不等式组的解集定义
- 格式:docx
- 大小:36.64 KB
- 文档页数:1
一元一次不等式组的解集一元一次不等式组的解集是指该不等式组满足给定条件时,未知量可取到的所有实数值。
以下列出一元一次不等式组的解集:1、加法原理:若有不等式$ax+b>0$��不等式$a{x'}+b>0$,则有方程$ax+b>0$与$a{x'}+b>0$同时成立的解集为$x>{-\dfrac{b}{a}}$与${x'}>{-\dfrac{b}{a}}$,故有:$$x>{-\dfrac{b}{a}}或{-\dfrac{b}{a}}<{x'}<x$$2、减法原理:若有不等式$ax+b>0$与不等式$a{x'}+b>0$,则有方程$ax+b<0$与$a{x'}+b<0$同时成立的解集为$x<{-\dfrac{b}{a}}$与${x'}<{-\dfrac{b}{a}}$,故有:$${x'}<x<{-\dfrac{b}{a}}$$3、乘法原理:若有不等式$ax+b>0$,则可乘以$\dfrac{1}{a}$,得$x+\dfrac{b}{a}>0$,故有:$$x>{-\dfrac{b}{a}}$$4、倍乘法原理:若有不等式$a^2x+b>0$,则可以乘以$\dfrac{1}{a^2}$,得$x+\dfrac{b}{a^2}>0$,故有:$$x>{-\dfrac{b}{a^2}}$$5、翻转原理:若有不等式$ax+b>0$,则可以转置变为${-ax-b}<0$,令$\quad-ax-b=0$,得$x={-\dfrac{b}{a}}$,即满足不等式无解结果。
6、乘容原理:若有不等式$ax-b>0$与$cx-d>0$,则$acx-ad-bc+bd>0$,令$acx-ad-bc+bd=0$,得$x=\dfrac{ad-bc}{ac}$,即$x>\dfrac{ad-bc}{ac}$,即有:$$x>\dfrac{ad-bc}{ac}$$7、综合分析:若有$ax+b>0$且$cx+d>0$,得$acx+ad+bc+bd>0$,故有:$$x>\dfrac{ad+bc}{ac}$$。
不等式与不等式组知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
例:1.已知不等式3x —a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。
2.已知关于x 的不等式组⎩⎨⎧-≥->-1250x a x 无解,则a 的取值范围是 。
3.不等式组⎪⎩⎪⎨⎧>+≤+0221042x x 的整数解为 。
4.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。
5.已知关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x x x 的解集为2<x ,那么a 的取值范围是 。
6.当x 时,代数式52+x 的值不大于零7。
若x 〈1,则22+-x 0(用“>”“=”或“”号填空)8.不等式x 27->1,的正整数解是9. 不等式x -〉10-a 的解集为x <3,则a10。
若a 〉b 〉c ,则不等式组⎪⎩⎪⎨⎧c x bx a x 的解集是11.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x 〈1,则)1)(1(++b a 的值为 12.有解集2<x <3的不等式组是 (写出一个即可)13.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质的含量为 _____ g14。
专题19 不等式组及其解集1.一元一次不等式组:把几个含有相同未知数的一元一次不等式合起来,组成一个一元一次不等式组.2.不等式组的解集:一般地,几个不等式的解集的公共部分,叫作由它们所组成的不 等式组的解集,解不等式组就是求它的解集. 不等式组(a <b )数轴表示 解集 口诀 同大取大 同小取小 大小小大 中间找 无解 大大小小 无解了当不等式带有“≤”或“≥”时,上面的口诀依然适用,如不等式组的解集为.4.解决和不等式组解集有关的问题时,注意利用数轴这一数学工具,过程直观明了.典例精析例1 解不等式组 并将解集在数轴上表示出来.【分析】解一元一次不等式组,先求出每个不等式的解集,然后利用数轴求出这些解集的公共部分即为不等式组的解集.【解】解不等式①,得x>-2解不等式②,得x≤2把不等式①和②的解集在数轴上表示出来,如图19-1所示.∴不等式的解集为-2<x ≤2【点评】熟练解出不等式,并准确地在数轴上表示出来,从而在数轴上找到不等式解集的公共部分即为不等式组的解集.拓展与变式1 解不等式组并写出它所有的整数解.,x a x b<⎧⎨>⎩x b >,x a x b <⎧⎨<⎩x a <,x a x b >⎧⎨<⎩a xb <<,x a x b <⎧⎨>⎩23x x ≤⎧⎨<⎩2x ≤22,11,39x x x x >-⎧⎪-+⎨≤⎪⎩①②()41710,85,3x x x x +≤+⎧⎪⎨--<⎪⎩①②拓展与变式2 不等式组的所有整数解的和是 . 拓展与变式3 若|x+1|=x+1,|2x-7|=7-2x ,则满足条件的所有非负整数x 有 .【反思】根据题意列出不等式(组),解出不等式组从而找出符合条件的解,注意非负整数即自然数,也就是0和正整数.例2 如果a>2,那么不等式组的解集为 ,的解集为 . 【分析】把每个不等式的解集表示在数轴上(或用口诀),结合数轴找不等式组的解集.【解】把不等式的解集表示在数轴上,不等式组表示在数轴上如图19-2所示,可知解集为x >a .不等式组表示在数轴上如图19-3所示, 可知解集为2<x ≤a .【点评】利用数轴上的数越往右越大,在数轴上找好数约位置,结合数轴找到不拓展与变式4 (1)已知关于x 的不等式组的解集为x ≥2,则a 的取值范围是 .(2)已知关于x 的不等式组有解,则a 的取值范围是 . 拓展与变式5 已知关于x 的不等式组的解集为0<x <2,求m -n 的值.拓展与变式6 解关于x 的不等式组34125x +-≤<,2x a x >⎧⎨>⎩,2x a x ≤⎧⎨>⎩,2x a x >⎧⎨>⎩,2x a x ≤⎧⎨>⎩,2x a x >⎧⎨≥⎩,2x a x <⎧⎨>⎩2,11x m n x m +>+⎧⎨-<-⎩①②0,12.23x a x x x -≥⎧⎪-+⎨+>⎪⎩①②拓展与变式7 已知关于x 的不等式组的整数共有3个,求a 的取值范围.拓展与变式8 定义新运算:对干任意实数a ,b 都有a #b =ab -a -b +1,等式右边是通常的加法减法及乘法运算.例如:2#4=2×4-2-4+1=3.请根据上述知识解决问题:若3#x 的值大于4而不大于m 时,恰有两个整数解,求m 的取值范围.【反思】解决含参数的不等式组问题,数形结合必不可少,同时要注意等号能否取到,可将取等号的值代入原题中检验.专题突破1.不等式组的整数解有( ). A. 1个 B. 2个 C. 3个 D. 4个0,321x a x -≥⎧⎨-≥-⎩①②24,241x x x x ≤+⎧⎨+<-⎩2.不等式组的解集是x>1,则m 的取值范围是 .3.解不等式组并将不等式组的解集在数轴上表示出来.4.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间的住宿情况是不满也不空.若旅行团的人数为偶数,问:旅行团共有多少人?5.关于x 的不等式组有2个整数解,求a 的取值范围.551,1x x x m +<+⎧⎨-≥⎩()5623,3513,44x x x x -≤+⎧⎪⎨-<-⎪⎩①②()2331,324x x x x a <-+⎧⎪⎨+>+⎪⎩①②。
第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。
4、解不等式:求不等式的解集的过程,叫做解不等式。
⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。
用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。
