2021高考数学(理)一轮复习过关讲义《9.7抛物线》
- 格式:pdf
- 大小:1.23 MB
- 文档页数:19
第七节ꢀ抛ꢀ物ꢀ线内容索引【教材·知识梳理】1.抛物线的定义抛物线平面内到一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做_______,焦点准线定点F叫做抛物线的_____,定直线l叫做抛物线的_____.2.抛物线的标准方程与几何性质【常用结论】1.焦半径、通径:抛物线y2=2px(p>0)上一点P(x0,y)到焦点F的距离|PF|=x+,也称为抛物线的焦半径.过焦点垂直于对称轴的弦称为通径,通径长等于2p,是过焦点最短的弦.2.四倍关系:y2=ax的焦点坐标为,准线方程为x=-.3.抛物线中的常用结论:直线AB过抛物线y2=2px(p>0)的焦点,交抛物线于A(x,y),B(x,y)两点,如图.1122①y y=-p2,x x=1212②|AB|=x+x+p,x+x≥2=p,即当x=x时,121212弦长最短为2p.③为定值.④弦长AB=(α为AB的倾斜角).⑤以AB为直径的圆与准线相切.【知识点辨析】ꢀ(正确的打“√”,错误的打“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.(ꢀꢀ)(2)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x=-.(ꢀꢀ)(3)抛物线既是中心对称图形,又是轴对称图形.(ꢀꢀ)(4)若直线与抛物线只有一个交点,则直线与抛物线一定相切.(ꢀꢀ)(5)AB为抛物线y2=2px(p>0)的过焦点F,yy=-p2,弦长|AB|=x+x+p.的弦,若A(x,y),B(x,y),则xx=112212 (ꢀꢀ)1212(6)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x2=-2ay(a>0)的通径长为2a.(ꢀꢀ)提示:(1)×.当定点在定直线上时,轨迹为过定点与定直线垂直的一条直线,不是抛物线.(2)×.方程y=ax2(a≠0)可化为x2=y是焦点在y轴上的抛物线,且其焦点坐标是,准线方程是y=-.(3)×.抛物线是只有一条对称轴的轴对称图形.(4)×.例如,直线y=1与抛物线y2=4x只有一个交点,但它们相交.(5)√.由焦半径的性质可知正确.(6)√.由通径定义及抛物线性质知正确.【易错点索引】序号易错警示典题索引1 2 3不会利用定义转化考点一、T1,2联想不到利用焦点弦的有关结论求解考点二、T3运算不过关导致出错考点三、角度1【教材·基础自测】1.(选修2-1P70练习AT2改编)过抛物线y2=4x的焦点的直线l交抛物线于P(x,y),11Q(x,y)两点,如果x+x=6,则|PQ|等于(ꢀꢀ)2212A.9ꢀB.8ꢀC.7ꢀD.6【解析】选B.抛物线y2=4x的焦点为F(1,0),准线方程为x=-1,根据题意可得|PQ|=|PF|+|QF|=x+1+x+1=x+x+2=8.12122.(选修2-1P63例3改编)已知抛物线y2=2px(p>0)的焦点为F,P为抛物线上任意一点,则以PF为直径的圆C与y轴(ꢀꢀ)A.相交C.相离B.相切D.以上都不对【解析】选B.由抛物线方程得F,设P(x,y),则由抛物线定义可得|PF|=x+.000由已知点C为PF的中点则C的坐标为,半径r=,故C点到y轴的距离d=,所以d=r,故圆C与y轴相切,故选B.3.(选修2-1P61练习BT3改编)顶点在坐标原点,焦点为F(0,1)的抛物线上有一动点A,圆(x+1)2+(y-4)2=1上有一动点M,则当|AM|+|AF|取得最小值时=(ꢀꢀ) A.3 B. C.2 D.【解析】选B.由题知,抛物线方程为x2=4y,其准线为y=-1,设d=|AF|为A到准线的距离,则|AM|+|AF|的最小值等于圆心(-1,4)到准线的距离减去半径,此时A,则ꢀ考点一ꢀ抛物线的定义及标准方程ꢀ【题组练透】1.已知抛物线y2=4x的焦点为F,定点P(4,-2),在抛物线上找一点M,使得|PM|+|MF|最小,则点M的坐标为(ꢀꢀ)A.(2,-2)ꢀB.(1,2)ꢀC.(1,-2)ꢀD.(-1,2)2.已知直线l:4x-3y+6=0和l:x=-1,抛物线y2=4x上一动点P到直线l和直线l的1212距离之和的最小值是(ꢀꢀ)A. B.2ꢀ3.(2020·保定模拟)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点A(0,2),则C的方程为(ꢀꢀ)C.ꢀD.3A.y2=4x或y2=8xꢀC.y2=4x或y2=16xꢀB.y2=2x或y2=8x D.y2=2x或y2=16x4.设P是抛物线y2=4x上的一个动点,F为焦点,若B(3,2),则|PB|+|PF|的最小值为________.世纪金榜导学号ꢀ5.已知抛物线C的顶点为坐标原点,对称轴为坐标轴,直线l过抛物线C的焦点F,且与抛物线的对称轴垂直,l与C交于A,B两点,且|AB|=8,M为抛物线C准线上一点,则△ABM的面积为________.世纪金榜导学号ꢀ【解析】1.选C.过P作PM垂直于抛物线的准线,交抛物线于点M,交准线于点N,则|PM|+|MF|=|PM|+|MN|=|PN|,此时|PM|+|MF|最小,点M纵坐标为-2,故横坐标为1,所以点M的坐标为(1,-2).:x=-1是抛物线y2=4x的准线,设抛物线的焦点(1,0)为F,则动2.选B.由题可知l2点P到l的距离等于|PF|,则动点P到直线l和直线l的距离之和的最小值,即焦212点F到直线l:4x-3y+6=0的距离,所以最小值是13.选C.由已知得抛物线的焦点设点M(x0,y),则由已知得,=0,即-8y+16=0,因而y=4,由|MF|=5,得又p>0,解得p=2或p=8.故C的方程为y2=4x或y2=16x.4.如图,过点B作BQ垂直准线于点Q,交抛物线于点P,则|P Q|=|P F|,111则有|PB|+|PF|≥|P B|+|P Q|=|BQ|=4,11即|PB|+|PF|的最小值为4.答案:45.不妨设抛物线方程为y2=2px(p>0),则焦点将代入抛物线方程,可得2p×=42,得p=4,则准线方程为x=-2,设M(-2,t),则S=|AB|×p=4×4=16.△ABM答案:16【规律方法】1.抛物线定义的应用利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决有关抛物线距离问题的有效途径.2.求抛物线的标准方程的方法(1)定义法根据抛物线的定义,确定p的值(系数p是指焦点到准线的距离),再结合焦点位置,求出抛物线方程.标准方程有四种形式,要注意选择.(2)待定系数法①根据抛物线焦点是在x轴上还是在y轴上,设出相应形式的标准方程,然后根据条件确定关于p的方程,解出p,从而写出抛物线的标准方程.②当焦点位置不确定时,有两种方法解决:分情况讨论,注意要对四种形式的标准方程进行讨论,对于焦点在x轴方法一上的抛物线,为避免开口方向不确定可分为y2=2px(p>0)和y2=-2px(p>0)两种情况求解设成y2=mx(m≠0),若m>0,开口向右;若m<0,开口向左;若m有两个解,则抛物线的标准方程有两个.同理,焦点在y轴上的抛物线可以设成方法二x2=my(m≠0).如果不确定焦点所在的坐标轴,应考虑上述两种情况设方程考点二ꢀ直线与抛物线的综合问题ꢀ【典例】1.已知抛物线y2=2px(p>0)的焦点为F,过F的直线l交抛物线于A,B两点(点A在第一象限),若直线l的倾斜角为则=(ꢀꢀ)2.(2020·濮阳模拟)已知抛物线C:y2=4x的焦点为F,过F的直线l交抛物线C于A、B两点,弦AB的中点M到抛物线C的准线的距离为5,则直线l的斜率k为(ꢀꢀ)3.(2019·全国卷Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.世纪金榜导学号(1)若|AF|+|BF|=4,求l的方程.(2)若求|AB|.【解题导思】序号联想解题一看到抛物线上的点到焦点或到准线的距离问题,即联想到利用抛物线的定义进行转化12 3当条件中出现弦的中点(即中点弦问题)时,应立即考虑到设而不求(点差)法当条件中出现过抛物线焦点的直线时,应立即考虑到抛物线焦点弦的有关结论【解析】1.