2021年陕西省中考数学试题(含答案解析)2021中考试卷及答案
- 格式:docx
- 大小:18.95 KB
- 文档页数:15
2021年陕西省中考数学试卷参考答案与试题解析一、选择题〔共10个小题,共计30分,每题只有一个选项是符合题意的〕1.如果零上5℃记作+5℃,那么零下7℃可记作〔〕A.﹣7℃B.+7℃C.+12℃D.﹣12℃考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.解答:解:∵“正〞和“负〞相对,∴零上5℃记作+5℃,那么零下7℃可记作﹣7℃.应选A.点评:此题考查了正数与负数的定义.解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是〔〕A.B.C.D.考点:简单组合体的三视图。
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定那么可.解答:解:从左边看竖直叠放2个正方形.应选C.点评:考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.计算〔﹣5a3〕2的结果是〔〕A.﹣10a5B.10a6C.﹣25a5D.25a6考点:幂的乘方与积的乘方。
分析:利用积的乘方与幂的乘方的性质求解即可求得答案.解答:解:〔﹣5a3〕2=25a6.应选D.点评:此题考查了积的乘方与幂的乘方的性质.注意幂的乘方法那么:底数不变,指数相乘;积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘.4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况〔总分值100分〕如表,从中去掉一个最高分和一个最低分,那么余下的分数的平均分是〔 〕 分数〔分〕 89 92 95 96 97 评委〔位〕 122 1 1A . 92分B . 93分C . 94分D . 95分考点: 加权平均数。
分析: 先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可.解答: 解:由题意知,最高分和最低分为97,89,那么余下的数的平均数=〔92×2+95×2+96〕÷5=94. 应选C .点评: 此题考查了加权平均数,关键是根据平均数等于所有数据的和除以数据的个数列出算式. 5.如图,△ABC 中,AD 、BE 是两条中线,那么S △EDC :S △ABC =〔 〕 A . 1:2B . 2:3C . 1:3D . 1:4考点: 相似三角形的判定与性质;三角形中位线定理。
2021年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是 A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是A .正方体B .长方体C .三棱柱D .四棱锥 3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有A .1个B .2个C .3个D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为A .-12B .12C .-2D .2第2题图第3题图第4题图5、下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6 C .3a 2-6a 2=3a 2D .(a -2)2=a 2-46、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为3BA .(-2,0)B .(2,0)C .(-6,0)D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:填<,>或=).12、如图,在正五边形中,AC 与BE 相交于点F ,则AFE 的度数为72°13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S 1=3S 2第12题图第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)0 解:原式=32+2-1+1=4 216.(本题满分5分) 化简:⎝ ⎛⎭⎪⎪⎫a +1a -1-a a +1÷3a +1a 2+a BB解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=a a -117.(本题满分5分)[来源:学科网]如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点. 18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中, ∵⎩⎪⎨⎪⎧∠A =∠D ∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DGCADAD∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.陕西(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表[来源:学科网](第19题图)依据以上统计信息,解答下列问题: (1)求得m =30,n =19%;(2)这次测试成绩的中位数落在B 组; (3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,A组别 分数/分 频数 各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100D 90<x ≤100m2796使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADE ∴AD AB =DE BC∴AB +8.5AB=1.51∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.陕西(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13;(2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有第一次 第二次 1-2 3 1 (1,1) (1,-2) (1,3) -2 (-2,1) (-2,-2) (-2,3) 3 (3,1)(3,-2)(3,3)其概率为5923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1) 解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC∴ON ∥AB[来源:学&科&网]∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,[来源:Z§xx§]O 为⊙O 的圆心,∴OC =OB ,∠CMD =90° ∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB∴MD =NB . 24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),ABB并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´在点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6∴A (-3,0),B (2,0),C (0,6) ∴S △ABC =12AB ·OC =12×5×6=15;(2)将抛物线向左或向右平移时,A ´、B ´两点间的距离不变,始终为5,那么要使△A ´B ´C ´和△ABC 的面积相等,高也只能是6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a 当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6;当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6.25.(本题满分12分) 问题提出(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为 .