第五讲 不等式(组)及应用一、课标下复习指南 1.不等式用不等号表示不等关系的式子,叫做不等式. 2.不等式的解和不等式的解集(1)不等式的解:与方程类似,使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:一个含有未知数的不等式的所有的解,组成这个不等式的解集.它可以用最简单的不等式表示,也可以用数轴表示. 3.解不等式求不等式的解集的过程,叫做解不等式. 4.不等式的基本性质性质1 不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变. 性质2 不等式两边都乘以(或除以)同一个正数,不等号的方向不变. 性质3 不等式两边都乘以(或除以)同一个负数,不等号的方向改变. 不等式的其他性质: (1)若a >b ,则b <a ;(2)若a >b ,b >c ,则a >c ; (3)若a ≥b ,b ≥a ,则a =b ; (4)若a 2≤0,则a =0. 5.一元一次不等式类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式.它的一般形式为ax +b >0(a ≠0)或ax +b <0(a ≠0). 6.一元一次不等式的解法类似于一元一次方程的解法,但要特别注意不等式两边都乘以(或除以)同一个负数时,不等号的方向改变.7.一元一次不等式组及其解集类似于方程组,把含有相同未知数的几个一元一次不等式合在一起组成一个一元一次不等式组,所有这些一元一次不等式的解集的公共部分,叫做这个不等式组的解集. 8.一元一次不等式组的解法解 一元一次不等式组的基本步骤:(1)分别求出不等式组中各个不等式的解集; (2)利用数轴确定它们的公共部分; (3)表示出这个不等式组的解集. 9.一元一次不等式(组)的应用列一元一次不等式(组)解应用题与列方程(组)解应用题的步骤类似,即(1)审题,设出未知数;(2)列不等式(组);(3)解不等式(组);(4)结合不等式(组)的解集与未知数的限制条件确定符合题意的解或解集,并写出答案.10.一元一次不等式、一元一次方程和一次函数的关系一次函数y =kx +b (k ≠0)当函数值y =0时,一次函数转化为一元一次方程;当函数值y >0或y <0时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围. 二、例题分析例1 解不等式21687xx x +≤+-,并在数轴上表示它的解集.解 去分母,得6x -(7x +8)≤6+3x . 去括号,得6x -7x -8≤6+3x . 移项,得6x -7x -3x ≤6+8. 合并同类项,得-4x ≤14系数化1,得27-≥x .不等式的解集在数轴上表示为:图5-1说明 解一元一次不等式的步骤与解一元一次方程类似,只要特别注意在系数化1这一步时,两边同乘(除)以的数是正数还是负数,若是正数,不等号的方向不改变;若是负数,不等号的方向要改变.在数轴上表示不等式的解集的时候,一要定边界点,二是定方向,注意分清空心图和实心点的区别.例2 x 取何值时,代数式645+x 的值不小于代数式3.187x--的值?并求出x 的最小值. 解 由题意,得⋅--≥+3187645x x 解 得⋅-≥41x∴当41-≥x 时,代数式645+x 的值不小于代数式3187x --的值,x 的最小值为⋅-41说明 要明确“大于”、“小于”、“不大于”、“不小于”、“至少”、“至多”等描述不等关系的语言所对应的不等号分别是什么.例3 解不等式组⎪⎩⎪⎨⎧>+-≤+-x x x x 432,33)1(2在数轴上表示它的解集,并求它的整数解.解 ⎪⎩⎪⎨⎧>+-≤+-②①.432,33)1(2x x x x由①得x ≥1.由②得x <5.不等式组的解集在数轴上表示如下:图5-2原不等式组的解集为1≤x <5.所以原不等式组的整数解为1,2,3,4.说明 不等式(组)的特殊解,在某个范围内是有限的,要求这些特殊解,首先要确定不等式(组)的解集,再根据要求写出相应的答案.例4 关于x 的方程,如果3(x +4)-4=2a +1的解大于3)43(414-=+x a x a 的解,求a的取值范围.解 3(x +4)-4=2a +1的解为⋅-=372a x 3)43(414-=+x a x a 的解为.316a x -= 由题意得.316372a a ->-解得187>a .即a 的取值范围是187>a . 说明 本题是方程与不等式的结合.例5 若关于x 的不等式组⎪⎩⎪⎨⎧<++>+0,1234a x xx 的解集为x <2,求a 的取值范围. 解 两个不等式的解集分别为x <2,x <-a .∵不等式的解集为x <2,∴-a ≥2, ∴a 的取值范围是a ≤-2.说明 先分别求出两个不等式的解集,再根据解集求出a 的取值范围,此处易遗漏-a =2,导致结果不完整,应特别注意.例6 某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完.问:在已确定调用5辆A 型车的前提下,至少还需调用B 型车多少辆?解 设还需要B 型车x 辆.依题意得20×5+15x ≥300.解得3113≥x .由于x 是车的数量,应为整数,所以至少需要14台B 型车.例7 为改善办学条件,东海中学计划购买部分A 品牌电脑和B 品牌课桌.第一次,用9万元购买了A 品牌电脑10台和B 品牌课桌200张;第二次,用9万元购买了A 品牌电脑12台和B 品牌课桌120张.(1)每台A 品牌电脑与每张B 品牌课桌的价格各是多少元?(2)第三次购买时,销售商对一次购买量大的客户打折销售.规定:一次购买A 品牌电脑35台以上(含35台),按九折销售,一次购买B 品牌课桌600张以上(含600张),按八折销售.学校准备用27万元购买电脑和课桌,其中电脑不少于35台,课桌不少于600张,问有几种购买方案?解 (1)设每台A 品牌电脑m 元,每张B 品牌课桌n 元,则有⎩⎨⎧=+=+.9000012012,9000020010n m n m 解得⎩⎨⎧==.150,6000n m(2)有两种方案.设购电脑x 台,课桌y 张.则有 ⎪⎩⎪⎨⎧≥≥=+.600,35,2700001205400y x y x解得⎪⎩⎪⎨⎧≤≤≤≤.675600,323635y xx =35时,y =675;x =36时,y =630. 方案①:购电脑35台,课桌675张; 方案②:购电脑36台,课桌630张. 三、课标下新题展示例8 如图5-3,要使输出值y 大于100,则输入的最小正整数x 是______.图5-3解 设n 为正整数,由题意得⎩⎨⎧>+⨯>-.1001342,100)12(5n n解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105;若x 为偶数,即x =22时,y =101.∴满足条件的最小正整数x 是21.例9 某工厂用如图5-4(a)所示的长方形和正方形纸板,做成如图5-4(b)所示的竖式与横式两种长方体形状的无盖纸盒.图5-4(a) 图5-4(b)(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x 个.①根据题意完成以下表格:竖式纸盒(个)横式纸盒(个)x 所用正方形纸板张数(张) 2(100-x )所用长方形纸板张数(张)4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板n 张,做成上述两种纸盒,纸板恰好用完.已知290<n <306.则n 的值是______.(写出一个即可)解 (1)①根据题意完成表格如下:竖式纸盒(个)横式纸盒(个) x 100-x 所用正方形纸板张数(张) x 2(100-x ) 所用长方形纸板张数(张)4x3(100-x )⎩⎨⎧≤-+≤-+.340)100(34,162)100(2x x x x ② 解得38≤x ≤40. 又∵x 是整数,∴x =38,39,40.答:有三种方案:生产竖式纸盒38个,横式纸盒62个;或生产竖式纸盒39个,横式纸盒61个;或生产竖式纸盒40个,横式纸盒60个.(2)293或298或303.例10 用长度相等的100根火柴摆放一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.