40114 40120 40130 40136m1= 56.4 g v-t 关系表t i/(s) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.337 0.354 0.432 0.406 0.449 0.484 0.536 0.553 0.570 0.640理论值:a0= 0.848 m/s2实验值:a= 0.638 m/s2误差|σ|= 24.8%m1= 92.6 g v-t 关系表t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.570 0.640 0.657 0.709 0.743 0.812 0.873 0.960 1.011 1.063理论值:a0= 1.319 m/s2实验值:a= 1.104 m/s2误差|σ|= 16.3%t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.622 0.657 0.709 0.743 0.830 0.856 0.977 1.011 1.080 1.132理论值:a0= 1.464 m/s2实验值:a= 1.187 m/s2误差|σ|= 18.9 %t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.570 0.588 0.691 0.743 0.856 0.856 0.977 1.028 1.115 1.167理论值:a0= 1.603 m/s2实验值:a= 1.387 m/s2误差|σ|= 13.5%五、分析讨论(提示:分析讨论不少于400字)研究相对运动的速度与接收到的频率之间的关系的实验时1、应该先调好皮带松紧度(1)皮带过松,带动皮带的转轮与皮带之间打滑,使小车速度发生变化,且容易导致小车自动返回后与控制器存在碰撞。
浅谈多普勒效应摘要:本文从多普勒效应的基本原理出发,结合声波中的具体实例,并写出了自己的一些浅显认识。
之后,介绍了多普勒效应在天文学、医学和公共交通方面的应用。
最后,发散地想了原理变化后的一些现象,简要说了冲击波、马赫锥的相关内容。
引言:在生活中,我们常常遇到波源与观测者发生相对运动的情形,如站在铁路旁听着高速行驶的列车拉着响笛飞驰而过,此时你会感觉到响笛音调的明显变化,这就是人们常说的多普勒效应。
那么,出现这种情况的原因是什么呢?关于多普勒效应可以建哪些模型进行研究呢?下面让我们简单来了解一下多普勒效应。
关键词:多普勒效应、应用、冲击波、马赫锥。
一、多普勒效应基本原理首先,先来让我们以声波为例具体分析一下多普勒效应的三种情况。
物理量的定义:设波源为S,观察者相对介质的运动速度是,波源相对介质的运动速度是,声波在介质中的传播速度为u,波源的频率、波的频率、观察者收到的频率分别是。
(一)、波源相对介质静止,观测者相对介质运动此时,当观测者靠近波源沿直线(这样研究较简便)运动时,他在一定时间内接收到的完整的波长必定要增加,这好比雨水迎面打来,我们顶着雨跑,单位时间内会淋更多的雨水。
在单位时间内,他接受的波的总长度为u+,而此时,该波在介质中传播的频率是不变的,与波源振动频率相同,同为,所以在单位时间内观测者所接受到的完整波的数目是:所以此时观测者会感觉音调变高了。
(二)观察者相对介质静止,波源相对介质运动当波源向着观察者运动时,波源每次完整震动后都发出一次脉冲,设初始时刻发出一次脉冲,而在一个周期后,该波源又会发出一次脉冲,但波源的位置在哪里呢?显然发生了变化,距离观察者近了T。
这样,经过多个周期从整体上看,波源前面(即距观察者近一边)的脉冲密集了,波源后面(即距观察者远的一面)的脉冲稀疏了,量化来看就是波长发生了变化,由原来的变为由于观察者静止,所以观察者受到的频率就是介质中波的频率,即由上式可知此时观察者收听到的频率较高。