问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图① 图② 图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP 显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18∴PM 的最大值为18;25题解图(2) 25题解图(3)P''B11 (3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ´、P "连接PP ´、P ´E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ´E +EF +FP "=P ´P ",且P ´、E 、F 、P "在一条直线上,所以P ´P "即为最短距离,其长度取决于PA 的长度25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得PA 最短的点 ∵AB=6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC =33 BC 所对的圆心角为60°,∴∆OBC 是等边三角形,∠CBO =60°,BO =BC=3 3∴∠ABO =90°,AO =37,PA =37-3 3 ∠P ´AE =∠EAP ,∠PAF =∠FAP ",∴∠P ´AP "=2∠ABC =120°,P ´A =AP ",∴∠AP ´E =∠AP "F =30°∵P ´P "=2P ´A cos ∠AP ´E =3P ´A =321-9 所以PE +EF +FP 的最小值为321-9km . B。
陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( )A.1B.23-C.0D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =•B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷ 4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )6.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度 9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。
陕西省2021届中考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算:()32⨯-=( ) A.1B.-1C.6D.-62.下列图形中,是轴对称图形的是( )A. B. C. D.3.计算:()23a b -=( )A.621a b B.62a bC.521a b D.32a b -4.如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,50C ∠=︒,则1∠的大小为( )A.60°B.70°C.75°D.85°5.在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则ACBD( )A.126.在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到一个正比例函数的图象( ) A.-5B.5C.-6D.67.如图,AB 、BC 、CD 、DE 是四根长度均为5cm 的火柴棒,点A 、C 、E 共线.若6cm AC =,则线段CE 的长度是( )A.6 cmB.7 cmC. D.8 cm8.下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:x … -2 0 1 3 … y…6-4-6-4…下列各选项中,正确的是( ) A.这个函数的图象开口向下 B.这个函数的图象与x 轴无交点 C.这个函数的最小值小于-6D.当1x >时,y 的值随x 值的增大而增大二、填空题9.分解因式:3269x x x ++=_________. 10.正九边形一个内角的度数为_________.11.幻方最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为___________.12.若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y 、2y 的大小关系是1y _________2y .(填“>”、“=”或“<”)13.如图,正方形ABCD 的边长为4,O 的半径为1.若O 在正方形ABCD 内平移(O 可以与该正方形的边相切),则点A 到O 上的点的距离的最大值为________.三、解答题14.计算:01|12⎛⎫-+- ⎪⎝⎭15.解不等式组:54,312 1.2x x x +<⎧⎪⎨+≥-⎪⎩16.解方程:213111x x x --=+-. 17.如图,已知直线12//l l ,直线3l 分别与1l ,2l 交于点A ,B .请用尺规作图法,在线段AB 上求作一点P ,使点P 到1l ,2l 的距离相等.(保留作图痕迹,不写作法)18.如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.19.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价. 20.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为_____________.(2)将这四张扑克牌背面朝上,洗匀从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.21.一座吊桥的钢索立柱AD 两侧各有若干条斜拉的钢索,大致如图所示,小明和小亮想用测量知识测较长钢索AB 的长度.他们测得ABD ∠为30°,B ,D 两点间的距离不易测得,他们通过探究和测量,发现ACD ∠恰好为45°,点B 与点C 之间的距离为16 m.已知点B ,C ,D 共线,AD BD ⊥.求钢索AB 的长度(结果保留根号)22.今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况,他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为______,众数为______;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”,请预估西安市今年9月份日平均气温为“舒适温度”的天数.23.在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是___________m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.24.如图,AB 是O 的直径,点E ,F 在O 上,且2BF BE =,连接OE ,AF ,过点B 作O 的切线,分别与OE ,AF 的延长线交于点C ,D .(1)求证:COB A ∠=∠;(2)若6AB =,4CB =,求线段FD 的长.25.已知抛物线228y x x =-++与x 轴交于点A ,B (点A 在点B 左侧),与y 轴交于点C . (1)求点B ,C 的坐标;(2)设点C '与点C 关于该抛物线的对称轴对称,在y 轴上是否存在点P ,使PCC '与POB 相似,且PC 与PO 是对应边?若存在,求点P 的坐标;若不存在,请说明理由. 26.回答下列问题:问题提出(1)如图(1),在ABCD 中,45A ∠=︒,8AB =,6AD =,E 是AD 的中点,点F 在DC上,且5DF =.求四边形ABFE 的面积.(结果保留根号) 问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图(2)所示,现规划在河畔的一处滩地上建一个五边形河畔公园ABCDE .按设计要求,要在五边形河胖公园ABCDE 内挖一个四边形人工湖OPMN ,使点O ,P ,M ,N 分别在边BC ,CD ,AE ,AB 上,且满足22BO AN CP ==,AM OC =.已知在五边形ABCDE 中,90A B C ∠=∠=∠=︒,800m AB =,1200m BC =,600m CD =,900m AE =.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问是否存在符合设计要求的面积最小的四边形人工湖OPMN ?若存在,求四边形OPMN 面积的最小值及这时点N 到点A 的距离;若不存在,请说明理由.参考答案1.答案:D 解析:2.答案:B解析:判断一个图形是否为轴对称图形的关键是能否找到一条直线,使该图形沿这条直线折叠后,直线两旁的部分能够完全重合.故选项B 中的图形是轴对称图形. 3.答案:A 解析:()()232322623111a ba b a b a b-⨯===. 4.