解 设三角形三边分别为x ,y ,3x .依题意得⎪⎩⎪⎨⎧>+≤≤=++③②①.3,3,1003x y x x y x x y x 由①、②得207100≤≤x 由①、③得⋅<350x因为x 为正整数,故x=15或16.所以满足条件的三角形各边所用火柴杆的根数为15,40,45或16,36,48. 四、课标考试达标题 (一)选择题1.若a >b ,且c 为有理数,则( ). A .ac >bc B .ac <bc C .ac 2>bc 2 D .ac 2≥bc 22.如图5-5,a ,b ,c 分别表示苹果、梨、桃子的质量.若同类水果质量相等,则下列关系正确的是( ).图5-5A .a >c >bB .b >a >cC .a >b >cD .c >a >b 3.不等式x <3的解集在数轴上表示为( ).4.函数11-=x y 中,自变量x 的取值范围在数轴上可表示为( ).5.不等式组⎪⎩⎪⎨⎧-≤-<+x x x x 23821,148的解集在数轴上表示正确的是( ).6.若关于x 的不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ).A .k <2B .k ≥2C .k <1D .1≤k <27.若(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ). A .a <2 B .a <3 C .a <4 D .a <5 (二)填空题8.若不等式组⎩⎨⎧>-<-32,12b x a x 的解集是-1<x <1,则(a +1)(b +1)的值是______.9.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图5-6所示,则关于x 的不等式k 2x >k 1x +b 的解集为______.图5-610.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.11.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少应付给超市______元. (三)解答题 12.求不等式8)1(3411-≥--x x 的非负整数解.13.解不等式组⎩⎨⎧≥+->+,33)1(2,03x x x 并判断23=x 是否是该不等式组的解.14.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.15.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类别 电视机 洗衣机 进价(元/台) 1800 1500 售价(元/台)20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元. (1)请你帮助商店算一算有多少种进货方案? (不考虑除进价之外的其他费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)16.2008年北京奥运会的比赛已经圆满闭幕.当时某球迷打算用8000元预订10张下表中比赛项目的门票.(下表为当时北京奥运会官方票务网站公布的几种球类决赛的门票价格)(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?比赛项目票价(元/场)男篮1000足球800乒乓球500参考答案第五讲 不等式(组)及应用1.D . 2.C . 3.B . 4.B . 5.C . 6.A . 7.C . 8.-2. 9.x <-1. 10.-1<k <3. 11.8元.12.513≤x ,x =0,1,2. 13.-3<x ≤1,23=x 是该不等式组的解.14.解不等式得x <21,x >2-3a ,又∵只有4个整数解,∴16≤2-3a <17,解得3145-≤<-a . 15.解:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意得⎪⎩⎪⎨⎧≤-+-≥.161800)100(15001800),100(21x x x x 解不等式组,得⋅≤≤31393133x 即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000.∵100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多,为13900元.16.解:(1)设预订男篮门票x 张,则乒乓球门票(10-x )张.由题意得 1000x +500(10-x )=8000 解得x =6. ∴10-x =4.答:可订男篮门票6张,乒乓球门票4张.(2)设男篮门票与足球门票都订a 张,则乒乓球门票(10-2a )张.由题意得⎩⎨⎧≤-≤-++.1000)210(500,8000)210(5008001000a a a a a 解得⋅≤≤433212a 由a 为正整数,可得a =3.答:他能预订男篮门票3张,足球门票3张,乒乓球门票4张.。
高中不等式组的解集取值范围摘要:一、不等式组的概念1.不等式组的定义2.不等式组解集的求法二、高中不等式组的解集取值范围1.一元一次不等式组的解集取值范围2.一元二次不等式组的解集取值范围3.多元不等式组的解集取值范围三、不等式组解集取值范围的求法1.口诀求解2.代入法求解3.图像法求解四、实际应用1.高中数学题目中的应用2.实际生活场景中的应用正文:一、不等式组的概念不等式组是由多个不等式组成的集合,求解不等式组的解集就是找到满足所有不等式的数值。
不等式组的解集可以用图像法、口诀法、代入法等方法求解。
二、高中不等式组的解集取值范围高中阶段,我们主要学习一元一次不等式组、一元二次不等式组和多元不等式组。
1.一元一次不等式组的解集取值范围:当所有不等式的符号都相同时,解集为所有满足不等式条件的数值;当有不等式符号不同时,解集为满足最大(小)不等式条件的数值。
2.一元二次不等式组的解集取值范围:首先求出对应的一元二次方程的根,然后根据根与系数的关系判断解集。
3.多元不等式组的解集取值范围:通常需要利用线性规划的方法求解,也可以通过图像法直观地得到解集。
三、不等式组解集取值范围的求法1.口诀求解:根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”,可以快速地找到不等式组的解集。
2.代入法求解:将每个不等式的解代入到其他不等式中,判断是否满足,从而找到解集。
3.图像法求解:将不等式组转化为对应的函数图像,通过观察图像找到解集。
四、实际应用1.高中数学题目中的应用:不等式组在高中数学题目中非常常见,如在解析几何、函数、概率等题目中都有涉及。
2.2.2不等式的解集课标要求 1.了解不等式(组)解集的概念,会求简单的一元一次不等式(组)的解集.2.了解绝对值不等式的概念,会求形如|x|≤m,|x|≥m的绝对值不等式的解集. 素养要求 1.通过求不等式(组)的解集,提升数学运算素养.2.通过学习绝对值不等式及其解法,提升直观想象及数学运算素养.一、集合的基本概念1.思考解不等式时常用不等式的哪些性质?提示不等式的性质;常用以下四条性质:性质1a>b⇒a+c>b+c性质2a>b,c>0⇒ac>bc性质3a>b,c<0⇒ac<bc推论1a+b>c⇒a>c-b2.填空(1)不等式的解集不等式的所有解组成的集合称为不等式的解集.(2)不等式组的解集对于由若干个不等式联立得到的不等式组来说,这些不等式的解集的交集称为不等式组的解集.温馨提醒(1)求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).(2)不等式组中若有一个不等式的解集为∅,则不等式组的解集为∅;每一个不等式的解集均不是∅,不等式组的解集也可能是∅.3.做一做(1)不等式4x-511<1的正整数解的个数为________.答案 3(2)不等式组⎩⎨⎧-2x -5≥0,2x -32≥0的解集为________.答案 ∅二、绝对值不等式1.思考 方程|x |=3的解是什么?你能给出|x |>3的解集吗?解绝对值不等式的基本思路是什么?提示 方程|x |=3的解是x =±3.