活动星系核
- 格式:ppt
- 大小:6.23 MB
- 文档页数:55
正常星系和活动星系核的比较研究星系是宇宙中的巨大恒星系统,由恒星、星际气体、尘埃和暗物质组成。
根据其核心活动状态的不同,星系可以分为正常星系和活动星系核。
正常星系是指核心没有或只有微弱活动的星系,而活动星系核则指具有巨大能量释放和强烈辐射现象的星系核。
正常星系核通常由中等质量的恒星和星际气体组成,其核心活动所释放的能量相对较低,主要是由恒星形成、星际物质互动和星系内部演化等因素决定的。
正常星系核的结构相对较简单,表现出均匀的亮度分布和规则的演化模式。
正常星系核的特征是形态规则、恒星分布均匀、辐射相对较弱,通常在不同波段都呈现出相似的特征。
与之相反,活动星系核的能量释放和辐射非常强烈,其物质状态和结构变化较为复杂。
活动星系核主要由黑洞、射电源和喷流组成,并伴随着强烈的射电、X射线等辐射现象。
活动星系核的能量释放主要来源于质量在黑洞附近聚积并形成吸积盘的物质,这种物质经过剧烈的碰撞和摩擦,释放出巨大的能量。
活动星系核的特征是形态多样、辐射强烈、射电辐射明显,对宇宙中物质演化和星系形成具有重要影响。
正常星系和活动星系核的比较研究对于理解宇宙演化、研究星系的形成与发展过程具有重要意义。
正常星系核的研究可以帮助我们了解宇宙中一般星系的结构和演化规律。
通过观测正常星系核的恒星分布、星际物质组成和星系内部运动,我们可以揭示星系的形成机制以及宇宙的一般性质。
而活动星系核的研究对于理解超大质量黑洞的形成和演化,以及黑洞与星系之间的相互作用过程至关重要。
通过观测活动星系核的吸积盘、喷流和射电辐射等特征,我们可以获取有关黑洞质量、旋转速度、吸积速率等重要参数的信息,并进一步研究黑洞与星系之间的相互作用过程。
近年来,随着天文观测和理论研究的深入,我们对正常星系和活动星系核的认识已经有了很大的进展。
我们发现正常星系核和活动星系核在形态、亮度和辐射特征上存在明显差异,同时也发现一些中间状态的星系核,其特征介于正常星系核和活动星系核之间。
§1. 类星体与活动星系核§1.1 活动星系核的分类活动星系(active galaxy)是一类特殊的星系, 其上存在着猛烈的活动现象或剧烈的物理过程,如超过恒星内部核反应的产能,相对论性高能粒子的产生,非热辐射,高能X 和γ射线,物质的喷射和爆发现象等。
但是,活动星系上的这些现象和过程主要发生在星系的核心,或者是从核心引发出来。
活动星系的核心即为活动星系核(active galactic nuclei, 简称AGN)。
在现代一般的文献中,除非特别指明,并不严格地区分活动星系和活动星系核,两者都用AGN 表示。
严格地定义活动星系核是很难的,至今没有一个统一的量化标准。
通常是根据活动星系核的主要观测特征来判断。
AGN 的观测特征主要有:(1) 明亮的致密核区。
有些AGN ,如类星体,只能观测到致密核区,其巨大的辐射光芒掩盖了星系的其余部分;有些AGN ,虽然可观测到星系,但致密核区的辐射占了星系总辐射的相当大的部分。
AGN 的光度在1043 ~ 1048 erg s -1,比正常星系高得多。
但尺度很小,一般认为,小于0.1 pc.(2) 在某些波段,如射电、光学、X 射线等,存在非热致连续辐射。
此时,谱呈幂律形式:νF ∝αν−,且辐射是偏振的。
或者,在某些波段的辐射是热致的,或以热辐射为主,但热辐射并不起源于恒星。
(3) 存在强的原子和离子发射线。
(4) 连续辐射的强度,发射线的强度和轮廓,偏振等可能随时变化。
(5) 具有比正常星系更强的发射高能光子(X 和γ射线)的能力。
具有以上全部或部分特征的称为活动星系核。
有些天体,如类星体,具有以上全部特征,是活动性最强的AGN 。
有些天体,只具有部分特征,如蝎虎天体,也是典型的AGN 。
有些星系,如银河系,中心有星系核,可能满足上面的(2)~(5),但核的辐射功率小,与整个星系的辐射相比微不足道,这种星系核不称为活动星系核。
活动星系核包含很多品种。