答案:B解析:25B ︒∠=,355085ADB A C ∠︒︒=∠+∠=+=︒,1180180258570B ADB ∴∠=-∠-∠=-︒-︒=︒︒︒.5.答案:D解析:设AC ,BD 交于点O .四边形ABCD 是菱形,12AO AC ∴=,12BO BD =,90AOB ∠=︒,BD 平分ABC ∠.60ABC ∠=︒,30ABO ∴∠=︒,tan30AC AO BD BO ∴===︒. 6.答案:A解析:将直线21y x m =+-向左平移3个单位长度后,得到直线2(3)125y x m x m =++-=++.由题意可知25y x m =++是正比例函数,50m ∴+=,5m ∴=-. 7.答案:D解析:如图,分别过点B ,D 作AE 的垂线,垂足分别为点M , N ,则90BMC CND ∠=∠=︒.AB BC =,BM AC ⊥, 13cm 2CM AC ∴==,224cm BM BC CM ∴=-=.CD BC ⊥,90BCM DCN ∴∠+∠=︒.又90BCM CBM ∠+∠=︒,CBM DCN ∴∠=∠.又BC CD =,90BMC CND ∠=∠=︒,BCM CDN ∴≅,4cm CN BM ∴==.CD DE =,DN CE ⊥,28cm CE CN ∴==.8.答案:C解析:方法一:由表格可知,该二次函数的图象过点(0,4)-,∴设二次函数的解析式为24y ax bx =+-,将(2,6)-,(3,4)-分别代入,得4246,9344,a b a b --=⎧⎨+-=-⎩解得1,3,a b =⎧⎨=-⎩故二次函数的解析式为234y x x =--,∴这个二次函数的图象开口向上,故选项A 错误.223253424y x x x ⎛⎫=--=-- ⎪⎝⎭,∴这个函数的最小值是254-,当32x >时,y 随x 的增大而增大,当32x <时,y 随x 的增大而减小,故选项C 正确,选项D 错误.对于2340x x --=,2(3)41(4)250∆=--⨯⨯-=>,∴这个函数的图象与x 轴有两个交点,故选项B 错误.方法二:由表格可知,该二次函数的图象过点(0,4)-,(3,4)-,∴图象的对称轴是直线32x =.画出该二次函数的大致图象如图所示,由图象可知,选项A ,B ,D 错误,选项C 正确.9.答案:()32226969(3)x x x x x x x x ++=++=+. 解析: 10.答案:140°解析:方法一:正九边形一个内角的度数为1803609140︒-︒÷=︒.方法二:正九边形的内角和为(92)1801260-⨯︒=︒,故正九边形一个内角的度数为12609140︒÷=︒. 11.答案:-2解析:由题意可知51143a -++=--,解得2a =-. 12.答案:< 解析:12m <,210m ∴-<,∴反比例函数21m y x-=的图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.013<<,12y y ∴<.13.答案:1解析:设点P是O上的任意一点,如图(1),连接OA,OP,AP,则点A到O上的点的距离AP OA OP≤+,∴当OA取最大值时,AP有最大值,为1OA+.易知当O与BC,CD边相切时,OA取得最大值,如图(2),设O与BC,CD边分别相切于点E,F,连接OE,OF,OC,易知四边形OECF是正方形,点A,O,C共线,AC=OCAO∴=∴点A到O上的点的距离的最大值为1.14.答案:原式11=-=解析:15.答案:由54x+<,得1x<-.由31212xx+≥-,得3x≤.∴原不等式组的解集为1x<-. 解析:16.答案:22(1)31x x--=-.222131x x x-+-=-.21x-=.12x=-.经检验,12x=-是原方程的根.解析:17.答案:方法一:如图(1)所示,点P即为所求.方法二:如图(2)所示,点P 即为所求.解析:18.答案:证明://BD AC , EBD C ∴∠=∠.BD BC =,BE AC =,EDB ABC ∴≌.D ABC ∴∠=∠.解析:19.答案:设这种服装每件的标价是x 元, 根据题意,得()100.81130x x ⨯=-, 解得110x =.∴这种服装每件的标价为110元.解析: 20.答案:(1)12(2)列表如下:21126P ∴==. 解析:21.答案:设m AD x =.AD BD ⊥,45ACD ∠=︒,m CD AD x ∴==.在ADB 中,AD BD ⊥,30ABD ∠=︒,tan30AD BD ∴=︒,即)x x +,解得8x =.216)m AB AD ∴==,∴钢索AB 的长度约为16)m .解析:22.答案:(1)19.5℃;19℃(2)1(17518121913209216224236245)206x =⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=,∴这60天的日平均气温的平均数为20℃.(3)121396302060+++⨯=,∴预估西安市今年9月份日平均气温为“舒适温度”的天数为20天.解析:(1)将60个数据按从小到大的顺序排列后,第30,31个数据是19,20,故这组数据的中位数是(1920)219.5+÷=.这组数据中,19出现的次数最多,故众数是19. 23.答案:(1)1(2)设AB 的函数表达式为(0)y kx b k =+≠,则307,1810,k b k b =+⎧⎨=+⎩解得4,58,k b =-⎧⎨=⎩458y x ∴=-+.(3)令0y =,则4580x -+=,14.5x ∴=.()14.5113.5min -=,∴“猫”从起点出发到返回至起点所用的时间为13.5 min.解析:(1)由题图可知,“鼠”的平均速度为3065(m/min)÷=, “猫”的平均速度为30(61)6(m/min)÷-=,故“猫”的平均速度与“鼠”的平均速度的差是651(m/min)-=. 24.答案:(1)证明:如图,取BF 的中点M ,连接OM ,OF .2BF BE =,BM MF BE ∴==.12COB BOF ∴∠=∠. 12A BOF ∠=∠, COB A ∴∠=∠.(2)如图,连接BF .CD 是O 的切线,AB CD ∴⊥,90OBC ABD ∴∠=∠=︒.由(1),知COB A ∠=∠, OBC ABD ∴∽. OB BC AB BD∴=. 6AB =,3OB ∴=.4683BC AB BD OB ⋅⨯∴===.10AD ∴=.AB 是O 的直径,BF AD ∴⊥,90BFD ABD ∴∠=∠=︒.D D ∠=∠,~BFD ABD ∴.FD BD BD AD∴=,22832105BD FD AD ∴===. 解析:25.答案:(1)令0y =,则2280x x -++=,12x ∴=-,24x =.(4,0)B ∴.令0x =,则8y =,(0,8)C ∴.(2)存在.该抛物线的对称轴为直线212x =-=-. 点C '与点C 关于直线1x =对称,(2,8)C '∴,2CC '=,//CC OB '∴. 点P 在y 轴上,90PCC POB '∴∠=∠=︒. PC 与PO 是对应边,~PCC POB '∴,PC CC PO OB'∴=. 设(0,)P y ,i.当8y >时,824y y -=,16y ∴=, (0,16)P ∴. ii.当08y <<时,824y y -=,163y ∴=, 160,3P ⎛⎫∴ ⎪⎝⎭. iii.当0y <时,CP OP >,与12PC PO =矛盾,∴点P 不存在. (0,16)P ∴或160,3P ⎛⎫ ⎪⎝⎭. 解析:26.答案:(1)在ABCD 中,设AB 边上的高为h .6AD =,45A ∠=︒,sin 45h AD ∴=︒=E 是AD 的中点.∴点E 到DC 的距离为2h . 8DC AB ==,5DF =,3FC ∴=.() ABCD DEF BCF ABFE S S S S ∴=-+=四边形11222h AB h DF FC h ⎛⎫⋅-⋅⋅+⋅⋅== ⎪⎝⎭⎝⎭. (2)存在.如图,分别延长AE 与CD ,交于点F ,则四边形ABCF 是矩形,AF BC ∴=,AB FC =.AM OC =, AN CP =,MF BO ∴=, BN FP =.设m AN x =,则PC x =,2MF BO x ==, 800BN FP x ==-,12002AM OC x ==-, ANM BON CPO FMP ABCF OPMN S S S S S S ∴=----=矩形四边形1118001200(12002)2(800)(12002)222x x x x x x ⨯-⨯--⨯--⨯--2212(800)428009600004(350)4700002x x x x x ⨯-=-+=-+. ∴当350x =时,OPMN S 四边形取最小值,为470000.当350x =时,12002500900AM x =-=<,350600CP =<,∴符合设计要求的四边形OPMN 面积的最小值为4700002m ,这时点N 到点A 的距离为350 m. 解析:。