选A.过A、B分别作准线的垂线,垂足分别为M,N,作AE⊥BN,垂足为E,设|AF|=m,|BF|=n,则由抛物线的定义得|AM|=|AF|=m,|BN|=|BF|=n,|AB|=m+n, |BE|=n-m,因为∠ABN=60°,于是解得n=3m,则2.选C.抛物线C:y2=4x的焦点F(1,0),设A(x,y),B(x,y),线段AB的中点M(x,y),则由弦AB 112200的中点M到抛物线C的准线的距离为5,即x+=5,则x=4,00由两式相减得(y+y)(y-y)1212=4(x-x),则即k=则12即y=±,所以直线l的斜率k=3.设直线l:y=x+t,A(x,y),B(x,y).1122 (1)由题设得故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,则x+x=12从而得t=所以l的方程为y=(2)由由可得y=-3y.12可得y2-2y+2t=0.所以y+y=2.从而-3y+y=2,故y=-1,y=3.122221代入C的方程得x=3,x=.12故|AB|=【规律方法】1.直线与抛物线交点问题的解题思路(1)求交点问题,通常解直线方程与抛物线方程组成的方程组.(2)与交点相关的问题通常借助根与系数的关系或用向量法解决.2.解决抛物线的弦及弦中点问题的常用方法(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用焦点弦公式,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.【变式训练】1.已知F为抛物线C:y2=4x的焦点,E为其准线与x轴的交点,过F的直线交抛物线C于A,B两点,M为线段AB的中点,且|ME|=,则|AB|=()A.6B.3C.8D.9【解析】选A.由y2=4x得焦点F(1,0),E(-1,0),设直线AB的方程为x=ty+1并代入抛物线y2=4x得:y2-4ty-4=0.设A(x,y),B(x,y),则y+y=4t,y y=-4,11221212所以x+x=t(y+y)+2=4t2+2,所以M(2t2+1,2t),1212|ME|2=(2t2+2)2+(2t)2=11,即4t4+12t2-7=0,解得t2=或t2=-(舍),所以|AB|=x1+x2+p=4t2+2+2=4×+2+2=6.2.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,若|AF|+|BF|=5,则线段AB的中点到y轴的距离为________.【解析】设A(x,y),B(x,y),则由抛物线定义得|AF|+|BF|=5,即x++x+ 112212=5,则x1+x2=,所以线段AB的中点到y轴的距离为答案:考点三抛物线的性质及应用考什么:(1)考查抛物线的定义、顶点及直线与抛物线中的最值范围问题.(2)考查数学运算、逻辑推理、直观想象的核心素养及数形结合、转化与化归等思想方法.怎么考:借助距离考查抛物线的定义;结合函数单调性或基本不等式考查最值问题.新趋势:抛物线离心率的求解仍是考查的重点.命题精解读学1.定义的应用霸当题目中出现到焦点的距离或到准线(或到与对称轴垂直直线)的距离时,好应立即考虑到利用定义转化.方2.交汇问题法与函数、不等式结合考查范围最值,要注意定义域问题.【命题角度1】与抛物线有关的最值问题【典例】(2020·沈阳模拟)已知抛物线C:x2=2py(p>0),其焦点到准线的距离为2,直线l与抛物线C交于A,B两点,过A,B分别作抛物线C的切线l,l,且l与l交1212于点M.(1)求p的值.(2)若l⊥l,求△MAB面积的最小值.12【解析】(1)由题意知,抛物线焦点为焦点到准线的距离为2,即p=2.准线方程为y=(2)抛物线的方程为x2=4y,即y=x2,所以y′=x,设A(x,y),B(x,y),1122l 1:y-(x-x),l:y-(x-x2),12由于l⊥l,所以=-1,即x1x2=-4.12设直线l方程为y=kx+m,与抛物线方程联立,得所以x2-4kx-4m=0,Δ=16k2+16m>0,x+x=4k,x x=-4m=-4,1212所以m=1,即l:y=kx+1.联立方程得:即M(2k,-1).M点到直线l的距离d=|AB|=所以S=×4(1+k2)×当k=0时,△MAB的面积取得最小值4.【命题角度2】抛物线与向量的综合问题【典例】已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x,y),B(x,y)(x<x)两点,且|AB|=9.世纪金榜导学号112212(1)求该抛物线的方程.(2)O为坐标原点,C为抛物线上一点,若求λ的值.【解析】(1)直线AB 的方程是y=与y 2=2px 联立,得4x 2-5px+p 2由抛物线定义知|AB|=x +x =0,由已知,方程必有两个不等实根,所以x 1+x 2=+p=+p=9,解得p=4,所以抛物线方程为y 2=8x.12(2)由(1)知,x2-5x+4=0,所以x=1,x=4,y=-2,y=4,1212所以A(1,-2),B(4,4).设C(x,y),则=(x,y)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 3333又=8x,即[2(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1,解得λ=0或3λ=2.【题组通关】【变式巩固·练】1.(2019·九江模拟)《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,还提出了一元二次方程的解法问题直角三角形的三条边长分别称“勾”“股”“弦”.设点F是抛物线y2=2px (p>0)的焦点,l是该抛物线的准线,过抛物线上一点A作准线的垂线AB,垂足为B,射线AF交准线l于点C,若Rt△ABC的“勾”=3、“股”则抛物线方程为A.y2=2x ()B.y2=3xC.y2=4xD.y2=6x【解析】选B.由题意可知,抛物线的图象如图:|AB|=3,|BC|=3,可得|AC|=所以∠CAB=60°,△ABF是正三角形,并且F是AC的中点,又|AB|=3,则p=,所以抛物线方程为y2=3x.2.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.。
§9.7抛物线最新考纲考情考向分析1.掌握抛物线的定义、几何图形、标准方程及简单几何性质.2.了解抛物线的简单应用.抛物线的定义、标准方程及性质是高考考查的重点,直线与抛物线的位置关系是考查的热点,题型既有小巧灵活的选择题、填空题,多为中档题,又有综合性较强的解答题.1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程和几何性质标准方程y2=2px (p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点坐标O(0,0)对称轴x轴y轴概念方法微思考1.若抛物线定义中定点F在定直线l上时,动点的轨迹是什么图形?提示过点F且与l垂直的直线.2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件?提示 直线与抛物线的对称轴平行时,只有一个交点,但不是相切,所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( × )(3)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ ) 题组二 教材改编2.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( ) A.9 B.8 C.7 D.6 答案 B解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.若抛物线y 2=4x 的准线为l ,P 是抛物线上任意一点,则P 到准线l 的距离与P 到直线3x +4y +7=0的距离之和的最小值是( ) A.2 B.135 C.145 D.3答案 A解析由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离,由抛物线y2=4x及直线方程3x+4y+7=0可得直线与抛物线相离.