2019—2020年北师大版高中数学选修1-1:导数应用综合素质检测及解析.docx
- 格式:docx
- 大小:68.22 KB
- 文档页数:12
一、选择题1.已知1a e =,ln33b =,ln 44c =,则a 、b 、c 的大小关系为( )A .b c a <<B .c b a <<C .c a b <<D .a c b <<2.已知函数()22ln 3f x x ax x =+-在2x =处取得极小值,则()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值为( ) A .52-B .92ln 32-C .1-D .2ln 24-3.已知函数()()2ex x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃⎪⎝⎭ B .24,1e ⎛⎫⎪⎝⎭C .24,e e ⎛⎫⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭4.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<5.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<6.对任意0x >,若不等式2e ln e xa x ax x++≥恒成立(e 为自然对数的底数),则正实数a 的取值范围是( )A .(0,e]B .2(0,e ]C .2[,e]eD .22[,e ]e7.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34B .16C .24D .178.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π9.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( ) A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,10.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+11.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞12.若函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,则a 的取值范围为( ) A .21,e ⎛⎫--⎪⎝⎭ B .2{1},e ⎡⎫-⋃-+∞⎪⎢⎣⎭ C .2,e ⎡⎫-+∞⎪⎢⎣⎭D .2{1},0e ⎡⎫-⋃-⎪⎢⎣⎭二、填空题13.已知函数)(f x 的定义域为R ,且)(12f -=.若对任意x ∈R ,)(2f x '>,则)(24f x x >+的解集为______.14.若0x ∀>,不等式ln 2(0)a x b a x ++≥>恒成立,则ba的最大值为________. 15.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.16.已知奇函数()f x 是定义在R 上的可导函数,当0x >时,有22()()f x xf x x '+>,则不等式2(2021)(2021)4(2)0x f x f +++-<的解集为________. 17.函数2sin y x x =-在[]0,2π上的递增区间是________.18.函数31()3f x x ax =-的极大值为a =__________. 19.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',且()()32xxf x f x x e'-=,()339f e =,则关于x 的方程()>f x e 的解集为_____________.20.已知函数22(0)()4(0)x e x f x x x ⎧>=⎨+≤⎩,若x R ∀∈,()f x mx ≥,则实数m 的取值范围是________. 三、解答题21.已知函数()()()2220xf x ax x ea =++>,其中e 是自然对数的底数.(1)若()f x 在[]22-,上是单调增函数,求a 的取值范围; (2)证明:当1a =时,方程()5f x x =+有且只有两个零点.22.已知函数21()ln 2x f x x x -=-.(1)求()f x 的单调区间; (2)设()*ln 1,1,2,k k a n k n n ⎫⎛=+∈=⋅⋅⋅ ⎪⎝⎭N ,在(1)的条件下,求证:123214n n a a a a ++++⋅⋅⋅+<()*n ∈N . 23.已知函数()()()242,f x x x a a R =--∈,()f x '为()f x 的导函数,且()10f '-=.(1)讨论函数()f x 的单调性;(2)求函数()f x 在[]22-,上的最大值和最小值. 24.已知函数()()22646x x e f x x x -=++.(1)求函数()f x 的单调区间,并求()f x 的最值; (2)已知[)0,1a ∈,()()()2322202x e a x x g x x x-++=>.①证明:()g x 有最小值;②设()g x 的最小值为()h a ,求函数()h a 的值域. 25.已知函数()2ln f x x a x =+.(1)当2a =-时,求函数()f x 在点()()11f ,处的切线方程; (2)若()()2g x f x x=+在[1,+)∞上是单调增函数,求实数a 的取值范围. 26.已知曲线3211()33f x x ax bx =+++在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值.