陕西省初中毕业学业考试试题数 学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=⨯-2)21(【 】 A.-1 B.1 C.4 D.-42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是【 】3.下列计算正确的是【 】A.x 2+3x 2=4x 4B.y x x y x 63222.=C. 2232)3(6x x y x =÷D. 2222)3(x x =-A.65°B.115°C.125°D.130°5.设点A (a,b )是正比例函数x y 23-=的图象上任意一点 ,则下列等式一定成立的是【 】6.如图,在△ABC 中,∠ABC=90°,AB=8,BC=6, 若DE 是△ABC 的中位线,若在DE 交△ABC 的外角平分线于点F , 则线段DF 的长为【 】A.7B.8C.9D.107.已知一次函数75+=+=x k y kx y ‘和,假设k>0且k '<0,则这两个一次函数的交点在【 】A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M,N是AD 上的两点,连接MO 、NO,并分别延长交边BC 于M N ,则图中全等三角形共有【 】A.2对B.3对C.4对D.5对9.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC,若∠ABC 和∠BOC 互补,则弦BC 的长度为 【 】 A.33 B. 34 C. 35 D. 3610.已知抛物线322+--=x x y 与x 轴交于A 、B 两点,将这条抛物线的定点记为C ,连接AC 、BC ,则tan ∠CAB 的值为 【 】A.21B. 55 C. 552 D. 2 二、填空题(共4小题,每小题3分,计12分)11.不等式0321<+-x 的解集是_________________。
2021年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x24.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是.B.运用科学计算器计算:3sin73°52′≈.(结果精确到0.1)13.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.16.化简:(x﹣5+)÷.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH 部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2021年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【考点】有理数的乘法.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣1,故选A2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【考点】一次函数图象上点的坐标特征.【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【考点】垂径定理;圆周角定理;解直角三角形.【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.10.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是x>6.【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.913.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【考点】反比例函数与一次函数的交点问题.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC 是等腰三角形,线段PD最短,求出BD即可解决问题.【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD,∠ABC=∠ADC=60°,∴△ABC,△ADC是等边三角形,∴BO=DO=×2=,∴BD=2BO=2,∴PD最小值=BD﹣BP=2﹣2.故答案为2﹣2.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.【考点】实数的运算;零指数幂.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.16.化简:(x﹣5+)÷.【考点】分式的混合运算.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x﹣1)(x﹣3)=x2﹣4x+3.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【考点】作图—相似变换.【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD 与△CAD相似.【解答】解:如图,AD为所作.18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【考点】众数;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【考点】二次函数综合题.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH 部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH 的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG 关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,。
2021年陕西省中考数学试题(含答案解析)通过整理的2021年陕西省中考数学试题(含答案解析)相关文档,希望对大家有所帮助,谢谢观看!2021年陕西省中考数学试卷(共25题,满分120)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C.D.2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 3.2021年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 8.如图,在▱ABCD中,AB=5,BC=8.E 是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3 D.2 9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75° 10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)=.12.如图,在正五边形ABCDE中,DM是边CD 的延长线,连接BD,则∠BDM的度数是.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:16.(5分)解分式方程:1.17.(5分)如图,已知△ABC,AC>AB,∠C =45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB 于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y (m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.2021年陕西省中考数学试卷答案解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C.D.【解答】解:﹣18的相反数是:18.故选:A.2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°.故选:B.3.2021年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 【解答】解:990870=9.9087×105,故选:A.4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 【解答】解:(x2y)3.