结合y =|x |=⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0的图像求得|x |>3的解集为{x |x >3,或x <-3}.去绝对值号,进行等价转化,再解不含绝对值号的不等式. 2.填空 (1)绝对值不等式的概念一般地,含有绝对值的不等式称为绝对值不等式. (2)两种简单的绝对值不等式的解集①关于x 的不等式|x |>m (m >0)的解为x >m 或x <-m ,解集为(-∞,-m )∪(m ,+∞);②关于x 的不等式|x |<m (m >0)的解为-m <x <m ,解集为(-m ,m ). (3)数轴上两点之间的距离公式及线段中点的坐标公式①一般地,如果实数a ,b 在数轴上对应的点分别为A ,B ,即A (a ),B (b ),则线段AB 的长为AB =|a -b |,这就是数轴上两点之间的距离公式.②如果线段AB 的中点M 对应的数为x ,即M (x ),则x a +b2;这就是数轴上的中点坐标公式.温馨提醒 (1)|ax +b |≤c 和|ax +b |≥c 型不等式的解法 |ax +b |≤c ⇔-c ≤ax +b ≤c ; |ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(2)|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想.3.做一做 若A ,B 两点在数轴上的坐标分别为A (2),B (-4),则AB =________,线段AB 的中点M 的坐标为________. 答案 6 -1题型一 解不等式组例1 解不等式组:⎩⎪⎨⎪⎧x +1≥-7+x 2,3(x +1)≤5x -1.解不等式组:⎩⎪⎨⎪⎧x +1≥-7+x 2,①3(x +1)≤5x -1,②①式两端同时乘以2,得2x +2≥-7-x , 然后两端同时加上x -2,得3x ≥-9, 不等式3x ≥-9两端同时乘以13,得x ≥-3, 同理,解不等式②得x ≥2, 所以不等式组的解集是[2,+∞). 思维升华 一元一次不等式组的解法 (1)分开解:分别解每个不等式,求出其解集.(2)集中判:根据同大取大,同小取小,大小小大中间找,大大小小找不到,确定不等式组的解集.(或把不等式的解集在数轴上表示出来,数形结合确定不等式组的解集)训练1 解不等式组:⎩⎪⎨⎪⎧3(x -1)<2x ,①x 3-1+x 2<1.②解 由①得x <3, 由②得x >-9.所以原不等式组的解集为(-9,3). 题型二 含一个绝对值的不等式的解法 例2 求下列绝对值不等式的解集: (1)|3x -1|≤6;(2)3≤|x -2|<4.解 (1)因为|3x -1|≤6⇔-6≤3x -1≤6, 即-5≤3x ≤7,从而得-53≤x ≤73,所以原不等式的解集是⎩⎨⎧⎭⎬⎫x |-53≤x ≤73. (2)因为3≤|x -2|<4,所以3≤x -2<4或-4<x -2≤-3, 即5≤x <6或-2<x ≤-1.所以原不等式的解集为:{x |-2<x ≤-1,或5≤x <6}. 思维升华 绝对值不等式的解题策略:等价转化法 (1)形如|x |<a ,|x |>a (a >0)型不等式: |x |<a ⇔-a <x <a . |x |>a ⇔x >a 或x <-a .(2)形如a <|x |<b (b >a >0)型不等式: a <|x |<b (0<a <b )⇔a <x <b 或-b <x <-a . 训练2 不等式|2x +1|>3的解集是( ) A.{x |x <-2,或x >1} B.{x |-2<x <1} C.{x |x <-2,或x ≥1} D.{x |-2≤x <1} 答案 A解析 由|2x +1|>3,得2x +1>3或2x +1<-3,因此x <-2或x >1,所以原不等式的解集为{x|x<-2,或x>1}.题型三解含有两个绝对值的不等式例3 解不等式|x-1|+|x-2|≤5.解法一①当x≤1时,原不等式变为1-x+2-x≤5,∴-1≤x≤1;②当1<x≤2时,原不等式变为x-1+2-x≤5,1≤5恒成立,∴1<x≤2;③当x>2时,原不等式变为x-1+x-2≤5,∴2<x≤4,综上,原不等式的解集为[-1,4].法二如图,设数轴上与1,2对应的点分别为A,B,那么A,B两点间的距离为1,因此区间[1,2]上的数都是不等式的解.设在A左侧有一点A1到A,B两点的距离和为5,A1对应数轴上的x,所以1-x+2-x=5,得x=-1.同理,设B点右侧有一点B1到A,B两点的距离和为5,B1对应数轴上的x,所以x-1+x-2=5,得x=4.从数轴上可看到,点A1,B1之间的点到A,B的距离之和都小于5,点A1的左侧或点B1的右侧的任何点到A,B的距离之和都大于5,所以原不等式的解集是[-1,4].思维升华 1.去绝对值号,利用零点分段法分类讨论求解.2.利用绝对值的几何意义解决含有两个绝对值的不等式|x-a|+|x-b|≥c,|x-a|+|x-b|≤c比较直观,但只适用于数据较简单的情况.训练3 (1)求不等式|x-1|+|x-2|>2的解集;(2)已知数轴上A(x),B(-1),且线段AB的中点到C(1)的距离大于5,求x的取值范围.解 (1)法一 设A (1),B (2),则AB 的中点M ⎝ ⎛⎭⎪⎫32,则|x -1|+|x -2|>2⇔⎪⎪⎪⎪⎪⎪x -32>1⇔x-32<-1或x -32>1⇔x <12或x >52,∴原不等式的解集为⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫52,+∞.法二 原不等式等价于⎩⎪⎨⎪⎧x ≤1,1-x +2-x >2或⎩⎪⎨⎪⎧1<x <2,x -1+2-x >2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2>2,解得x <12或无解或x >52,∴x <12或x >52.故原不等式的解集为⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫52,+∞.(2)AB 的中点M ⎝⎛⎭⎪⎫x -12, 由题意⎪⎪⎪⎪⎪⎪x -12-1>5,即⎪⎪⎪⎪⎪⎪x -32>5,∴|x -3|>10,x -3<-10或x -3>10, 即x <-7或x >13,∴x 的取值范围是(-∞,-7)∪(13,+∞). [课堂小结]1.解不等式的过程中要不断地使用不等式的性质.求不等式组解集时常利用数轴求交集.2.含绝对值的不等式|x |<a 与|x |>a 的解集x ≠0}一、基础达标1.代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ) A.(-1,3] B.[-3,1) C.[-2,2) D.(-2,2]答案 C解析 由题意知-1<1-m ≤3, ∴-2≤m <2.2.(多选)不等式组⎩⎪⎨⎪⎧2x -13>1,x >m ,m ∈N 的解集为(2,+∞),则m 的值可以是( )A.0B.1C.2D.3答案 ABC解析 由2x -13>1,得x >2.由题意得⎩⎪⎨⎪⎧x >2,x >m ,m ∈N 的解集为(2,+∞),∴m ≤2,又m ∈N , 故m =0,1,2.3.若方程组⎩⎨⎧x +2y =1+m ,2x +y =3中,未知数x ,y 满足x +y >0,则m 的取值范围是( )A.(-4,+∞)B.[-4,+∞)C.(-∞,-4)D.(-∞,-4] 答案 A解析 解方程组⎩⎪⎨⎪⎧x +2y =1+m ,2x +y =3得⎩⎨⎧x =5-m3,y =2m -13.由x +y >0,得5-m 3+2m -13>0, 解得m >-4.4.设不等式|x -a |<b 的解集为(-1,2),则a ,b 的值分别为( ) A.1,3 B.-1,3 C.-1,-3 D.12,32答案 D解析 由|x -a |<b ,得a -b <x <a +b . 由题意(a -b ,a +b )=(-1,2), ∴⎩⎪⎨⎪⎧a -b =-1,a +b =2,∴⎩⎪⎨⎪⎧a =12,b =32.5.对任意实数x ,若不等式|x +1|-|x -2|>k 恒成立,则k 的取值范围为( ) A.(-∞,3) B.(-∞,-3) C.(1,3] D.