(1)求函数()f x 的解析式;(2)求函数()f x 在[]0,3上的极值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】 构造函数()ln xf x x=,利用导数分析函数()f x 在区间[),e +∞上的单调性,由此可得出a 、b 、c 的大小关系.【详解】 构造函数()ln x f x x =,则()21ln xf x x -'=, 当x e ≥时,()0f x '≤,所以,函数()f x 在区间[),e +∞上为减函数,34e <<,则()()()34>>f e f f ,即a b c >>.故选:B. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.2.B解析:B 【分析】由()20f '=求出a 的值,然后利用导数可求得函数()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值.【详解】()22ln 3f x x ax x =+-,则()223f x ax x=+-', 由题意可得()2420f a '=-=,解得12a =,则()212ln 32f x x x x =+-, ()22323x x f x x x x-+'=+-=,令()0f x '=,可得1x =或2x =,列表如下:所以,函数()f x 的极大值为()12f =-,极小值为()22ln 24f =-, 又1112ln 228f ⎛⎫=-- ⎪⎝⎭,()932ln 32f =-,()()()95312ln 32ln 322ln 31022f f -=-+=-=->,则()()13f f <,所以,()()max 932ln 32f x f ==-. 故选:B. 【点睛】思路点睛:利用导数求函数()y f x =在[],a b 上的最大值和最小值的步骤如下: (1)求函数()y f x =在(),a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()f a 、f b 比较,其中最大的一个是最大值,最小的一个是最小值.3.D解析:D 【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解; 【详解】解:函数2()x x f x e=的导数为22()xx x f x e -'=, 当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e<, 作出()y f x =的图象如下所示,因为()()210fx tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点, 所以2401t e <-<,即2411t e<<+ 故选:D 【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.4.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx xx f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符;如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.5.B解析:B 【分析】 构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.6.B解析:B 【分析】将不等式化简并换元,构造函数2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,对函数求导,判断导函数零点与区间端点的关系,分类讨论得出函数的单调性和最小值,代入求解可得正实数a 的取值范围. 【详解】22e e e ln e ln e 0x x x a x ax a x x x ++≥⇔-+≥,令e x t x=(由e e x x ≥可知e t ≥),则2ln e 0t a t -+≥,设2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,易得()1(e)a t a f t t t t-'=-=≥, ①当0e a <≤时,()0f t '≥,所以此时()(e)y f t t =≥是增函数,故2min ()(e)e e 0f t f a ==-+≥,解得2e e a ≤+,又0e a <≤,所以0e a <≤;②当e a >时,则()y f t =在[,)e a 上递减,在(,)a +∞上递增,故min ()()f t f a =,min ()0()0f t f a ≥⇔≥,所以2ln e 0a a a -+≥,设2()ln e (e)g a a a a a =-+>,故()0g a ≥即可,而()ln (e)g a a a '=->,显然()0g a '<,即()y g a =在(e,)+∞上递减,又2(e )0g =,而()0g a ≥,所以2()(e )g a g ≥,所以2e a ≤,又e a >,因此2e e a <≤.综上所述,0e a <≤或2e e a <≤,即2(0,e ]a ∈. 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题,考查导数在单调性和最值中的应用,考查分类讨论思想,关于恒成立问题的几种常见解法总结如下: 1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.7.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34,故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.8.