故选:C.6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD 是△ABC的高,则BD的长为()A.B.C.D.【解答】解:由勾股定理得:AC,∵S△ABC=3×33.5,∴,∴,∴BD,故选:D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积3×2=3,故选:B.8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若E F∥AB,则DG的长为()A.B.C.3 D.2 【解答】解:∵E 是边BC的中点,且∠BFC=90°,∴Rt△BCF中,EFBC=4,∵EF∥AB,AB∥CG,E是边BC的中点,∴F是AG的中点,∴EF是梯形ABCG 的中位线,∴CG=2EF﹣AB=3,又∵CD=AB=5,∴DG=5﹣3=2,故选:D.9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75°【解答】解:连接CD,∵∠A =50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODCBDC=65°,故选:B.10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m >1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵y=x2﹣(m﹣1)x+m=(x)2+m,∴该抛物线顶点坐标是(,m),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m3),∵m>1,∴m﹣1>0,∴0,∵m31<0,∴点(,m3)在第四象限;故选:D.二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)=1.【解答】解:原式=22﹣()2 =4﹣3 =1.12.如图,在正五边形ABCDE中,DM 是边CD的延长线,连接BD,则∠BDM的度数是144°.【解答】解:因为五边形ABCDE是正五边形,所以∠C108°,BC=DC,所以∠BDC36°,所以∠BDM=180°﹣36°=144°,故答案为:144°.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为﹣1.【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C(﹣6,m)一定在第三象限,∵B(3,2)在第一象限,反比例函数y(k≠0)的图象经过其中两点,∴反比例函数y(k≠0)的图象经过B(3,2),C(﹣6,m),∴3×2=﹣6m,∴m=﹣1,故答案为:﹣1.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为2.【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF2.故答案为:2.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:【解答】解:,由①得:x>2,由②得:x<3,则不等式组的解集为2<x<3.16.(5分)解分式方程:1.【解答】解:方程1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x,经检验x是分式方程的解.17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【解答】解:如图,点P即为所求.18.(5分)如图,在四边形ABCD 中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD =BE.【解答】证明:∵DE=DC,∴∠DEC=∠C.∵∠B=∠C,∴∠B=∠DEC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形.∴AD=BE.19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是1.45kg,众数是1.5kg.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.(2)1.45(kg),∴这20条鱼质量的平均数为1.45kg;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M 的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.【解答】解:如图,过点C作CE⊥MN于点E,过点B 作BF⊥MN于点F,∴∠CEF=∠BFE=90°,∵CA⊥AM,NM⊥AM,∴四边形AMEC和四边形AMFB均为矩形,∴CE=BF,ME=AC,∠1=∠2,∴△BFN≌△CEM(ASA),∴NF=EM=31+18=49,由矩形性质可知:EF=CB=18,∴MN=NF+EM﹣EF=49+49﹣18=80(m).答:商业大厦的高MN为80m.21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),则:20=15k,解得k,∴y;当15<x≤60时,设y=k′x+b(k≠0),则:,解得,∴y,∴;(2)当y=80时,80,解得x=33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率;(2)画树状图得:∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC 是⊙O的内接三角形,∠BAC=75°,∠A BC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【解答】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE =90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC (2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB,∴AD8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF,∴EFAF=12,∴CE =CF+EF=12+4.24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E 为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),故OA=OC=3,∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,故n=22+2×2﹣5=5,故点P(2,5),故点E(﹣1,2)或(﹣1,8);当点P 在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是CF、DE、DF.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB 的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O 上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥A D,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y (m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF 是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,2,∴∠APB=90°,∠AOP180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=84,在Rt△CFB中,BFCF,∵PB=PF+BF,∴PB=CF+BF,即:4CFCF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB =∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB =90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF =90°,即∠A′PB=90°,∴S△PAE+S△PBF=S△PA′BPA′•PBx(70﹣x),在Rt△ACB中,AC=BCAB70=35,∴S△ACBAC2(35)2=1225,∴y=S△PA′B+S△ACBx(70﹣x)+1225x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB 中,由勾股定理得:A′B50,∵S△A′PBA′B•PFPB•A′P,∴50×PF40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.。