(-∞,-3] 答案 B解析 |x +1|,|x -2|的几何意义分别为数轴上的点X 到表示-1和2的点的距离,|x +1|-|x -2|的几何意义为两距离之差,由图可得其最小值为-3,故选B.6.已知数轴上,A (x ),B (1),且AB =72,则x 的值为________. 答案 92或-52解析 由题意|x -1|=72,∴x -1=±72, ∴x =92或x =-52.7.不等式组⎩⎪⎨⎪⎧2x -13-5x -12≤1,5x -2<3(x +2)的所有正整数解的和为________.答案 6解析 解原不等式组,得不等式组的解集是-511≤x <4,所以不等式组的正整数解是1,2,3,故它们的和为1+2+3=6. 8.不等式|x +1|>|5-x |的解集是________. 答案 (2,+∞)解析 两边平方得(x +1)2>(5-x )2, 即x 2+2x +1>25-10x +x 2,∴x >2. 9.已知数轴上,A (-1),B (x ),C (6). (1)若A ,B 关于点C 对称,求x 的值;(2)若线段AB 的中点到C 的距离小于5,求x 的取值范围. 解 (1)由数轴上中点坐标公式得6=-1+x2, ∴x =13.(2)AB 的中点为-1+x2, 由题意得⎪⎪⎪⎪⎪⎪x -12-6<5,即⎪⎪⎪⎪⎪⎪x -132<5,|x -13|<10, ∴-10<x -13<10,3<x <23, 即x 的取值范围是(3,23). 10.解不等式3<|2x -3|<5. 解 ∵3<|2x -3|<5,∴3<2x -3<5或-5<2x -3<-3,即3<x <4或-1<x <0.故原不等式的解集为(-1,0)∪(3,4). 二、能力提升11.(多选)|2x -1|>1的充分不必要条件可以是( ) A.x >1 B.x <0 C.x >1或x <0 D.0<x <1答案 AB解析 由|2x -1|>1得2x -1>1,或2x -1<-1,解得x >1或x <0,故选AB. 12.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是________. 答案 (-36,+∞)解析 解不等式1+x <a ,得x <a -1.解不等式x +92+1≥x +13-1,得x ≥-37.因为不等式组有解,所以a -1>-37, 即a >-36.13.解不等式|x -1|+|x +2|<5. 解 法一 记A (1),B (-2),则AB 的中点为M ⎝ ⎛⎭⎪⎫-12,|x -1|+|x +2|<5⇔⎪⎪⎪⎪⎪⎪x -⎝ ⎛⎭⎪⎫-12<52,即⎪⎪⎪⎪⎪⎪x +12<52, ∴-52<x +12<52,-3<x <2,故原不等式的解集为(-3,2). 法二 原不等式等价于⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)<5或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)<5或⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)<5,解得-3<x ≤-2或-2<x <1或1≤x <2,∴-3<x <2.故原不等式的解集为(-3,2).三、创新拓展14.已知不等式|x +2|-|x +3|>m ,求出满足下列条件的m 的取值范围.(1)不等式有解;(2)不等式解集为R ;(3)不等式解集为∅.解 法一 因|x +2|-|x +3|的几何意义为数轴上任意一点P (x )与两定点A (-2),B (-3)距离的差.即|x +2|-|x +3|=P A -PB .由图像知(P A -PB )max =1,(P A -PB )min =-1.即-1≤|x +2|-|x +3|≤1.(1)若不等式有解,m 只要比|x +2|-|x +3|的最大值小即可,即m <1, m 的范围为(-∞,1).(2)若不等式的解集为R ,即不等式恒成立,m 只要比|x +2|-|x +3|的最小值还小,即m <-1,m 的范围为(-∞,-1).(3)若不等式的解集为∅,m 只要不小于|x +2|-|x +3|的最大值即可,即m ≥1,m 的范围为[1,+∞).法二 由|x +2|-|x +3|≤|(x +2)-(x +3)|=1,|x +3|-|x +2|≤|(x +3)-(x +2)|=1,可得-1≤|x+2|-|x+3|≤1.(1)若不等式有解,则m∈(-∞,1).(2)若不等式解集为R,则m∈(-∞,-1).(3)若不等式解集为∅,则m∈[1,+∞).。
高中不等式组的解集取值范围(原创版)目录1.引言:介绍高中不等式组的解集取值范围2.不等式组的基本概念:什么是不等式组,它的一般形式3.解集的定义:什么是解集,如何表示一个不等式组的解集4.解集的求法:如何求解一个不等式组的解集5.不等式组的解集取值范围:如何表示一个不等式组的解集的取值范围,如何求解这个取值范围6.实际例子:通过具体的例子讲解如何求解不等式组的解集取值范围7.结论:总结高中不等式组的解集取值范围的重要性和方法正文一、引言在高中数学的学习中,不等式组的解集取值范围是一个重要的知识点,它涉及到了解集的概念,解集的求法以及如何表示一个不等式组的解集的取值范围。
本文将从这三个方面详细介绍高中不等式组的解集取值范围。
二、不等式组的基本概念不等式组是多个不等式的组合,它的一般形式是:```a1 * x + b1 * y + c1 * z > d1a2 * x + b2 * y + c2 * z < d2a3 * x + b3 * y + c3 * z > d3...an * x + bn * y + cn * z < dn```其中,a1, b1, c1, d1,..., an, bn, cn, dn 为已知数,x, y, z 为未知数。
三、解集的定义解集是指所有满足不等式组的解的集合。
解集可以用区间表示,如:(-∞, +∞),(-2, 3),或者用具体的数值表示,如:{1, 2, 3}。
四、解集的求法求解不等式组的解集,一般可以采用以下几种方法:1.图形法:将每个不等式表示为一条直线,然后找出所有直线的交集,这个交集就是解集。
2.区间法:将每个不等式表示为一个区间,然后找出所有区间的交集,这个交集就是解集。
3.代入法:将一个未知数表示为另一个未知数的函数,然后代入不等式组,求解得到解集。
五、不等式组的解集取值范围不等式组的解集取值范围是指解集中所有数值的取值范围。
2021年中考数学专题10 一元一次不等式(组)及其应用(知识点总结+例题讲解)一、不等式及其性质:1.不等式的定义:用不等号“>”、“≥”、“<”、“≤”或“≠”表示不等关系的式子,叫做不等式;2.不等式的解:使不等式成立的未知数的值;3.不等式的解集:(1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解;(2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集;4.解不等式:求不等式的解集的过程,叫做解不等式;5.不等式基本性质:(1)不等式两边加(或减)同一个数(或同一个整式),不等号的方向不变;若a>b,则a±c>b±c;(2)不等式两边乘以(或除以)同一个正数,不等号的方向不变;若a>b,c>0,则ac>bc(或a b>);c c(3)不等式两边乘以(或除以)同一个负数,不等号的方向改变;若a>b,c<0,则ac<bc(或a b<);c c【例题1】下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个【答案】C【解析】主要依据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.【变式练习1】据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33 B.t≤24 C.24<t<33 D.24≤t≤33【答案】D【解析】已知某日武侯区的最高气温和最低气温,可知某日武侯区的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.