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r=代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r r ππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.9.C解析:C 【分析】构造函数()()3xxg x e f x e =⋅--,解不等式()0g x >即可,对()g x 求导得()[()()1]0x g x e f x f x ''=+->,可得()g x 在R 上单调递增,且(0)0g =,根据单调性可得0x >,即得正确答案. 【详解】令()()3x xg x e f x e =⋅--,则()()()[()()1]0xxxxg x e f x e f x e e f x f x '''=⋅+⋅-=+->,所以()g x 在R 上单调递增, 又因为0(0)(0)30g e f e =⋅--=, 所以()0>g x ⇒0x >,即不等式的解集是(0)+∞,, 故选:C 【点睛】关键点点睛:本题的关键点是构造函数()()3xxg x e f x e =⋅--,所要解的不等式等价于()0g x >,且(0)0g =,所以()()0g x g >,因此需要对()g x 求导判断单调性即可. 10.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x xF x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.11.B解析:B 【分析】 构造函数()()f xg x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解. 【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xf x f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数, ∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增. 又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解, ∴02x <<或2x <-, ∴不等式的解集为()(),20,2-∞-.故选:B . 【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.12.B解析:B 【分析】先对函数求导,可得当10x -<<时,()0f x '<;当0x >时,()0f x '>,从而得min ()(0)1f x f a ==--,而x →+∞时,()f x →+∞,所以要函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,只要满足10a --=或20a e--,从而可求出a 的取值范围 【详解】()x f x xe '=,当10x -<<时,()0f x '<;当0x >时,()0f x '>.从而min ()(0)1f x f a ==--,又2(1)f a e-=--,且x →+∞时,()f x →+∞, ∴10a --=或20a e --, 即1a =-或2a e-. 故选:B 【点睛】此题考查由导数解决函数零点问题,考查转化思想和计算能力,属于中档题二、填空题13.【分析】构造函数利用导数研究函数的单调性即可得结论【详解】设则因为对任意所以所以对任意是单调递增函数因为所以由可得则的解集故答案为:【点睛】本题主要考查不等式的求解利用条件构造函数利用导数研究函数的 解析:)(1,-+∞【分析】构造函数)(()24g x f x x =--,利用导数研究函数的单调性即可得结论. 【详解】设)(()24g x f x x =--,则)(()2g x f x ='-', 因为对任意x ∈R ,)(2f x '>,所以()0g x '>, 所以对任意x ∈R , ()g x 是单调递增函数,因为)(12f -=,所以)((1)124440g f -=-+-=-=, 由()()10g x g >-=,可得1x >-, 则)(24f x x >+的解集()1,-+∞. 故答案为:()1,-+∞. 【点睛】本题主要考查不等式的求解,利用条件构造函数、利用导数研究函数的单调性是解决本题的关键.14.【分析】先设对其求导求出其最小值为得到再令对其求导导数的方法研究其单调性得出最大值即可得出结果【详解】设则因为所以当时则函数单调递减;当时则函数单调递增;所以则令则;由可得;所以当时则函数单调递增; 解析:2e【分析】先设()ln 2af x x x=++,对其求导,求出其最小值为()min ln 3f x a =+,得到ln 3b a a a +≤,再令()ln 3a g a a +=,对其求导,导数的方法研究其单调性,得出最大值,即可得出结果. 【详解】设()ln 2a f x x x =++,则()221a x a f x x x x'-=-=,因为0a >, 所以当()0,x a ∈时,()20x af x x-'=<,则函数()f x 单调递减; 当(),x a ∈+∞时,()20x afx x'-=>,则函数()f x 单调递增; 所以()()min ln 3f x f a a b ==+≥, 则ln 3b a a a +≤,令()ln 3a g a a +=,则()221ln 32ln a a g a a a --+'==-;由()0g a '=可得,2a e -=; 所以当()20,a e-∈时,()22ln 0a g a a +'=->,则函数()g a 单调递增;当()2,a e -∈+∞时,()22ln 0ag a a +'=-<,则函数()g a 单调递减; 所以()()2222maxln 3e g a g ee e---+===,即b a 的最大值为2e . 