2021年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2015•陕西)计算:(﹣)0=( )C.0D. A.1B.﹣2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是( ) A.B.C.D.3.(3分)(2015•陕西)下列计算正确的是( ) A.a2•a3=a6B.(﹣2ab)2=4a2b2 C.(a2)3=a5D.3a2b2÷a2b2=3ab4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为( ) A.43°30′B.53°30′C.133°30′D.153°30′5.(3分)(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( ) A.2B.﹣2C.4D.﹣46.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( ) A.2个B.3个C.4个D.5个7.(3分)(2015•陕西)不等式组的最大整数解为( ) A.8B.6C.5D.48.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是( ) A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度 C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为( ) A.7B.4或10C.5或9D.6或810.(3分)(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是( ) A.没有交点 B.只有一个交点,且它位于y轴右侧 C.有两个交点,且它们均位于y轴左侧 D.有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为 .12.(3分)(2015•陕西)正八边形一个内角的度数为 .13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A 的度数约为 (用科学计算器计算,结果精确到0.1°).14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为 .15.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是 .三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)(2015•陕西)解分式方程:﹣=1.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图。
2021年陕西省中考数学试卷一、选择题〔共10小题,每题3分,计30分。
每题只有一个选项是符合题意的〕1.〔3.00分〕〔2021•陕西〕﹣的倒数是〔〕A.B.C.D.2.〔3.00分〕〔2021•陕西〕如图,是一个几何体的外表展开图,那么该几何体是〔〕A.正方体B.长方体C.三棱柱D.四棱锥3.〔3.00分〕〔2021•陕西〕如图,假设l1∥l2,l3∥l4,那么图中与∠1互补的角有〔〕A.1个 B.2个 C.3个 D.4个4.〔3.00分〕〔2021•陕西〕如图,在矩形AOBC中,A〔﹣2,0〕,B〔0,1〕.假设正比例函数y=kx的图象经过点C,那么k的值为〔〕A.B.C.﹣2 D.25.〔3.00分〕〔2021•陕西〕以下计算正确的选项是〔〕A.a2•a2=2a4B.〔﹣a2〕3=﹣a6C.3a2﹣6a2=3a2D.〔a﹣2〕2=a2﹣4 6.〔3.00分〕〔2021•陕西〕如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD ⊥BC,垂足为D,∠ABC的平分线交AD于点E,那么AE的长为〔〕A.B.2C.D.37.〔3.00分〕〔2021•陕西〕假设直线l1经过点〔0,4〕,l2经过点〔3,2〕,且l1与l2关于x轴对称,那么l1与l2的交点坐标为〔〕A.〔﹣2,0〕B.〔2,0〕 C.〔﹣6,0〕D.〔6,0〕8.〔3.00分〕〔2021•陕西〕如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.假设EH=2EF,那么以下结论正确的选项是〔〕A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.〔3.00分〕〔2021•陕西〕如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,那么∠DBC的大小为〔〕A.15°B.35°C.25°D.45°10.〔3.00分〕〔2021•陕西〕对于抛物线y=ax2+〔2a﹣1〕x+a﹣3,当x=1时,y >0,那么这条抛物线的顶点一定在〔〕A.第一象限B.第二象限C.第三象限D.第四象限二、填空题〔共4小题,每题3分,计12分〕11.〔3.00分〕〔2021•陕西〕比拟大小:3〔填“>〞、“<〞或“=〞〕.12.〔3.00分〕〔2021•陕西〕如图,在正五边形ABCDE中,AC与BE相交于点F,那么∠AFE的度数为.13.〔3.00分〕〔2021•陕西〕假设一个反比例函数的图象经过点A〔m,m〕和B 〔2m,﹣1〕,那么这个反比例函数的表达式为.14.〔3.00分〕〔2021•陕西〕如图,点O是▱ABCD的对称中心,AD>AB,E、F 是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,假设S1,S2分别表示△EOF和△GOH的面积,那么S1与S2之间的等量关系是.三、解答题〔共11小题,计78分。
2021年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分.)1、(2021•陕西)32-的倒数为( ) A . 23- B .23 C .32 D . 32- 考点:倒数。
专题:计算题。
分析:根据倒数的意义,两个数的积为1,则两个数互为倒数,因此求一个数的倒数即用1除以这个数. 解答:解:32-的倒数为,1÷23⎛⎫- ⎪⎝⎭=3-2, 故选:A .点评:此题考查的是倒数,关键是由倒数的意义,用1除以这个数即是.2、(2021•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有( )A 、1个B 、2个C 、3个D 、4个考点:简单几何体的三视图。
分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解答:解:圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B .点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3、(2021•陕西)我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数法表示为( )A 、1.37×109B 、1.37×107C 、1.37×108D 、1.37×1010考点:科学记数法与有效数字。
分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n 中a 的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.解答:解:1370536875=1.370536875×109≈1.37×109,故选:A .点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的有效数字的确定方法.4、(2021•陕西)下列四个点,在正比例函数的图象上的点是( ) A 、(2,5) B 、(5,2) C 、(2,﹣5) D 、(5,﹣2考点:一次函数图象上点的坐标特征。
2021年陕西省中考数学试题(含答案解析)2021中考试卷及答案2021年陕西省中考数学试卷(共26题,满分120分)一、选择题(共8小题,每小题3分,计24分。