【例题2】(2020•贵港)如果a<b,c<0,那么下列不等式中不成立的是()A.a+c<b+c B.ac>bc C.ac+1>bc+1 D.ac2>bc2【答案】D【解析】根据不等式的性质解答即可.解:A、由a<b,c<0得到:a+c<b+c,原变形正确,故此选项不符合题意;B、由a<b,c<0得到:ac>bc,原变形正确,故此选项不符合题意;C、由a<b,c<0得到:ac+1>bc+1,原变形正确,故此选项不符合题意;D、由a<b,c<0得到:ac2<bc2,原变形错误,故此选项符合题意.故选:D.【变式练习2】(2019•济南)实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>0【答案】C【解析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.解:由图可知,b<0<a,且|b|<|a|,∴a﹣5>b﹣5,6a>6b,﹣a<﹣b,a﹣b>0,∴关系式不成立的是选项C.故选:C.【例题3】已知x≥5的最小值为a,x≤﹣7的最大值为b,则ab=.【答案】-35【解析】解答此题首先根据已知得出理解“≥”“≤”的意义,判断出a和b的最值即可解答.解:因为x≥5的最小值是a,a=5;x≤﹣7的最大值是b,则b=﹣7;则ab=5×(﹣7)=﹣35.故答案为:﹣35.【变式练习3】关于x的一元一次不等式m−2x3≤−2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【答案】D【解析】本题是关于x的不等式,应先只把x看成未知数,求得不等式的解集,再根据x≥4,求得m的值.解:m−2x3≤−2;所以:m﹣2x≤﹣6;则:﹣2x≤﹣m﹣6;即:x≥12m+3;∵关于x的一元一次不等式m−2x3≤−2的解集为x≥4;∴12m+3=4,解得m=2.故选:D.二、一元一次不等式及其解法:1.一元一次不等式的定义:不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的2.一元一次不等式的解法一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)将未知项的系数化为1。
2.2.2不等式的解集(教师独具内容)课程标准:1.了解不等式的解集和不等式组的解集的概念,会求一元一次不等式组的解集.2.理解绝对值的几何意义,掌握去掉绝对值的方法.3.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c;|x-a|+|x-b|≤c.教学重点:1.求一元一次不等式组的解集.2.绝对值不等式的解法.教学难点:绝对值不等式的几何解法.【知识导学】知识点一不等式的解、不等式的解集及不等式组的解集的概念(1)□01未知数的值称为不等式的解.(2)□02所有解组成的集合称为不等式的解集.(3)对于由若干个不等式联立得到的不等式组来说,这些不等式的□03解集的交集称为不等式组的解集.知识点二绝对值不等式一般地,含有□01绝对值的不等式称为绝对值不等式.知识点三数轴上两点之间的距离公式及中点坐标公式一般地,如果实数a,b在数轴上对应的点分别为A,B,即A(a),B(b),则线段AB的长为□01|a-b|,记作□02AB=|a-b|,这就是数轴上两点之间的距离公式.如果线段AB的中点M对应的数为x,则x=□03a+b2,这就是数轴上的中点坐标公式.【新知拓展】1.解绝对值不等式的主要依据解绝对值不等式的主要依据是绝对值的定义、绝对值的几何意义及不等式的性质.2.绝对值不等式|x|≤a和|x|≥a的解法1.判一判(正确的打“√”,错误的打“×”)(1)不等式2x-3≤1的解集为{x|x≤2}.()(2)若|x|≥a的解集为R,则a<0.()(3)|x-1|>1的解集为{x|x>2或x<-2}.()(4)|x-a|<|x-b|⇔(x-a)2<(x-b)2.()答案(1)√(2)×(3)×(4)√2.做一做(1)不等式|x|>x的解集是()A.{x|x≤0} B.{x|x<0或x>0} C.{x|x<0} D.{x|x>0} (2)不等式|3x-2|<1的解集为()A .(-∞,1) B.⎝ ⎛⎭⎪⎫13,1 C.⎝ ⎛⎭⎪⎫23,1 D.⎝ ⎛⎭⎪⎫-13,13 (3)不等式|x +2|≥|x |的解集是________.(4)已知数轴上,A (-2),B (x ),C (5),若A 与C 关于点B 对称,则x =________;若线段AB 的中点到C 的距离小于3,则x 的取值范围是________.答案 (1)C (2)B (3)[-1,+∞) (4)32 (6,18)题型一 一元一次不等式组的解法 例1 解下列不等式组: (1)⎩⎨⎧2x -1>x +1, ①x +8<4x -1; ② (2)⎩⎪⎨⎪⎧2x +3≥x +11, ①2x +53-1<2-x . ②[解] (1)将①式移项、合并同类项,得x >2.将②式移项、合并同类项,得3x >9.系数化为1,得x >3. 所以不等式组的解集为(3,+∞). (2)将①式移项、合并同类项,得x ≥8. 将②式去分母,得2x +5-3<6-3x .移项、合并同类项,得5x <4.系数化为1,得x <45. 所以不等式组的解集为∅. 金版点睛解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,最后写出不等式组的解集.[跟踪训练1] x 取哪些整数值时,不等式5x +2>3(x -1)与12x -1≤7-32x 都成立?解 解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x -1≤7-32x .②将①式去括号,得5x +2>3x -3.移项、合并同类项,得2x >-5.系数化为1,得x >-52. 将②式移项,合并同类项,得2x ≤8.系数化为1,得x ≤4. 所以不等式组的解集为⎝ ⎛⎦⎥⎤-52,4,所以x 可取的整数值是-2,-1,0,1,2,3,4.题型二 |ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 例2 解下列不等式: (1)|5x -2|≥8;(2)2≤|x -2|≤4.[解] (1)|5x -2|≥8可化为5x -2≥8或5x -2≤-8,解得x ≥2或x ≤-65, 故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-65∪[2,+∞).(2)原不等式等价于不等式组⎩⎨⎧|x -2|≥2,|x -2|≤4.由|x -2|≥2,得x -2≤-2或x -2≥2, 所以x ≤0或x ≥4.由|x -2|≤4,得-4≤x -2≤4,所以一2≤x ≤6.故原不等式的解集为{x |-2≤x ≤0或4≤x ≤6},即[-2,0]∪[4,6]. 金版点睛形如|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型的不等式,均可采用等价转化法进行求解,即|ax +b |≤c ⇔-c ≤ax +b ≤c ,|ax +b |≥c ⇔ax +b ≤-c 或ax +b ≥c .[跟踪训练2] 解下列不等式: (1)|2x -3|≤1;(2)|4-3x |>5.解 (1)由|2x -3|≤1可得-1≤2x -3≤1, 所以1≤x ≤2.故原不等式的解集为[1,2].(2)由|4-3x |>5可得4-3x >5或4-3x <-5,所以x <-13或x >3,即原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-13∪(3,+∞). 题型三 |x -a |±|x -b |≤c 和|x -a |±|x -b |≥c 型不等式的解法 例3 解下列不等式:(1)|x +1|+|x -1|≥3;(2)|x -3|-|x +1|<1.[解] (1)解法一:如图,设数轴上与-1,1对应的点分别为A ,B ,那么点A ,B 之间的点到A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在点A 左侧有一点A 1到A ,B 两点的距离之和为3,A 1对应数轴上的x .由-1-x +1-x =3,得x =-32.