∴点P到准线l的距离与点P到直线3x+4y+7=0的距离之和的最小值为点F(1,0)到直线3x+4y+7=0的距离,即|3+7|32+42=2.故选A.4.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为____________________.答案y2=-8x或x2=-y解析设抛物线方程为y2=mx(m≠0)或x2=my(m≠0).将P(-2,-4)代入,分别得方程为y2=-8x或x2=-y.题组三易错自纠5.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是()A.y2=±22xB.y2=±2xC.y2=±4xD.y2=±42x答案 D解析由已知可知双曲线的焦点为(-2,0),(2,0).设抛物线方程为y2=±2px(p>0),则p2=2,所以p=22,所以抛物线方程为y2=±42x.故选D.6.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l 的斜率的取值范围是__________.答案[-1,1]解析Q(-2,0),当直线l的斜率不存在时,不满足题意,故设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1.抛物线的定义和标准方程命题点1定义及应用例1设P是抛物线y2=4x上的一个动点,F是抛物线y2=4x的焦点,若B(3,2),则|PB|+|PF|的最小值为________.答案 4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4,即|PB|+|PF|的最小值为4.本例中的B点坐标改为(3,4),则|PB|+|PF|的最小值为________.答案2 5解析由题意可知点B(3,4)在抛物线的外部.∵|PB|+|PF|的最小值即为B,F两点间的距离,F(1,0),∴|PB|+|PF|≥|BF|=22+42=25,即|PB|+|PF|的最小值为2 5.若将本例中的条件改为已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值为________.答案32-1解析由题意知,抛物线的焦点为F(1,0).点P到y轴的距离d1=|PF|-1,所以d1+d2=d2+|PF|-1.易知d2+|PF|的最小值为点F到直线l的距离,故d2+|PF|的最小值为|1+5|12+(-1)2=32,所以d1+d2的最小值为32-1.命题点2求标准方程例2(1)顶点在原点,对称轴为坐标轴,焦点为直线3x-4y-12=0与坐标轴的交点的抛物线的标准方程为()A.x2=-12y或y2=16xB.x2=12y或y2=-16xC.x2=9y或y2=12xD.x2=-9y或y2=-12x答案 A解析 对于直线方程3x -4y -12=0, 令x =0,得y =-3;令y =0,得x =4, 所以抛物线的焦点为(0,-3)或(4,0).当焦点为(0,-3)时,设抛物线方程为x 2=-2py (p >0), 则p2=3,所以p =6, 此时抛物线的标准方程为x 2=-12y ;当焦点为(4,0)时,设抛物线方程为y 2=2px (p >0), 则p2=4,所以p =8, 此时抛物线的标准方程为y 2=16x .故所求抛物线的标准方程为x 2=-12y 或y 2=16x .(2)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的标准方程为( ) A.y 2=4x 或y 2=8x B.y 2=2x 或y 2=8x C.y 2=4x 或y 2=16x D.y 2=2x 或y 2=16x答案 C解析 由题意知,F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p 2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的标准方程为y 2=4x 或y 2=16x , 故选C.思维升华 (1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.跟踪训练1 (1)设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________.答案 5解析 如图,易知抛物线的焦点为F (1,0),准线是x =-1,由抛物线的定义知点P 到直线x =-1的距离等于点P 到F 的距离.于是,问题转化为在抛物线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小,显然,连接AF 与抛物线相交的点即为满足题意的点, 此时最小值为[1-(-1)]2+(0-1)2= 5.(2)(2019·衡水中学调研)若抛物线y 2=2px (p >0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的方程为( ) A.y 2=4x B.y 2=36xC.y 2=4x 或y 2=36xD.y 2=8x 或y 2=32x 答案 C解析 因为抛物线y 2=2px (p >0)上一点到抛物线的对称轴的距离为6,所以若设该点为P ,则P (x 0,±6).因为P 到抛物线的焦点F ⎝⎛⎭⎫p 2,0的距离为10,所以由抛物线的定义得x 0+p2=10.① 因为P 在抛物线上,所以36=2px 0.②由①②解得p =2,x 0=9或p =18,x 0=1,则抛物线的方程为y 2=4x 或y 2=36x .抛物线的几何性质例3 (1)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且|P A |=12|AB |,则点A到抛物线C 的焦点的距离为( ) A.53 B.75 C.97 D.2 答案 A解析 设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线x =-2的垂线,垂足分别为点D ,E . ∵|P A |=12|AB |,∴⎩⎪⎨⎪⎧3(x 1+2)=x 2+2,3y 1=y 2, 又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.(2)(2020·合肥检测)已知双曲线y 24-x 2=1的两条渐近线分别与抛物线y 2=2px (p >0)的准线交于A ,B 两点.O 为坐标原点.若△OAB 的面积为1,则p 的值为________. 答案2解析 双曲线的两条渐近线方程为y =±2x ,抛物线的准线方程为x =-p2,故A ,B 两点的坐标为⎝⎛⎭⎫-p 2,±p ,|AB |=2p ,所以S △AOB =12×2p ×p 2=p 22=1,解得p = 2. (3)(2020·华中师大附中月考)如图,点F 是抛物线y 2=8x 的焦点,点A ,B 分别在抛物线y 2=8x 及圆(x -2)2+y 2=16的实线部分上运动,且AB 始终平行于x 轴,则△ABF 的周长的取值范围是________.答案 (8,12)解析 设A (x A ,y A ),B (x B ,y B ). 抛物线的准线l :x =-2,焦点F (2,0), 由抛物线定义可得|AF |=x A +2,圆(x -2)2+y 2=16的圆心为点(2,0),半径为4,∴△F AB 的周长为|AF |+|AB |+|BF |=x A +2+(x B -x A )+4=6+x B ,由抛物线y 2=8x 及圆(x -2)2+y 2=16可得交点的横坐标为2,∴x B ∈(2,6),∴6+x B ∈(8,12). ∴△ABF 的周长的取值范围是(8,12).思维升华 在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.