每小题只有一个选项是符合题意的)1.(3分)计算:A.1 B.C.6 D.2.(3分)下列图形中,是轴对称图形的是A.B.C.D.3.(3分)计算:A.B.C.D.4.(3分)如图,点、分别在线段、上,连接、.若,,,则的大小为A.B.C.D.5.(3分)在菱形中,,连接、,则的值为A.B.C.D.6.(3分)在平面直角坐标系中,若将一次函数的图象向左平移3个单位后,得到一个正比例函数的图象,则的值为A.B.5 C.D.6 7.(3分)如图,、、、是四根长度均为的火柴棒,点、、共线.若,,则线段的长度是A.B.C.D.8.(3分)下表中列出的是一个二次函数的自变量与函数的几组对应值:0 1 3 6 下列各选项中,正确的是A.这个函数的图象开口向下B.这个函数的图象与轴无交点C.这个函数的最小值小于D.当时,的值随值的增大而增大二、填空题(共5小题,每小题3分,计15分)9.(3分)分解因式.10.(3分)正九边形一个内角的度数为.11.(3分)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中的值为.12.(3分)若,是反比例函数图象上的两点,则、的大小关系是(填“”、“ ”或“” 13.(3分)如图,正方形的边长为4,的半径为1.若在正方形内平移可以与该正方形的边相切),则点到上的点的距离的最大值为.三、解答题(共13小题,计81分。
解答应写出过程)14.(5分)计算:.15.(5分)解不等式组:.16.(5分)解方程:.17.(5分)如图,已知直线,直线分别与、交于点、.请用尺规作图法,在线段上求作一点,使点到、的距离相等.(保留作图痕迹,不写作法)18.(5分)如图,,,点在上,且.求证:.19.(5分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.20.(5分)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.21.(6分)一座吊桥的钢索立柱两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索的长度.他们测得为,由于、两点间的距离不易测得,通过探究和测量,发现恰好为,点与点之间的距离约为.已知、、共线,.求钢索的长度.(结果保留根号)22.(7分)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为,众数为;(2)求这60天的日平均气温的平均数;(3)若日平均气温在的范围内(包含和为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.23.(7分)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离与时间之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是;(2)求的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.24.(8分)如图,AB是⊙O的直径,点E、F在⊙O上,且=2,连接OE、AF,过点B作⊙O的切线,分别与OE、AF的延长线交于点C、D.(1)求证:∠COB=∠A;(2)若AB=6,CB=4,求线段FD的长.25.(8分)已知抛物线与轴交于点、(点在点的左侧),与轴交于点.(1)求点、的坐标;(2)设点与点关于该抛物线的对称轴对称.在轴上是否存在点,使与相似,且与是对应边?若存在,求出点的坐标;若不存在,请说明理由.26.(10分)问题提出(1)如图1,在中,,,,是的中点,点在上,且,求四边形的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园.按设计要求,要在五边形河畔公园内挖一个四边形人工湖,使点、、、分别在边、、、上,且满足,.已知五边形中,,,,,.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖?若存在,求四边形面积的最小值及这时点到点的距离;若不存在,请说明理由.2021年陕西省中考数学参考答案与试题解析一、选择题(共8小题,每小题3分,计24分。
每小题只有一个选项是符合题意的)1.(3分)计算:A.1B.C.6 D.根据有理数乘法法则进行运算.解:.故选:.本题考查有理数的乘法,熟练掌握有理数乘法法则是解题关键.2.(3分)下列图形中,是轴对称图形的是A.B.C.D.利用轴对称图形的定义进行解答即可.解:.不是轴对称图形,故此选项不合题意;.是轴对称图形,故此选项符合题意;.不是轴对称图形,故此选项不合题意;.不是轴对称图形,故此选项不合题意;故选:.此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.(3分)计算:A.B.C.D.直接利用负整数指数幂的性质分别化简得出答案.解:.故选:.此题主要考查了负整数指数幂的性质以及积的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)如图,点、分别在线段、上,连接、.若,,,则的大小为A.B.C.D.由三角形的内角和定义,可得,,所以,由此解答即可.解:,,,,,,故选:.本题考查了三角形内角和定理和三角形外角性质,掌握这些知识点是解题的关(3分)在菱形中,,连接、,则的值为A.B.C.D.由键.5.菱形的性质可得,,,,由锐角三角函数可求解.解:设与交于点,四边形是菱形,,,,,,,故选:.本题考查了菱形的性质,锐角三角函数,掌握菱形的性质是解题的关键.6.(3分)在平面直角坐标系中,若将一次函数的图象向左平移3个单位后,得到一个正比例函数的图象,则的值为A.B.5 C.D.6 根据平移的规律得到平移后抛物线的解析式为,然后把原点的坐标代入求值即可.解:将一次函数的图象向左平移3个单位后,得到,把代入,得到:,解得.故选:.主要考查的是一次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式是解题的关键.7.(3分)如图,、、、是四根长度均为的火柴棒,点、、共线.若,,则线段的长度是A.B.C.D.过作于,过作于,由等腰三角形的性质得到,,根据全等三角形判定证得,得到,在中,根据勾股定理求出,进而求出.解:由题意知,,,过作于,过作于,则,,,,,,,在和中,,,,在中,,,,,,故选:.本题主要考查了等腰三角形的性质和判定,等腰三角形的性质,勾股定理,正确作出辅助线,证得是解决问题的关键.8.(3分)下表中列出的是一个二次函数的自变量与函数的几组对应值:0 1 3 6 下列各选项中,正确的是A.这个函数的图象开口向下B.这个函数的图象与轴无交点C.这个函数的最小值小于D.当时,的值随值的增大而增大设出二次函数的解析式,根据表中数据求出函数解析式即可判断.解:设二次函数的解析式为,由题知,解得,二次函数的解析式为,(1)函数图象开口向上,(2)与轴的交点为和,(3)当时,函数有最小值为,(4)函数对称轴为直线,根据图象可知当当时,的值随值的增大而增大,故选:.本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)分解因式.原式提取公因式,再利用完全平方公式分解即可.解:原式.故答案为本题考查了因式分解,利用了提公因式法、十字相乘法分解因式,注意分解要彻底.10.(3分)正九边形一个内角的度数为.先根据多边形内角和定理:求出该多边形的内角和,再求出每一个内角的度数.解:该正九边形内角和,则每个内角的度数.故答案为:.本题主要考查了多边形的内角和定理:,比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.11.(3分)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中的值为.根据各行的三个数字之和相等,即可得出关于的一元一次方程,解之即可得出结论.解:依题意得:,解得:.故答案为:.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(3分)若,是反比例函数图象上的两点,则、的大小关系是(填“”、“ ”或“” 反比例函数的系数为,在每一个象限内,随的增大而增大.解:,图象位于二、四象限,在每一个象限内,随的增大而增大,又,,故答案为:.本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.13.(3分)如图,正方形的边长为4,的半径为1.若在正方形内平移可以与该正方形的边相切),则点到上的点的距离的最大值为.当与、相切时,点到上的点的距离最大,如图,过点作于,于,根据切线的性质得到,利用正方形的性质得到点在上,然后计算出的长即可.解:当与、相切时,点到上的点的距离最大,如图,过点作于,于,,平分,四边形为正方形,点在上,,,,即点到上的点的距离的最大值为,故答案为.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了正方形的性质.三、解答题(共13小题,计81分。