同理设点B 右侧有一点B 1到A ,B 两点的距离之和为3,B 1对应数轴上的x , 由x -1+x -(-1)=3,得x =32,从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左侧或点B 1的右侧的任何点到A ,B 的距离之和都大于3.所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 解法二:当x ≤-1时,原不等式可以化为-(x +1)-(x -1)≥3, 解得x ≤-32.当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3.不成立,无解. 当x ≥1时,原不等式可以化为x +1+x -1≥3, 解得x ≥32.综上所述,原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.解法三:将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3,即y =⎩⎨⎧-2x -3,x ≤-1,-1,-1<x <1,2x -3,x ≥1.作出函数的图像,如图.函数图像与x 轴交点的横坐标是-32和32.从图像可知,当x ≤-32或x ≥32时,y ≥0,即|x +1|+|x -1|-3≥0. 所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.(2)解法一:如图所示,在数轴上-1,3,x 对应的点分别为A ,C ,P ,而点B 对应的实数为12,点B 到点C 的距离与到点A 的距离之差为1.由绝对值的几何意义知,当点P 在射线Bx 上(不含点B )时,不等式成立,故不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.解法二:原不等式⇔①⎩⎨⎧x ≤-1,-(x -3)+(x +1)<1或②⎩⎨⎧-1<x <3,-(x -3)-(x +1)<1或③⎩⎨⎧x ≥3,(x -3)-(x +1)<1,解得①的解集为∅,②的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3,③的解集为{x |x ≥3}. 综上可知,原不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.解法三:将原不等式转化为|x -3|-|x +1|-1<0,构造函数y =|x -3|-|x +1|-1,则y =⎩⎨⎧3,x ≤-1,-2x +1,-1<x <3,-5,x ≥3.作出函数的图像,如图.函数图像与x 轴的交点是⎝ ⎛⎭⎪⎫12,0.由图像可知,当x >12时,有y <0, 即|x -3|-|x +1|-1<0,所以原不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.金版点睛形如|x -a |±|x -b |≤c 和|x -a |±|x -b |≥c型不等式的解法这种类型的不等式在求解时有三种方法:(1)利用绝对值的几何意义求解,这种方法体现了数形结合的思想,是解绝对值不等式最简单的方法,给绝对值不等式以准确的几何解释是解题的关键.(2)令每个绝对值符号里的一次式为0,求出相应的根,把这些根由小到大排序,它们把数轴分为若干个区间,然后利用区间分段讨论法去绝对值符号求解,这种方法体现了分类讨论的思想,是解绝对值不等式最常用的方法.(3)构造函数,利用函数图像求解,这种方法体现了函数与方程的思想,准确画出函数图像并求解函数图像与x 轴的交点坐标是解题的关键.[跟踪训练3] 解下列不等式:(1)|x -1|-|5-x |>2;(2)|2x -1|+|3x +2|≥8.解 (1)原不等式即为|x -1|-|x -5|>2, 其等价于①⎩⎨⎧ x <1,1-x -(5-x )>2或②⎩⎨⎧1≤x ≤5,x -1-(5-x )>2或 ③⎩⎨⎧x >5,x -1-(x -5)>2, 解得①无解,②的解集为{x |4<x ≤5},③的解集为{x |x >5},故原不等式的解集为(4,+∞). (2)①当x ≤-23时,|2x -1|+|3x +2|≥8⇔1-2x -(3x +2)≥8⇔-5x ≥9⇔x ≤-95,所以x ≤-95;②当-23<x <12时,|2x -1|+|3x +2|≥8⇔1-2x +3x +2≥8⇔x +3≥8⇔x ≥5,所以x ∈∅; ③当x ≥12时,|2x -1|+|3x +2|≥8⇔5x +1≥8⇔5x ≥7⇔x ≥75,所以x ≥75. 故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-95∪⎣⎢⎡⎭⎪⎫75,+∞.1.不等式组⎩⎨⎧x +3>0,3(x -1)≤2x -1的解集为( )A .(-3,0]B .(-3,2]C .∅D.⎝ ⎛⎦⎥⎤-3,-45答案 B解析 解不等式组⎩⎨⎧x +3>0, ①3(x -1)≤2x -1, ②将①式移项,得x >-3.将②式去括号,得3x -3≤2x -1.移项、合并同类项,得x ≤2.所以不等式组的解集为(-3,2],故选B.2.不等式|4-x |≥1的解集为( ) A .[3,5] B .(-∞,3]∪[5,+∞) C .[-4,4] D .R答案 B解析 |4-x |≥1⇒x -4≥1或x -4≤-1,即x ≥5或x ≤3.所以所求不等式的解集为(-∞,3]∪[5,+∞).故选B.3.不等式1<|x +1|<3的解集为( ) A .(0,2) B .(-2,0)∪(2,4) C .(-4,0) D .(-4,-2)∪(0,2) 答案 D解析 由1<|x +1|<3,得1<x +1<3或-3<x +1<-1,所以0<x <2或-4<x <-2.所以所求不等式的解集为(-4,-2)∪(0,2).4.不等式|x +1|-|x -3|≥0的解集是________. 答案 [1,+∞)解析 解法一:不等式等价转化为|x +1|≥|x -3|,两边平方,得(x +1)2≥(x -3)2,解得x ≥1, 故所求不等式的解集为[1,+∞).解法二:不等式等价转化为|x +1|≥|x -3|,根据绝对值的几何意义可得数轴上点x 到点-1的距离大于等于到点3的距离,到两点距离相等时x =1,故所求不等式的解集为[1,+∞).5.解不等式|x +2|+|x -1|<4.解 |x +2|=0和|x -1|=0的根-2,1把数轴分为三个区间:(-∞,-2],(-2,1),[1,+∞).在这三个区间上|x +2|+|x -1|有不同的表达式,它们构成了三个不等式组. (1)当x ≤-2时,|x +2|+|x -1|<4⇔-2-x +1-x <4⇔-2x <5⇔x >-52, 所以不等式组⎩⎨⎧x ≤-2,|x +2|+|x -1|<4的解集为⎝ ⎛⎦⎥⎤-52,-2.(2)当-2<x <1时,|x +2|+|x -1|<4⇔x +2+1-x <4⇔3<4,所以不等式组⎩⎨⎧-2<x <1,|x +2|+|x -1|<4的解集为(-2,1). (3)当x ≥1时,|x +2|+|x -1|<4⇔x +2+x -1<4⇔2x <3⇔x <32, 所以不等式组⎩⎨⎧x ≥1,|x +2|+|x -1|<4的解集为⎣⎢⎡⎭⎪⎫1,32.因此原不等式的解集为⎝ ⎛⎦⎥⎤-52,-2∪(-2,1)∪⎣⎢⎡⎭⎪⎫1,32=⎝ ⎛⎭⎪⎫-52,32.A 级:“四基”巩固训练一、选择题1.不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1≤34x -18的解集为( )A .(-∞,-12) B.⎝ ⎛⎦⎥⎤-125,72 C.⎝ ⎛⎦⎥⎤-125,12 D.⎝ ⎛⎦⎥⎤-12,12 答案 B解析不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1≤34x -18可化为⎩⎨⎧2x +15>3-3x , ①8x -8≤6x -1. ② 解不等式①,得x >-125.解不等式②,得x ≤72.所以原不等式组的解集为⎝ ⎛⎦⎥⎤-125,72.故选B.2.