跟踪训练2 (1)(2020·焦作期中)以原点为顶点,y 轴为对称轴的抛物线Ω与正方形ABCD 有公共点,其中A (2,2),B (4,2),C (4,4),则抛物线Ω的焦点F 到准线l 的最大距离为( ) A.12 B.4 C.6 D.8 答案 B解析 由题意可得D (2,4),设抛物线Ω:x 2=2py ,p >0,要使得抛物线Ω与正方形ABCD 有公共点,其临界状态应该是过B 或过D ,把B ,D 的坐标分别代入抛物线方程,得42=2p ×2,或22=2p ×4,可得p =4或p =12,故抛物线的焦点F 到准线l 的最大距离为4.(2)(2020·湖北龙泉中学、钟祥一中、京山一中、沙洋中学四校联考)已知点A 是抛物线y =14x 2的对称轴与准线的交点,点F 为该抛物线的焦点,点P 在抛物线上且满足|PF |=m |P A |,则m 的最小值为________.答案 22解析 过P 作准线的垂线,垂足为N ,则由抛物线的定义可得|PN |=|PF |,∵|PF |=m |P A |,∴|PN |=m |P A |,则|PN ||P A |=m , 设P A 的倾斜角为α,则sin α=m ,当m 取得最小值时,sin α最小,此时直线P A 与抛物线相切,设直线P A 的方程为y =kx -1,代入x 2=4y ,可得x 2=4(kx -1),即x 2-4kx +4=0,∴Δ=16k 2-16=0,∴k =±1,∴m 的最小值为22. 直线与抛物线例4 (2019·全国Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若AP →=3PB →,求|AB |.解 设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2). (1)由题设可得F ⎝⎛⎭⎫34,0,故|AF |+|BF |=x 1+x 2+32, 又|AF |+|BF |=4,所以x 1+x 2=52. 由⎩⎪⎨⎪⎧ y =32x +t ,y 2=3x ,可得9x 2+12(t -1)x +4t 2=0, 令Δ>0,得t <12,则x 1+x 2=-12(t -1)9. 从而-12(t -1)9=52,得t =-78. 所以l 的方程为y =32x -78,即12x -8y -7=0. (2)由AP →=3PB →可得y 1=-3y 2,由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x ,可得y 2-2y +2t =0, 所以y 1+y 2=2,从而-3y 2+y 2=2,故y 2=-1,y 1=3,代入C 的方程得x 1=3,x 2=13, 即A (3,3),B ⎝⎛⎭⎫13,-1,故|AB |=4133. 思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.(4)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则①x 1x 2=p 24,y 1y 2=-p 2. ②弦长|AB |=x 1+x 2+p =2p sin 2α(α为弦AB 的倾斜角). ③以弦AB 为直径的圆与准线相切.④通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.跟踪训练3 (2020·汉中模拟)已知点M 为直线l 1:x =-1上的动点,N (1,0),过M 作直线l 1的垂线l ,l 交MN 的中垂线于点P ,记点P 的轨迹为C .(1)求曲线C 的方程;(2)若直线l 2:y =kx +m (k ≠0)与圆E :(x -3)2+y 2=6相切于点D ,与曲线C 交于A ,B 两点,且D 为线段AB 的中点,求直线l 2的方程.解 (1)由已知可得,|PN |=|PM |,即点P 到定点N 的距离等于它到直线l 1的距离,故点P 的轨迹是以N 为焦点,l 1为准线的抛物线,∴曲线C 的方程为y 2=4x .(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +m ,y 2=4x ,得k 2x 2+(2km -4)x +m 2=0, ∴x 1+x 2=4-2km k 2, ∴x 0=x 1+x 22=2-km k 2, y 0=kx 0+m =2k ,即D ⎝ ⎛⎭⎪⎫2-km k 2,2k , ∵直线l 2与圆E :(x -3)2+y 2=6相切于点D ,∴|DE |2=6,且DE ⊥l 2,从而⎝ ⎛⎭⎪⎫2-km k 2-32+⎝⎛⎭⎫2k 2=6,k DE ·k =-1, 即⎩⎪⎨⎪⎧ 2-km k 2-3=-2,⎝ ⎛⎭⎪⎫2-km k 2-32+⎝⎛⎭⎫2k 2=6,整理可得⎝⎛⎭⎫2k 2=2,即k =±2,∴m =0,故直线l 2的方程为2x -y =0或2x +y =0.1.抛物线y =ax 2(a ≠0)的准线方程是y =1,则a 的值为( )A.14B.-14C.4D.-4 答案 B解析 由y =ax 2,变形得x 2=1a y =2×12a y ,∴p =12a .又抛物线的准线方程是y =1,∴-14a=1,解得a =-14. 2.(2019·包头青山区模拟)已知点P (2,y )在抛物线y 2=4x 上,则点P 到抛物线焦点F 的距离为( )A.2B.3C. 3D. 2答案 B解析 因为抛物线y 2=4x 的焦点为(1,0),准线为x =-1,结合定义点P 到抛物线焦点的距离等于它到准线的距离,为3.3.设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )A.1B.2C.3D.4答案 C解析 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝⎛⎭⎫12,0,所以x 1+x 2+x 3=3×12=32, 则|F A →|+|FB →|+|FC →|=⎝⎛⎭⎫x 1+12+⎝⎛⎭⎫x 2+12+⎝⎛⎭⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3. 4.(2020·惠州调研)已知F 是抛物线C :y =2x 2的焦点,N 是x 轴上一点,线段FN 与抛物线C相交于点M ,若2FM →=MN →,则|FN →|等于( )A.58B.12C.38D.1 答案 A解析 由题意得点F 的坐标为⎝⎛⎭⎫0,18, 设点M 的坐标为(x 0,y 0),点N 的坐标为(a ,0),所以FM →=⎝⎛⎭⎫x 0,y 0-18,MN →=(a -x 0,-y 0), 由2FM →=MN →可得,⎩⎪⎨⎪⎧ 2x 0=a -x 0,2y 0-14=-y 0,解得y 0=112,x 0=13a , 代入抛物线方程可得x 0=±612,则a =±64, 所以点N 的坐标为⎝⎛⎭⎫±64,0, 由两点之间的距离公式可得|FN |=58. 5.抛物线x 2=4y 的焦点为F ,过点F 作斜率为33的直线l 与抛物线在y 轴右侧的部分相交于点A ,过点A 作抛物线准线的垂线,垂足为H ,则△AHF 的面积是( )A.4B.3 3C.4 3D.8答案 C解析 由抛物线的定义可得|AF |=|AH |,∵AF 的斜率为33,∴AF 的倾斜角为30°, ∵AH 垂直于准线,∴∠F AH =60°,故△AHF 为等边三角形.设A ⎝⎛⎭⎫m ,m 24,m >0, 过F 作FM ⊥AH 于M ,则在Rt △F AM 中,|AM |=12|AF |, ∴m 24-1=12⎝⎛⎭⎫m 24+1, 解得m =23,故等边三角形AHF 的边长|AH |=4,∴△AHF 的面积是12×4×4sin 60°=4 3.故选C. 6.(2019·洛阳模拟)已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若|AB |=6,则△AOB 的面积为( )A. 6B.2 2C.2 3D.4答案 A解析 根据题意,抛物线y 2=4x 的焦点为F (1,0).设直线AB 的斜率为k ,可得直线AB 的方程为y =k (x -1),设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 消去x ,得 y 2-4k y -4=0,y 1+y 2=4k,y 1y 2=-4, 则x 1+x 2=y 1+y 2k +2=4k 2+2, |AB |=x 1+x 2+p =4k 2+2+2=6, 则k =±2,|y 1-y 2|=(y 1+y 2)2-4y 1y 2=26, S △AOB =S △AOF +S △BOF =12|OF |·|y 1-y 2|=12×1×26=6, ∴△AOB 的面积为 6.7.