解答应写出过程)14.(5分)计算:.直接利用零指数幂的性质以及二次根式的性质、绝对值的性质分别化简得出答案.解:原式.此题主要考查了实数运算,正确化简各数是解题关键.15.(5分)解不等式组:.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式,得:,解不等式,得:,不等式组的解集为.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(5分)解方程:.方程两边都乘以得出,求出方程的解,再进行检验即可.解:方程两边都乘以得:,,,,,检验:当时,,所以是原方程的解.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.17.(5分)如图,已知直线,直线分别与、交于点、.请用尺规作图法,在线段上求作一点,使点到、的距离相等.(保留作图痕迹,不写作法)作线段的垂直平分线得到线段的中点,则中点为点.解:如图,点为所作.本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.理解两平行线间的距离是解决问题的关键.18.(5分)如图,,,点在上,且.求证:.先根据平行线的性质得到,然后根据“”可判断,从而根据全等三角形的性质得到结论.证明:,,在和中,,,.本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(5分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.设这种服装每件的标价是x元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”从而得出等式方程,解方程即可求解;解:设这种服装每件的标价是x元,根据题意得,10×0.8x =11(x﹣30),解得x=110,答:这种服装每件的标价为110元.本题主要考查了一元一次方程的应用,此题应用比较广泛,设出标价得出等式方程是解决问题的关键.20.(5分)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有2种,再由概率公式求解即可.解:(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为,故答案为:;(2)画树状图如图:共有12种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有2种,抽取的这两张牌的牌面数字恰好相同的概率为.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率所求情况数与总情况数之比.21.(6分)一座吊桥的钢索立柱两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索的长度.他们测得为,由于、两点间的距离不易测得,通过探究和测量,发现恰好为,点与点之间的距离约为.已知、、共线,.求钢索的长度.(结果保留根号)本题设,在等腰直角三角形中表示出,从而可以表示出,再在中利用三角函数即可求出的长,进而即可求出的长度.解:在中,设,,,,在中,,,,即,解得:,,钢索的长度约为.本题考查解直角三角形的应用,熟练掌握直角三角形的特点以及锐角三角函数在直角三角形的应用是解题的关键.22.(7分)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为,众数为;(2)求这60天的日平均气温的平均数;(3)若日平均气温在的范围内(包含和为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.(1)根据中位数和众数的概念求解即可;(2)根据加权平均数的定义列式计算即可;(3)用样本中气温在的范围内的天数所占比例乘以今年9月份的天数即可.解:(1)这60天的日平均气温的中位数为,众数为,故答案为:,;(2)这60天的日平均气温的平均数为;(3)(天,估计西安市今年9月份日平均气温为“舒适温度”的天数为20天.本题主要考查众数和中位数、加权平均数、样本估计总体,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.23.(7分)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离与时间之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是1;(2)求的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.(1)由图象求出“猫”和“鼠”的速度即可;(2)先设出函数关系式,用待定系数法求出函数解析式即可;(3)令(2)中解析式,求出即可.解:(1)由图像知:“鼠” 跑了, “鼠”的速度为:, “猫” 跑了, “猫”的速度为:, “猫”的平均速度与“鼠”的平均速度的差是, 故答案为:1;(2)设的解析式为:, 图象经过和, 把点和点坐标代入函数解析式得:, 解得:, 的解析式为;令,则,,“猫”比“鼠”迟一分钟出发,“猫”从起点出发到返回至起点所用的时间为.答:“猫”从起点出发到返回至起点所用的时间.本题考查一次函数的应用和待定系数法求函数解析式,关键是读取图形中信息,写出函数关系式.24.(8分)如图,AB是⊙O的直径,点E、F在⊙O上,且=2,连接OE、AF,过点B作⊙O的切线,分别与OE、AF的延长线交于点C、D.(1)求证:∠COB=∠A;(2)若AB=6,CB=4,求线段FD的长.(1)取的中点M,连接OM、OF,利用圆心角定理得到∠COB=∠BOF,利用圆周角定理得到∠A=∠COF,从而得到结论;(2)连接BF,如图,先根据切线的性质得到∠OBC=∠ABD =90°,则可判断△OBC∽△ABD,利用相似比求出BD=8,则利用勾股定理可计算出AD=10,接着利用圆周角定理得∠AFB=90°,则可判断Rt△DBF∽Rt△DAB,然后利用相似比可计算出DF 的长.(1)证明:取的中点M,连接OM、OF,∵=2,∴==,∴∠COB=∠BOF,∵∠A=∠COF,∴∠COB=∠A;(2)解:连接BF,如图,∵CD为⊙O的切线,∴AB⊥CD,∴∠OBC=∠ABD=90°,∵∠COB=∠A,∴△OBC∽△ABD,∴=,即=,解得BD=8,在Rt△ABD中,AD===10,∵AB 是⊙O的直径,∴∠AFB=90°,∵∠BDF=∠ADB,∴Rt△DBF∽Rt△DAB,∴=,即=,解得DF=.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理相似三角形的判定与性质.25.(8分)已知抛物线与轴交于点、(点在点的左侧),与轴交于点.(1)求点、的坐标;(2)设点与点关于该抛物线的对称轴对称.在轴上是否存在点,使与相似,且与是对应边?若存在,求出点的坐标;若不存在,请说明理由.(1)直接根据解析式即可求出,的坐标;(2)先设出的坐标,根据相似三角形的性质列出方程,解出方程即可得到点的坐标.解:(1),取,得,,取,得,解得:,,;(2)存在点,设,,且与是对应边,,即:,解得:,,或.本题主要考查二次函数的性质,要牢记抛物线和坐标轴的交点的计算公式,尤其是和轴的交点一般是两个,要能根据抛物线的解析式求出来,还有相似三角形的性质在综合题型中经常出现,要熟记.26.(10分)问题提出(1)如图1,在中,,,,是的中点,点在上,且,求四边形的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园.按设计要求,要在五边形河畔公园内挖一个四边形人工湖,使点、、、分别在边、、、上,且满足,.已知五边形中,,,,,.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖?若存在,求四边形面积的最小值及这时点到点的距离;若不存在,请说明理由.(1)过点作交的延长线于,先求出,同理,最后用面积的差即可得出结论;(2)分别延长,与,交于点,则四边形是矩形,设米,则米,米,米,米,米,米,进而得出,即可得出结论.解:(1)如图1,过点作交的延长线于,,四边形是平行四边形,,,,在中,,,点是的中点,,同理,,,;(2)存在,如图2,分别延长,与,交于点,则四边形是矩形,米,米,设米,则米,米,米,米,米,米,,当时,(平方米),,,符合设计要求的四边形面积的最小值为*****平方米,此时,点到点的距离为350米.此题是四边形综合题,主要考查了锐角三角函数,矩形和三角形的面积公式,二次函数的性质,作出辅助线求出和是解本题的关键.。