“|x -1|<2成立”是“x (x -3)<0成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 ∵|x -1|<2成立⇔-1<x <3成立,x (x -3)<0成立⇔0<x <3成立,又-1<x <3⇒/0<x <3,0<x <3⇒-1<x <3,∴“|x -1|<2成立”是“x (x -3)<0成立”的必要不充分条件.故选B.3.不等式3≤|5-2x |<9的解集为( ) A .(-∞,-2)∪(7,+∞) B .[1,4] C .[-2,1]∪[4,7] D .(-2,1]∪[4,7) 答案 D解析 不等式等价于⎩⎨⎧-9<2x -5<9,2x -5≥3或2x -5≤-3,解得-2<x ≤1或4≤x <7.所以原不等式的解集为(-2,1]∪[4,7).故选D. 4.不等式|x -1|+|x -2|≥5的解集为( ) A .(-∞,-1]∪[4,+∞) B .(-∞,1]∪[2,+∞) C .(-∞,1] D .[2,+∞) 答案 A解析 画数轴可得:当x =-1或x =4时,有|x -1|+|x -2|=5.由绝对值的几何意义可得,当x ≤-1或x ≥4时,|x -1|+|x -2|≥5,故选A.5.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R }.若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3答案 D解析 由|x -a |<1,得a -1<x <a +1.由|x -b |>2,得x <b -2或x >b +2.∵A ⊆B ,∴a -1≥b +2或a +1≤b -2,即a -b ≥3或a -b ≤-3,∴|a -b |≥3.二、填空题6.不等式||x -2|-1|≤1的解集为________. 答案 [0,4]解析 原不等式可转化为-1≤|x -2|-1≤1,故0≤|x -2|≤2,解得0≤x ≤4,故所求不等式的解集为[0,4].7.|2x -1|-2|x +3|>0的解集为________.答案 (-∞,-3)∪⎝ ⎛⎭⎪⎫-3,-12∪⎝ ⎛⎭⎪⎫32,+∞ 解析 ∵分母|x +3|>0且x ≠-3,∴原不等式等价于|2x -1|-2>0,即|2x -1|>2, ∴2x -1>2或2x -1<-2,解得x >32或x <-12.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >32或x <-12且x ≠-3,即(-∞,-3)∪⎝ ⎛⎭⎪⎫-3,-12∪⎝ ⎛⎭⎪⎫32,+∞. 8.已知不等式|ax +b |<2(a ≠0)的解集为{x |1<x <5},则实数a ,b 的值为________. 答案 1,-3或-1,3解析 原不等式等价于-2<ax +b <2.①当a >0时,解得-2+b a <x <2-ba ,与1<x <5比较,得⎩⎪⎨⎪⎧-2+ba =1,2-ba =5,解得⎩⎨⎧a =1,b =-3.②当a <0时,解得2-b a <x <-2+ba ,与1<x <5比较,得⎩⎪⎨⎪⎧2-b a =1,-2+ba =5,解得⎩⎨⎧a =-1,b =3. 综上所述,a =1,b =-3或a =-1,b =3. 三、解答题 9.解下列不等式:(1)|4x +5|≥25;(2)|3-2x |<9; (3)1<|x -1|<5;(4)|x -1|>|x -2|.解 (1)因为|4x +5|≥25⇔4x +5≥25或4x +5≤-25⇔4x ≥20或4x ≤-30⇔x ≥5或x ≤-152,所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-152∪[5,+∞).(2)因为|3-2x |<9⇔|2x -3|<9⇔-9<2x -3<9⇔-6<2x <12⇔-3<x <6, 所以原不等式的解集为(-3,6).(3)因为1<|x -1|<5⇔1<x -1<5或-5<x -1<-1⇔2<x <6或-4<x <0, 所以原不等式的解集为(-4,0)∪(2,6).(4)|x -1|>|x -2|⇔(x -1)2>(x -2)2⇔x 2-2x +1>x 2-4x +4⇔2x >3⇔x >32, 所以原不等式的解集为⎝ ⎛⎭⎪⎫32,+∞.10.解不等式|3x -2|+|x -1|>3.解 ①当x ≤23时,|3x -2|+|x -1|=2-3x +1-x =3-4x ,由3-4x >3,得x <0. ②当23<x <1时,|3x -2|+|x -1|=3x -2+1-x =2x -1,由2x -1>3,得x >2,∴x ∈∅. ③当x ≥1时,|3x -2|+|x -1|=3x -2+x -1=4x -3,由4x -3>3,得x >32,∴x >32. 故原不等式的解集为(-∞,0)∪⎝ ⎛⎭⎪⎫32,+∞.B 级:“四能”提升训练1.若|x +1|+2|x -a |的最小值为5,求实数a 的值. 解 当a ≤-1时,|x +1|+2|x -a |=⎩⎨⎧-3x +2a -1(x ≤a ),x -2a -1(a <x ≤-1),3x -2a +1(x >-1),所以(|x +1|+2|x -a |)min =-a -1, 所以-a -1=5,所以a =-6. 当a >-1时,|x +1|+2|x -a |=⎩⎨⎧-3x +2a -1(x ≤-1),-x +2a +1(-1<x ≤a ),3x -2a +1(x >a ),所以(|x +1|+2|x -a |)min =a +1, 所以a +1=5,所以a =4. 综上可知,a =-6或a =4.2.已知P =|2x -1|+|2x +a |,Q =x +3.(1)当a =-2时,求不等式|2x -1|+|2x +a |<x +3的解集;(2)设a >-1,且当x ∈⎣⎢⎡⎦⎥⎤-a 2,12时,|2x -1|+|2x +a |≤x +3,求a 的取值范围.解 (1)解法一:当a =-2时,不等式为|2x -1|+|2x -2|<x +3. 当x ≥1时,4x -3<x +3⇒x <2; 当x ≤12时,-4x +3<x +3⇒x >0; 当12<x <1时,1<x +3⇒x >-2.综上可知,当a =-2时,不等式|2x -1|+|2x +a |<x +3的解集为(0,2).解法二:当a =-2时,不等式|2x -1|+|2x +a |<x +3化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图像如图所示,由图像可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集为(0,2).(2)当x ∈⎣⎢⎡⎦⎥⎤-a 2,12时,P =|2x -1|+|2x +a |=1+a ,不等式|2x -1|+|2x +a |≤x +3化为1+a ≤x +3, 所以x ≥a -2对x ∈⎣⎢⎡⎦⎥⎤-a 2,12都成立,故-a 2≥a -2,即a ≤43. 从而a 的取值范围是⎝ ⎛⎦⎥⎤-1,43.。
不等式组的解集定义
不等式组的解集定义是指,当多个不等式组成的子集与一个或多个自然数组成的集合相交,通过求的所有的可行解并在一定的数学规则下取非负数,及构成的交集所求出的解集就称为不等式组的解集定义。
一般地,一个不等式组可以简记为:$f (x_{1}, \dotsc, x_{n})=0$,其中$f$ 为
一关于$x_{1}, \dotsc, x_{n}$的函数。
由定义可知,一个不等式组的解集就是所有
满足$f (x_{1}, \dotsc, x_{n})=0$ 的解对应的$x_{1}, \dotsc, x_{n}$。
这些不等式求解可以采用排列组合、图来分析、统计以及遍历法等数学运算
方式求得每个解集定义中的解。
而这些方法求解的结果必须遵循满足给定不等式的条件,这些解集定义本身就会形成一种限制关系,只有满足它们的才算是有效的解集。
最后,对于多个不等式组成的组合,它们生成的解集定义也将形成共同的解集,常以轴距形式呈现。
轴距形式即将解集定义依次取其交集的形式,即能构成每个定义解集的点的集合,且符合每个子集,形成共同的受限解。
总而言之,不等式组的解集定义是指,一系列的不等式的求解结果的集合,符合它体系内不等式的限制,且可以以轴距形式表示出来,以达到有效的求解解集的目的。