(2020·晋城模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,l 与x 轴的交点为P ,点A 在抛物线C 上,过点A 作AA ′⊥l ,垂足为A ′,若四边形AA ′PF 的面积为14,且cos ∠F AA ′=35,则抛物线C 的方程为( ) A.y 2=8xB.y 2=4xC.y 2=2xD.y 2=x答案 B解析 如图所示,过点F 作FF ′⊥AA ′,垂足为F ′,设|AF ′|=3x ,因为cos ∠F AA ′=35,故|AF |=5x ,|FF ′|=4x ,由抛物线定义可知,|AF |=|AA ′|=5x ,则|A ′F ′|=2x =p ,故x =p 2. 四边形AA ′PF 的面积S =(|PF |+|AA ′|)·|P A ′|2=⎝⎛⎭⎫p +52p ·2p 2=14,解得p =2,故抛物线C 的方程为y 2=4x .8.(2019·潮州模拟)从抛物线y 2=4x 上一点P 引其准线的垂线,垂足为M ,设抛物线的焦点为F ,且|PF |=5,则△MPF 的面积为________.答案 10解析 由抛物线的定义可知|PF |=|PM |=5,并且点P 到准线的距离x P +1=5,∴x P =4,y P =±4,∴S =12×5×4=10. 9.(2020·江淮十校联考)已知直线l 是抛物线y 2=2px (p >0)的准线,半径为3的圆过抛物线顶点O 和焦点F 与l 相切,则抛物线的方程为________.答案 y 2=8x解析 ∵半径为3的圆与抛物线的准线l 相切,∴圆心到准线的距离等于3,又∵圆心在OF 的垂直平分线上,|OF |=p 2, ∴p 2+p 4=3,∴p =4,故抛物线的方程为y 2=8x . 10.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =________.答案 2解析 抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0,则抛物线C 与直线必有两个交点.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k 2,x 1x 2=4,所以y1+y2=k(x1+x2)-4k=8,ky1y2=k2[x1x2-2(x1+x2)+4]=-16.因为MA→·MB→=(x1+2,y1-2)·(x2+2,y2-2)=(x1+2)(x2+2)+(y1-2)(y2-2)=x1x2+2(x1+x2)+y1y2-2(y1+y2)+8=0,将上面各个量代入,化简得k2-4k+4=0,所以k=2.11.一条隧道的横断面由抛物线弧及一个矩形的三边围成,尺寸(单位:m)如图,一辆卡车空车时能通过此隧道,现载一集装箱,箱宽3 m,车与箱共高4.5 m,此车能否通过隧道?说明理由.解建立如图所示的平面直角坐标系,设矩形的边与抛物线的接点为A,B,则A(-3,-3),B(3,-3).设抛物线方程为x 2=-2py (p >0),将B 点坐标代入得9=-2p ·(-3),所以p =32. 所以抛物线方程为x 2=-3y (-3≤y ≤0).因为车与箱共高4.5 m ,所以集装箱上表面距抛物线形隧道拱顶0.5 m.设抛物线上点D 的坐标为(x 0,-0.5),则x 20=32, 所以|x 0|=32=62, 所以2|x 0|=6<3,故此车不能通过隧道.12.(2020·湖北“荆、荆、襄、宜”四地七校联考)已知点F (0,1),点A (x ,y )(y ≥0)为曲线C 上的动点,过A 作x 轴的垂线,垂足为B ,满足|AF |=|AB |+1.(1)求曲线C 的方程;(2)直线l 与曲线C 交于两个不同点P ,Q (非原点),过P ,Q 两点分别作曲线C 的切线,两切线的交点为M ,设线段PQ 的中点为N ,若|FM |=|FN |,求直线l 的斜率.解 (1)由|AF |=|AB |+1,得x 2+(y -1)2=|y |+1,化简得曲线C 的方程为x 2=4y .(2)由题意可知直线l 的斜率存在,设直线l 的方程为y =kx +b ,联立x 2=4y ,得x 2-4kx -4b =0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4b , 设N (x N ,y N ),则x N =x 1+x 22=2k ,y N =2k 2+b ,又曲线C 的方程为x 2=4y ,即y =x 24,y ′=x 2,∴过P 点的切线斜率为x 12,切线方程为y -y 1=x 12(x -x 1),即y =x 12x -14x 21.同理,过Q 点的切线方程为y =x 22x -14x 22,联立两切线可得交点M 的坐标为x M =x 1+x 22=2k ,y M =14x 1x 2=-b .所以x M =x N ,又因为|FM |=|FN |,所以MN 中点纵坐标为1,即2k 2+b -b2=1,k =±1,故直线l 的斜率为k =±1.13.长为2的线段AB 的两个端点在抛物线y 2=x 上滑动,则线段AB 的中点M 到y 轴距离的最小值是________. 答案 34解析 由题意知,2大于抛物线的通径,即AB 可以过焦点.设抛物线y 2=x 的焦点为F ,准线为l ,点A ,B ,M 在l 上的射影分别为点C ,D ,N ,连接AC ,BD ,MN ,如图.由梯形的中位线定理,可得|MN |=12(|AC |+|BD |).连接AF ,BF ,根据抛物线的定义得|AF |=|AC |,|BF |=|BD |.根据平面几何知识,可得|AF |+|BF |≥|AB |,当且仅当点F 在AB 上时取等号, ∴|AC |+|BD |≥|AB |=2, ∴|MN |=12(|AC |+|BD |)≥12|AB |=1.设点M 的横坐标为a ,抛物线y 2=x 的准线方程为x =-14,则|MN |=a +14≥1,解得a ≥34.因此,当且仅当线段AB 为经过抛物线焦点的弦时,AB 的中点M 到y 轴距离的最小值为34.14.过抛物线C :x 2=4y 的焦点F 作直线l 交C 于A ,B 两点,设D (0,3).若(DA →+DB →)·AB →=0,则弦AB 的长为________. 答案 4解析 若(DA →+DB →)·AB →=0, 则线段AB 的垂直平分线过点D .设A (x 1,y 1),B (x 2,y 2),则x 21=4y 1,x 22=4y 2,两式相减得x 1+x 2=4(y 1-y 2)x 1-x 2=4k AB ,即k AB =x 1+x 24,则弦AB 的中点与点D (0,3)的连线的斜率 k =y 1+y 22-3x 1+x 22=-4x 1+x 2,所以y 1+y 2=2,所以|AB |=y 1+y 2+2=4.15.(2019·全国100所名校联考)已知点P (1,2)在抛物线y 2=2px (p >0)上,若Rt △P AB 内接于该抛物线,且∠A =90°,则点B 的纵坐标的取值范围是________. 答案 (-∞,-6)∪[10,+∞)解析 由题意可得抛物线的方程为y 2=4x ,设A (x ,y ),B (x 0,y 0),△P AB 的外接圆的方程为 (x -1)(x -x 0)+(y -2)(y -y 0)=0,所以(4x -4)(4x -4x 0)+16(y -2)(y -y 0)=0, 即(y 2-4)(y 2-y 20)+16(y -2)(y -y 0)=0, 化简可得y 0=-16y +2-y =-16y +2-(y +2)+2.令t =-(y +2),且y ≠y P ,则y 0=-16y +2-y =16t +t +2∈(-∞,-6)∪[10,+∞).16.已知抛物线E :y 2=2px (p >0)的焦点为F ,过点F 且倾斜率为π4的直线l 被E 截得的线段长为8.(1)求抛物线E 的方程;(2)已知点C 是抛物线上的动点,以C 为圆心的圆过点F ,且圆C 与直线x =-12相交于A ,B两点, 求|F A |·|FB |的取值范围.