线与面的相对位置位置
- 格式:ppt
- 大小:268.00 KB
- 文档页数:18
直线、平面的相对位置关系教学目的要求:研究直线与平面以及平面与平面的相对位置关系在投影图中的投影特性和基本作图方法。
包括:平行、相交和垂直。
教学重点难点:相交关系的作图方法与步骤,及可见性的判断,线、面相对位置综合作图。
学时:3§ 1平行关系1.1直线与平面平行几何条件:如果平面外的一直线和这个平面上的一直线平行,则此直线平行于该平面,反之亦然。
投影:如果直线的投影与平面内任意一直线的同面投影平行,在空间则直线与平面平行。
根据此定理,我们可以在投影图上判断直线与平面是否平行,并解决直线与平面平行的作图问题。
作图:如图5-1所示,已知b’d’∥e’f’,bd∥ef,且BD是ABC平面上的一直线,因此,直线BD∥ΔABC。
图5-1例1:过点K作一水平线,使之平行于ΔABC(图5-2)解:①在ΔABC上作一水平线AD。
(先作正面投影 aˊdˊ∥X)②过K点作直线KL∥AD。
(kl∥ad,kˊlˊ∥aˊdˊ)直线KL即为所求。
图5-2例2:过点K作一铅垂面(用迹线表示),使之平行于直线AB解:由于铅垂面的H投影为一直线,所以作铅垂面平行于直线AB,则P H必平行于ab。
1)过k作P H∥ab,与X轴交于P X点。
2)过P X点作P V⊥X轴,则P平面即为所求。
图5-31.2平面与平面平行几何条件:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。
投影:一个平面内任意两条直线的投影分别与另一个平面内两条相交直线的同面投影对应平行,则这两个平面平行。
作图:由于AB∥A1B1,BC∥B1C1,所以平面ABC∥平面A1B1C1,如图5-4所示图5-4两平行平面的同面迹线一定平行,反之,如果两平面的两对同面迹线分别相互平行,则不能确定两平面是相互平行的。
在图5-5中两平面平行,在图5-6中两平面不平行。
图5-5图5-6§2相交关系求直线与平面的交点和两平面的交线是解决相交问题的基础。
本章讨论直线与平面、平面与平面的相对位置关系及其投影,包括以下内容:1)平行关系:直线与平面平行,两平面平行;2)相交关系:直线与平面相交,两平面相交;3)垂直关系:直线与平面垂直,两一般位置直线垂直和两平面垂直。
§1 平行关系1.1 直线与平面平行直线与平面平行的几何条件是:如果平面外的一直线和这个平面上的一直线平行,则此直线平行于该平面。
由于EF∥BD,且BD 是ABC 平面上的一直线,所以,直线EF平行于ABC 平面。
[例1]试过K点作一水平线,使之平行于△ABC。
先在△ABC上作一水平线AD;再过点K,作kl∥ad,k′l′∥a′d′,则直线KL为所求。
[例2]试过K 点作一正平线,使之平行于P 平面。
因P V 是P 平面上特殊的正平线,所以过点K 作KL ∥P V ,即作k ′l ′∥PV ,kl ∥X 轴,则直线KL 为所求。
[例3]试过K 点作一铅垂面P (用迹线表示),使之平行于AB 直线。
由于铅垂面的H 投影为一直线,故若作铅垂面平行于AB 直线,则P H必平行于ab 。
因此,过k 作P H ∥ab ;过P X 作P V ⊥X 轴,则P 平面为所求。
1.2 平面与平面平行两平面相平行的条件是:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。
两平行平面和第三个平面相交,其交线一定互相平行。
因此,两平行平面的同面迹线一定平行。
如果两平面的两对同面迹线分别互相平行,则不能肯定两平面是互相平行的。
如果平面的两条迹线是平行直线时,则一般要看第三个投影才能确定。
P 平面平行于Q 平面P 平面不平行于Q 平面[例1]过点K 作一平面,使之与AB、CD两平行直线表示的平面平行1:在AB、CD 平面上,作一条和AB、CD 不平行的辅助线,如AC ;2:过K 作KL∥AB ;3:过K 作KM∥AC ,则平面LKM即为所求。