第一章.类星体与活动星系核AGN 的观测特征:(1)明亮的致密核区 pc s 1.0; erg 10~1014843-(2)某些波段,存在非热致连续辐射。
谱呈幂律形式:ανν-∝F 。
辐射是偏振的——辐射起源?(3)存在强的原子或离子发射线(4)连续辐射的强度,发射线的强度、轮廓和偏振可能随时变化(5)具有比正常星系更强的发射高能光子的能力大致分类:Quasar ——类星体(有时指射电噪类星体)QSO (Quasi-Stellar-Object )——类星体Seyfert Galaxies ——赛弗特星系Radio Galaxies ——射电星系BL Lac Objects ——蝎虎座BL 型天体OVV (Optically Violent Variable )——光学激变天体LINER (low ionization nuclear emission-line region )——具有低电离核发射线区的星系Blazar ——耀变体(BL Lac 和OVV 的统称)第二章.类星体巡天一.巡天的意义:最遥远的一类天体,提供了最大的时间和空间跨度——研究宇宙的发展史类星体的空间分布、光度函数、类星体吸收线——类星体及有关天体的特征是怎样随红移演化;宇宙大尺度结构和星系形成演化的线索搜寻类星体的困难:1.类星体的面密度很低。
恒星的面密度是类星体的40倍以上2.选取类星体的候选者的方法不完善。
选择方法具有偏向性(红移、亮度);选择效率与完备性巡天的依据:类星;强的发射线光谱;从伽马射线到射电波段的连续谱;连续辐射的光变【颜色巡天】1.紫外超(UVX)巡天(两色巡天)低红移(<2.2 )类星体的幂律连续谱表明它们有明显的紫外超。
典型类星体U-B=-1,最热主序星U-B=0.4-0.5——类星体候选者标准:U-B<-0.4 。
只需测U、B星等,简单易行;效率不高历史:亮类星体巡天(BQS)判据是U – B < - 0.44 114 个类星体UKST(UK Schmidt Telescope)颜色巡天:BJ 和红区的R。
活动星系核(AGN)统一模型简述天体物理系PB04203071 汪洋活动星系核是近来天体物理学中非常活跃的研究领域。
因为活动星系核涉及到天体物理中的最基本的问题,他在能量产生、辐射机制和宇宙论这些基本问题中占有关键的地位。
通过对活动星系核的研究,能够验证一些在实验室条件下无法产生的物理过程,验证一些重要的物理规律。
活动星系核的研究主要是源于对于特殊星系得研究。
与普通星系相比,特殊星系表现出不同寻常的特殊性质:包括形态上有致密的核区;核区有很高的光度,有强射电、红外和X 光辐射,且光度变化快,有较强的偏振;它们的光谱中会都有较宽的发射线,以及在通常情况下很难出现的高激发、高电离的禁线;在动力学特征上,特殊星系中在核区周围可以观察到高速的、非圆周运动的天体。
可以看到,特殊星系得特殊性主要的就集中在它的核区上。
由于观测到的特殊星系有很多不同的形态(正是因为他们不同于通常星系,无法划分类别,才将其归于特殊星系中),所以各种活动星系核之间有很大的差别。
也正因为如此,对这些星系核的分类以及建立模型是非常重要的。
最理想的情况是,用一个模型就能个解释所有的这些现象,这样显然就会对研究产生极大的帮助。
而且统一的模型也符合物理规律的“简单,普遍”的性质。
而直到目前的研究,有一种理论能够很好的解释AGN的很多性状,这就是黑洞吸积盘的模型。
这个模型也迄今为止被认为是比较完美的一个模型。
这个理论的基本思想使:在这些活动星系核的中心有一个巨大的黑洞,在黑洞周围围绕着星际尘埃形成巨大的吸积盘。
这正是活动星系和巨大能量的来源,高能射电、红外、X光辐射,以及光谱中的禁线等等,都可以用黑洞吸积模型所产生的极端条件来解释。
另一方面,活动星系核的活动周期,光度,谱线的不同可以用吸积盘的遮蔽来解释,AGN的不同主要是由于观测上的原因。
这就是黑洞吸积盘模型的一个示意图:一个环状的吸积盘围绕在中央黑洞的周围。
要了解活动星系核的这个模型,首先应该先直到对于活动星系和分类以及他们的特性和相互之间的不同,这样才能够对于怎样用统一模型去解释活动星系核有所理解。