解 (1)由题意,直线l 的方程为y =x -p 2,联立⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y 整理得x 2-3px +p 24=0.设直线l 与抛物线E 的交点的横坐标分别为x 1,x 2,则x 1+x 2=3p ,故直线l 被抛物线E 截得的线段长为x 1+x 2+p =4p =8,得p =2, ∴抛物线E 的方程为y 2=4x .(2)由(1)知,F (1,0),设C (x 0,y 0),则圆C 的方程是(x -x 0)2+(y -y 0)2=(x 0-1)2+y 20. 令x =-12,得y 2-2y 0y +3x 0-34=0.又∵y 20=4x 0,∴Δ=4y 20-12x 0+3=y 20+3>0恒成立.设A ⎝⎛⎭⎫-12,y 3,B ⎝⎛⎭⎫-12,y 4, 则y 3+y 4=2y 0,y 3y 4=3x 0-34.∴|F A |·|FB |=y 23+94·y 24+94=(y 3y 4)2+94(y 23+y 24)+8116=⎝⎛⎭⎫3x 0-342+94⎣⎡⎦⎤4y 20-2⎝⎛⎭⎫3x 0-34+8116 =9x 20+18x 0+9=3|x 0+1|.∵x0≥0,∴|F A|·|FB|∈[3,+∞).。
2021年高考数学一轮复习第九篇解析几何第7讲抛物线教案理新人教版【xx年高考会这样考】1.考查抛物线定义、标准方程.2.考查抛物线的焦点弦问题.3.与向量知识交汇考查抛物线的定义、方程、性质等.【复习指导】熟练掌握抛物线的定义及四种不同的标准形式,会根据抛物线的标准方程研究得出几何性质及会由几何性质确定抛物线的标准方程;掌握代数知识,平面几何知识在解析几何中的作用.基础梳理1.抛物线的定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口方向向右向左向上向下焦半径|PF|=x0+p2|PF|=-x0+p2|PF|=y0+p2|PF|=-y0+p2一个结论焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F⎝⎛⎭⎪⎫p2,0的距离|PF|=x0+p2.两种方法(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).双基自测1.(人教A版教材习题改编)抛物线y2=8x的焦点到准线的距离是( ).A.1 B.2 C.4 D.8解析由2p=8得p=4,即焦点到准线的距离为4.答案 C2.(xx·金华模拟)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ).A.x2=-12y B.x2=12yC.y2=-12x D.y2=12x解析p2=3,∴p=6,∴x2=-12y.答案 A3.(xx·陕西)设抛物线的顶点在原点,准线方程x=-2,则抛物线的方程是( ).A.y2=-8x B.y2=-4x C.y2=8x D.y2=4x解析 由准线方程x =-2,顶点在原点,可得两条信息:①该抛物线焦点为F (2,0);②该抛物线的焦准距p =4.故所求抛物线方程为y 2=8x . 答案 C4.(xx·西安月考)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ).A .4B .6C .8D .12解析 据已知抛物线方程可得其准线方程为x =-2,又由点P 到y 轴的距离为4,可得点P 的横坐标x P =4,由抛物线定义可知点P 到焦点的距离等于其到准线的距离,即|PF |=x P +p2=x P +2=4+2=6. 答案 B5.(xx·长春模拟)抛物线y 2=8x 的焦点坐标是________.解析 ∵抛物线方程为y 2=8x ,∴2p =8,即p =4.∴焦点坐标为(2,0). 答案 (2,0)考向一 抛物线的定义及其应用【例1】►(xx·辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ). A.34 B .1 C.54 D.74[审题视点] 由抛物线定义将|AF |+|BF |转化为线段AB 的中点到准线的距离即可. 解析设抛物线的准线为l ,作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定义知|AA 1|+|BB 1|=|AF |+|BF |=3,则AB 的中点到y 轴的距离为12(|AA 1|+|BB 1|)-14=54.答案 C涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.【训练1】 (xx·济南模拟)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ).A.172 B .3 C. 5 D.92解析 由抛物线的定义知,点P 到该抛物线的距离等于点P 到其焦点的距离,因此点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和即为点P 到点(0,2)的距离与点P 到焦点的距离之和,显然,当P 、F 、(0,2)三点共线时,距离之和取得最小值,最小值等于⎝ ⎛⎭⎪⎫0-122+2-02=172. 答案 A考向二 抛物线的标准方程及性质【例2】►(1)(xx·南京模拟)以原点为顶点,坐标轴为对称轴,并且经过P (-2,-4)的抛物线方程为________.(2)(xx·浙江)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.[审题视点] (1)为求抛物线的方程问题,用待定系数法求解,根据题设条件,按焦点所在位置的可能情况,分类讨论.(2)抓住FA 的中点B 在抛物线上,求出p . 解析 (1)由于点P 在第三象限.①当焦点在x 轴负半轴上时,设方程为y 2=-2px (p >0), 把点P (-2,-4)代入得:(-4)2=-2p ×(-2), 解得p =4,∴抛物线方程为y 2=-8x .②当焦点在y 轴负半轴上时,设方程为x 2=-2py (p >0),把点P (-2,-4)代入得:(-2)2=-2p ×(-4).解得p =12.∴抛物线方程为x 2=-y .综上可知抛物线方程为y 2=-8x 或x 2=-y .(2)抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,则线段FA 的中点B 的坐标为⎝ ⎛⎭⎪⎫p4,1,代入抛物线方程得1=2p ×p 4,解得p =2,故点B 的坐标为⎝ ⎛⎭⎪⎫24,1,故点B 到该抛物线准线的距离为24+22=324. 答案 (1)y 2=-8x 或x 2=-y (2)324求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.【训练2】 已知F 为抛物线x 2=2py (p >0)的焦点,M 为其上一点,且|MF |=2p ,则直线MF 的斜率为( ). A .-33 B .±33C .- 3D .± 3 解析 依题意,得F ⎝ ⎛⎭⎪⎫0,p 2,准线为y =-p2,过点M 作MN 垂直于准线于N ,过F 作FQ 垂直于MN 于Q ,则|MN |=|MF |=2p ,|MQ |=p ,故∠MFQ =30°, 即直线MF 的倾斜角为150°或30°,斜率为-33或33. 答案 B考向三 抛物线的综合应用【例3】►(xx·江西)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.[审题视点] (1)联立方程,利用焦点弦公式求解;(2)先求出A 、B 坐标,利用关系式表示出点C 坐标,再利用点C 在抛物线上求解.解 (1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4,由抛物线定义得:|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0, 从而x 1=1,x 2=4,y 1=-22,y 2=42, 从而A (1,-22),B (4,42);设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22), 又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1), 即(2λ-1)2=4λ+1,解得λ=0,或λ=2.