[例2]过K 点作Q 平面(用迹线表示),使之平行于P 平面。
四. 直线与平面的相对位置两平面的相对位置(一). 直线与平面平行• 两平面平行(二). 直线与平面的交点• 两平面的交线(三). 两直线垂直• 直线与平面垂直• 两平面垂直基本要求基本要求(一)平行问题1.熟悉线、面平行,面、面平行的几何条件;2.熟练掌握线、面平行,面、面平行的投影特性及作图方法。
(二)相交问题1.熟练掌握特殊位置线、面相交(其中直线或平面的投影具有积聚性)交点的求法和作两个面的交线(其中一平面的投影具有积聚性)。
2.掌握利用重影点判别投影可见性的方法。
(三)垂直问题掌握线面垂直、面面垂直的投影特性及作图方法。
(四)点、线、面综合题1.熟练掌握点、线、面的基本作图方法;2.能对一般画法几何综合题进行空间分析,了解综合题的一般解题步骤和方法。
(一). 直线与平面平行• 两平面平行1、直线与平面平行几何条件若平面外的一条直线与平面内的一条直线平行,则该直线与该平面平行。
这是解决直线与平面平行作图问题的依据。
例题1例题22、平面与平面平行几何条件若一个平面内的相交二直线与另一个平面内的相交二直线对应平行,则此两平面平行。
这是两平面平行的作图依据。
例题3例题4例题51、直线与平面平行若一直线平行于属于定平面的一直线,则该直线与平面平行本课程只介绍特殊位置平面与直线平行问题特殊位置平面与直线平行投影特性当直线与垂直于投影面的平面平行时,则它们在这个投影面上的投影也平行。
ABC DPba′b′aba2、两平面平行若属于一平面的相交两直线对应平行于属于另一平面的相交两直线,则此两平面平行E F D AC B本课程只介绍特殊位置两平面平行问题特殊位置两平面平行投影特性当两个互相平行的平面垂直于同一投影面时,则它们在这个投影面上的投影也一定平行。
[例题1] 试判断两平面是否平行。
(二). 直线与平面的交点、两平面的交线1、直线与平面相交只有一个交点2、两平面的交线是直线3、特殊位置线面相交4、一般位置平面与特殊位置平面相交1、直线与平面相交AKB直线与平面相交只有一个交点,它是直线与平面的共有点。
直线、平面的相对位置本章讨论直线与平面、平面与平面的相对位置关系及其投影,包括以下内容:1)平行关系:直线与平面平行,两平面平行。
2)相交关系:直线与平面相交,两平面相交。
§1 平行关系1.1 直线与平面平行定理:若一直线平行于平面上的某一直线,则该直线与此平面必相互平行。
以,直线EF平行于ABC平面。
[例1]过已知点k ,作一条水平线平行于△ABC 平面。
步骤:1)在ABC 平面内作一水平线AD ; 2)过点K 作 KL ∥AD ; 3)直线KL即为所求。
d′d l′lk′k a′a b′e′bc X[例2]试判断:已知直线AB是否平行于四棱锥的侧表面SCF。
作图步骤:1)作c'm'∥a'b';2)根据CM在平面SCF内,作出cm;3)由于cm不平行于ab,即在该平面内作不出与AB平行的直线,所以,直线AB不平行于四棱锥侧表面SCF。
1.2 平面与平面平行两平面相平行的条件是:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。
所以:平面ABC 和平面DEF 相平行。
[例3]过点K作一平面,是其与平面ABC平行。
解:只要过K点作两条相交直线分别平行于△ABC的两条边,则这两条相交直线所确定的平面就是所求平面。
作图步骤:2)作KD∥AC(k'd'∥a'c',kd∥ac);a'cac'bb'k'kl'ld'dX1)作KL∥BC(k'l'∥b'c', kl∥bc); 3)平面KDL即为所求。
2.1 直线与平面相交2.1.1 利用积聚性求交点当平面或直线的投影有积聚性时,交点的两个投影中有一个可直接确定,另一个投影可用在直线上或平面上取点的方法求出。
⑴平面为特殊位置[例]求直线MN与平面ABC的交点K并判别可见性。
空间及投影分析平面ABC 是一正垂面,其V 投影积聚成一条直线,该直线与m'n'的交点即为K点的V 投影。