认识耀变体耀变体是一种密度极高的高变能量源,被假定为是处于寄主星系中央的超大质量黑洞。
耀变体是目前已观测到的宇宙中最剧烈的天体活动现象之一,并已成为星系天文学的一个重要话题。
耀变体是众多活跃星系中的一种,也被称为活跃星系核(AGN)。
不过,被称为耀变体的星体并非都完全相同,其仍可分为两种:第一种是高变类星体,也被称为光学剧变类星体(为类星体中的一类);第二种为蝎虎座BL 型天体。
另外还有少量耀变体可能属于“过渡耀变体”类型,即兼具光学剧变类星体和蝎虎座BL型天体的某些特征。
耀变体(blazar)这个词由天文学家埃德·施皮格尔于1978年创造,用以指称上述两类天体的集合。
耀变体是一种相对论性喷流(在大概方向上)指向地球的活跃星系核。
因此,对其进行观测的我们通常处于喷流的“下游”。
这也说明了这两种耀变体的高变性和高密度的特征。
许多耀变体甚至在喷流的数个秒差距内出现超光速运动现象,这可能是由相对论性冲击波造成的。
此外,如引力透镜效应等替代模型则可解释少量与耀变体一般特征不符的观测结果。
耀变体和其他活跃星系核一样,都以物质落入位于寄主星系中央的超大质量黑洞同时产生能量作为其能量的最终产生机制。
在引力的作用下,黑洞周围的气体、尘埃,有时还包括星体朝黑洞下落,由于具有角动量,物质形成了一个围绕黑洞的炙热的吸积盘,并进入黑洞。
在此过程中,产生了大量的以光子、电子、正电子和其它基本粒子形态存在的能量。
这个作用区域十分狭小,大约只有10−3秒差距大小。
此外,在黑洞周围数个秒差距的范围内还会形成一个庞大的不透光圆环,在这个该密度的区域内包含着炙热的气体。
这些“云”从更靠近黑洞的区域中吸收能量,并再次辐射出去。
在地球上则可以通过耀变体电磁波谱范围内的谱线探知这些“云”。
与吸积盘面相垂直的则是一对从活跃星系核中喷射而出的、携带高能量的相对论性喷流。
这对喷流受到了来自吸积盘和吸积环的强大磁场和强烈辐射风的共同作用,得以保持很好的方向性。
宇宙黑洞的分类与特性宇宙黑洞是宇宙中最神秘而又令人着迷的天体之一。
它们是由恒星坍缩形成的,具有极强的引力,甚至连光也无法逃离它们的束缚。
在宇宙中存在着多种类型的黑洞,每一种都有其独特的特性和形成方式。
一、超大质量黑洞超大质量黑洞是宇宙中最大的黑洞,其质量通常相当于数百万至数十亿个太阳的质量。
这些黑洞位于星系的中心,被称为活动星系核(AGN)。
它们通过吸积周围物质来释放巨大的能量,形成强烈的辐射。
超大质量黑洞的形成仍然是一个谜,目前科学家认为它们可能是由早期宇宙中的原始气体坍缩而成。
二、中等质量黑洞中等质量黑洞的质量介于几十到几百个太阳质量之间。
这类黑洞的存在尚未得到充分证实,但有一些观测数据表明它们可能存在于一些球状星团或星系中。
中等质量黑洞的形成机制尚不清楚,但有一种理论认为它们可能是由恒星聚集在一起形成的。
三、恒星质量黑洞恒星质量黑洞是由恒星爆炸形成的,质量通常在几个到几十个太阳质量之间。
当一个恒星耗尽了核燃料,无法继续支撑自身的重力时,它会发生剧烈的引力坍缩,形成一个黑洞。
恒星质量黑洞通常位于银河系中,它们可以通过吸积周围的物质来释放能量。
四、微型黑洞微型黑洞是质量非常小的黑洞,通常只有几个毫克。
它们的存在尚未得到实质性的证明,但有一些理论认为它们可能在早期宇宙中形成。
微型黑洞的特点是非常稳定,能够长时间存在。
五、旋转黑洞旋转黑洞是指具有自旋的黑洞。
自旋是指黑洞围绕自身轴线旋转的程度。
旋转黑洞具有更强的引力和更强的吸积能力,它们可以通过吸积物质来释放更多的能量。
六、超快旋转黑洞超快旋转黑洞是指自旋极大的黑洞。
由于自旋的存在,超快旋转黑洞的外部空间被严重扭曲,形成了一个称为“埃尔哥区”的特殊区域。
在这个区域内,时间和空间的扭曲达到了极致,形成了一种奇特的物理现象。
总结起来,宇宙黑洞的分类主要有超大质量黑洞、中等质量黑洞、恒星质量黑洞、微型黑洞、旋转黑洞和超快旋转黑洞。
每一种黑洞都有其独特的特性和形成方式,它们在宇宙中扮演着重要的角色。