本题综合考查了直线与抛物线的位置关系、抛物线的标准方程与几何性质、平面向量知识,以及数形结合思想和化归思想.其中直线与圆锥曲线的相交问题一般是联立方程,设而不求,借助根的判别式及根与系数的关系进行转化.【训练3】 设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A 、B 两点. (1)设L 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值.(1)解 ∵F (1,0),∴直线L 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x -1,y 2=4x 得x 2-6x +1=0,∴x 1+x 2=6,x 1x 2=1. ∴|AB |=x 2-x 12+y 2-y 12=2·x 1+x 22-4x 1x 2=2·36-4=8.(2)证明 设直线L 的方程为x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,y 2=4x 得y 2-4ky -4=0.∴y 1+y 2=4k ,y 1y 2=-4, OA →=(x 1,y 1),OB →=(x 2,y 2).∵OA →·OB →=x 1x 2+y 1y 2 =(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2 =-4k 2+4k 2+1-4=-3. ∴OA →·OB →是一个定值.阅卷报告14——忽视“判别式”致误【问题诊断】 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,在解决直线与圆锥曲线相交的问题时,有时不需要考虑判断式,致使有的考生思维定势的原因,任何情况下都没有考虑判别式,导致解题错误.【防范措施】 解题后任何情况下都来检验判别式Δ.【示例】►(xx·福建)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.实录 (1)将点A (1,-2)代入y 2=2px ,得p =2,故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.错因 遗漏判别式的应用.(2)假设存在直线l ,设l :y =-2x +t , 由直线OA 与l 的距离d =55,得|t |5=15,解得t =±1.故符合题意的直线l 存在,其方程为2x +y -1=0或2x +y +1=0. 正解 (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞, 所以符合题意的直线l 存在,其方程为2x +y -1=0.【试一试】 (xx·杭州模拟)在直角坐标系xOy 中,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,F 2也是抛物线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=53. (1)求C 1的方程;(2)平面上的点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与C 1交于A 、B 两点,若OA →·OB →=0,求直线l 的方程.[尝试解答] (1)由C 2:y 2=4x ,知F 2(1,0), 设M (x 1,y 1),M 在C 2上,因为|MF 2|=53,所以x 1+1=53,得x 1=23,y 1=263.所以M ⎝ ⎛⎭⎪⎫23,263.M 在C 1上,且椭圆C 1的半焦距c =1,于是⎩⎪⎨⎪⎧49a 2+83b2=1,b 2=a 2-1,消去b 2并整理得9a 4-37a 2+4=0.解得a =2⎝ ⎛⎭⎪⎫a =13不合题意,舍去.故b 2=4-1=3.故椭圆C 1的方程为x 24+y 23=1.(2)由MF 1→+MF 2→=MN →,知四边形MF 1NF 2是平行四边形,其中心为坐标原点O , 因为l ∥MN ,所以l 与OM 的斜率相同. 故l 的斜率k =26323= 6.设l 的方程为y =6(x -m ).由⎩⎪⎨⎪⎧x 24+y 23=1,y =6x -m消去y 并整理得9x 2-16mx +8m 2-4=0. 设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=16m 9,x 1x 2=8m 2-49.因为OA →⊥OB →,所以x 1x 2+y 1y 2=0. 所以x 1x 2+y 1y 2=x 1x 2+6(x 1-m )(x 2-m ) =7x 1x 2-6m (x 1+x 2)+6m 2 =7·8m 2-49-6m ·16m 9+6m 2=19(14m 2-28)=0. 所以m =± 2.此时Δ=(16m )2-4×9(8m 2-4) =-32m 2+144=-32×2+144>0.故所求直线l 的方程为y =6x -23,或y =6x +2 3.。
2021年高考数学一轮复习 9.7 抛物线 理 新人教A 版一、选择题1.(xx·合肥质量检测)抛物线x 2=12y 的焦点坐标为( ) A.⎝ ⎛⎭⎪⎫12,0 B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫18,0D.⎝⎛⎭⎪⎫0,18解析 抛物线x 2=12y 的焦点坐标是⎝ ⎛⎭⎪⎫0,18.答案 D2.(xx·西宁复习检测)已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为( ) A .2B .1C.12D.14解析 曲线的标准方程为(x -2)2+y 2=9,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x =-p2,∴由抛物线的准线与圆相切得2+p2=3,解得p =2,故选A.答案 A3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是 ( ) A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x 2解析 分两类a >0,a <0可得y =112x 2,y =-136x 2. 答案 D4.(xx·潍坊一模)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 24-y 25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则A 点的横坐标为( )A .2 2B .3C .2 3D .4解析 抛物线的焦点为⎝ ⎛⎭⎪⎫p2,0,准线为x =-p 2.双曲线的右焦点为(3,0),所以p2=3,即p =6,即y 2=12x .过A 做准线的垂线,垂足为M ,则|AK |=2|AF |=2|AM |,即|KM |=|AM |,设A (x ,y ),则y =x +3,代入y 2=12x , 解得x =3. 答案 B5.(xx·新课标全国Ⅱ卷)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332D.94解析 易知抛物线中p =32,焦点F ⎝ ⎛⎭⎪⎫34,0, 法一 直线AB 的斜率k =33, 故直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34, 代入抛物线方程y 2=3x ,整理得x 2-212x +916=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=212. 由抛物线的定义可得弦长|AB |=x 1+x 2+p =212+32=12,法二 由抛物线焦点弦的性质可得|AB |=2psin 2θ=32sin 230°=12,结合图象可得O 到直线AB 的距离d =p 2sin 30°=38,所以△OAB 的面积S =12|AB |·d =94.答案 D 二、填空题6.(xx·北京海淀区模拟)若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的左顶点,则p =________.解析 由题意知抛物线的准线为x =-p2,双曲线x 2-y 2=1的左顶点为(-1,0),所以-p2=-1,p =2. 答案 27.(xx·银川质量检测)已知一条过点P (2,1)的直线与抛物线y 2=2x 交于A ,B 两点,且P 是弦AB 的中点,则直线AB 的方程为________.解析 依题意,设点A (x 1,y 1),B (x 2,y 2),则有y 21=2x 1,y 22=2x 2,两式相减得y 21-y 22=2(x 1-x 2),即y 1-y 2x 1-x 2=2y 1+y 2=1,直线AB 的斜率为1,直线AB 的方程是y -1=x -2,即x -y -1=0. 答案 x -y -1=08.(xx·沈阳质量监测)已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k BC +1k CA=________.解析 设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p2,0,则⎝ ⎛⎭⎪⎫x 1-p2,y 1+⎝ ⎛⎭⎪⎫x 2-p2,y 2+⎝ ⎛⎭⎪⎫x 3-p 2,y 3=(0,0),故y 1+y 2+y 3=0.因为1k AB =x 2-x 1y 2-y 1=12p (y 22-y 21)y 2-y 1=y 2+y 12p ,同理可知1k BC =y 3+y 22p ,1k CA =y 3+y 12p ,所以原式=2(y 1+y 2+y 3)2p =0.答案 0 三、解答题9. 如图,已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.解 设直线OA 的方程为y =kx ,k ≠0,则直线OB 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,y 2=2px ,得x =0或x =2p k 2.∴A 点坐标为⎝ ⎛⎭⎪⎫2p k2,2p k ,同理得B 点坐标为(2pk 2,-2pk ),由|OA |=1,|OB |=8,可得⎩⎪⎨⎪⎧4p 2k 2+1k 4=1, ①4p 2k 2(k 2+1)=64, ②②÷①解方程组得k 6=64,即k 2=4. 则p 2=16k 2(k 2+1)=45. 又p >0,则p =255,故所求抛物线方程为y 2=455x . 10.(xx·陕西卷)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.解 (1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2. ∴a =2,b =1.(2)由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得 (k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4. 同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0)得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP →=2kk 2+4(k ,-4),AQ →=-k (1,k +2). ∵AP ⊥AQ ,∴AP →·AQ →=0, 即-2k 2k 2+4[k -4(k +2)]=0, ∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).能力提升题组 (建议用时:25分钟)11.(xx·太原模拟)已知P 是抛物线y 2=2x 上动点,A ⎝ ⎛⎭⎪⎫72,4,若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是 ( ) A .4B.92C .5D.112解析 因为点P 在抛物线上,所以d 1=|PF |-12(其中点F 为抛物线的焦点),则d 1+d 2=|PF |+|PA |-12≥|AF |-12=⎝ ⎛⎭⎪⎫72-122+42-12=5-12=92,当且仅当点P 是线段AF与抛物线的交点时取等号,故选B. 答案 B12.(xx·四川卷)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3C.1728D.10解析 如图,可设A (m 2,m ),B (n 2,n ),其中m >0,n <0,则OA →=(m 2,m ),OB →=(n 2,n ),OA →·OB →=m 2n 2+mn =2,解得mn =1(舍)或mn =-2.∴l AB :(m 2-n 2)(y -n )=(m -n )(x -n 2),即(m +n )(y -n )=x -n 2,令y =0,解得x =-mn =2,∴C (2,0).S △AOB =S △AOC +S △BOC =12×2×m +12×2×(-n )=m -n ,S △AOF =12×14×m =18m ,则S △AOB +S △AOF =m -n +18m =98m -n =98m +2m≥298m ·2m =3,当且仅当98m =2m,即m =43时等号成立.故△ABO 与△AFO 面积之和的最小值为3. 答案 B13.(xx·南昌模拟)抛物线C :x 2=8y 与直线y =2x -2相交于A ,B 两点,点P 是抛物线C 上异于A ,B 的一点,若直线PA ,PB 分别与直线y =2相交于点Q ,R ,O 为坐标原点,则OP →·OQ →=________.解析 设A ⎝ ⎛⎭⎪⎫x 1,x 218,B ⎝ ⎛⎭⎪⎫x 2,x 228,P ⎝⎛⎭⎪⎫x 0,x 208,Q (x 3,2), R (x 4,2).将y =2x -2代入x 2=8y 得x 2-16x +16=0,则x 1+x 2=x 1x 2=16.直线PA 的方程为y -x 208=x 208-x 218x 0-x 1(x -x 0),即y -x 208=x 0+x 18(x -x 0).令y =2,解得x 3=x 1x 0+16x 1+x 0;同理可得x 4=x 2x 0+16x 1+x 0.所以x 3x 4=x 1x 0+16x 1+x 0×x 2x 0+16x 2+x 0=x 2x 1x 20+16x 0(x 1+x 2)+162x 2x 1+16x 0+x 20=16(x 2x 1+16x 0+x 20)x 2x 1+16x 0+x 20=16, 所以OR →·OQ →=x 3x 4+4=20. 答案 2014.已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求|MN |的最小值.解 (1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y . (2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4.从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2⎪⎪⎪⎪⎪⎪84-x 1-84-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 2x 1x 2-4(x 1+x 2)+16=82k 2+1|4k -3|,令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2225t 2+6t+1>22. 当t <0时,|MN |=22⎝ ⎛⎭⎪⎫5t +352+1625≥85 2.综上所述,当t =-253,即k =-43时,|MN |的最小值是852..28193 6E21 渡Y532936 80A8 肨32489 7EE9 绩22920 5988 妈!=31234 7A02 稂P40526 9E4E 鹎22751 58DF 壟%[。