故答案为:2e 【点睛】 思路点睛:导数的方法研究函数最值时,通常需要先对函数求导,解对应的不等式,求出单调区间,得出函数单调性,得出极值,进而可得出最值.15.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,所以()()22420a a ∆=+-+>, 即()()2240a a ++->, 解得:2a >或2a <-, 故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题.16.【分析】构造函数判断函数的单调性和奇偶性得到解得答案【详解】设函数当时函数单调递增为奇函数故为奇函数故函数在上单调递增即即解得故答案为:【点睛】本题考查了利用函数的单调性和奇偶性解不等式构造函数判断 解析:(),2019-∞-【分析】构造函数()()2g x x f x =,判断函数的单调性和奇偶性,得到()()20212g x g +<,解【详解】设函数()()2g x x f x =,当0x >时,()()()()()23220g x xf x x f x x f x xf x x '''=+=+>>⎡⎤⎣⎦,函数单调递增,()f x 为奇函数,故()g x 为奇函数,故函数()g x 在R 上单调递增,22(2021)(2021)4(2)(2021)(2021)4(2)0x f x f x f x f +++-=++-<,即()()20212g x g +<,即20212x +<,解得2019x <-. 故答案为:(),2019-∞-. 【点睛】本题考查了利用函数的单调性和奇偶性解不等式,构造函数判断单调性和奇偶性是解题的关键.17.【分析】根据函数求导解的解集即可【详解】因为函数所以令得或当时所以函数在上的递增区间是故答案为:【点睛】本题主要考查导数与函数的单调性还考查了转化问题和运算求解的能力属于中档题解析:5,33ππ⎡⎤⎢⎥⎣⎦【分析】根据函数2sin y x x =-,求导12cos y x '=-,解0y '>的解集即可. 【详解】因为函数2sin y x x =-, 所以12cos y x '=-, 令12cos 0y x '=-=,得3x π=或53x π=, 当533x ππ≤≤时,0y '>, 所以函数2sin y x x =-在[]0,2π上的递增区间是5,33ππ⎡⎤⎢⎥⎣⎦.故答案为:5,33ππ⎡⎤⎢⎥⎣⎦【点睛】本题主要考查导数与函数的单调性,还考查了转化问题和运算求解的能力,属于中档题.18.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力【分析】求导数,取导数为0,计算x =. 【详解】函数31()3f x x ax =-的极大值为2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a = 故答案为3 【点睛】本题考查了函数的极大值,意在考查学生的计算能力.19.【分析】由所给等式变形可得则令可求得c 从而求出的解析式利用导数研究函数的单调性利用函数单调性解不等式即可【详解】因为所以即所以因为所以解得则当时函数在上单调递增又所以的解集为故答案为:【点睛】本题考 解析:()1,+∞【分析】由所给等式变形可得()2[]x f x e x'=,则()2x f x e c x=+,令3x =可求得c 从而求出()f x 的解析式,利用导数研究函数()f x 的单调性,利用函数单调性解不等式即可. 【详解】因为()()32x xf x f x x e '-=,所以()()242xx f x xf x e x'-=,即()2[]x f x e x '=, 所以()2x f x e c x =+,因为()339f e =,所以33e e c =+,解得0c,则()2x f x e x=,()()20xf x x e x =>,当0x >时,()()22220x x x f x x e x e e x x '=⋅+⋅=+>,函数()f x 在()0,∞+上单调递增,又()1f e =,所以()()1f x e f >=的解集为()1,+∞. 故答案为: ()1,+∞ 【点睛】本题考查导数的运算法则、利用导数研究函数的单调性、利用函数的单调性解不等式,属于中档题.20.【分析】由函数的解析式分类讨论利用分离参数结合导数和基本不等式即可求解【详解】由题意函数(1)当时由可得即设可得当时单调递减;当时单调递增所以即;(2)当时由可得当时显然成立;当时可得因为当且仅当时 解析:[4,2]e -【分析】由函数的解析式,分类讨论,利用分离参数,结合导数和基本不等式,即可求解. 【详解】由题意,函数22,0,()4,0,x e x f x x x ⎧>=⎨+≤⎩,(1)当0x >时,由()f x mx ≥,可得2xe mx ≥,即2xe m x≤,设2()xe g x x=,可得22(21)()x e x g x x -'=, 当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增, 所以min 1()22g x g e ⎛⎫==⎪⎝⎭,即2m e ≤; (2)当0x ≤时,由()f x mx ≥,可得24x mx +≥, 当0x =时显然成立; 当0x <时,可得4m x x ≥+,因为444x x x x ⎛⎫+=--+≤- ⎪-⎝⎭,当且仅当1x =-时取等号, 所以4m ≥-.综上可得,实数m 的取值范围是[4,2]e -, 故答案为:[4,2]e -. 【点睛】本题主要考查了函数的恒成立问题的求解,以及分段函数的性质的应用,其中解答中根据分段函数的分段条件,合理分类讨论,利用分离参数,结合导数和基本不等式求解是解答的关键,着重考查了转化思想,分类讨论思想,以及推理与运算能力.三、解答题21.(1)(]0,1;(2)证明见解析. 【分析】(1)转化为()22140ax a x +++≥在[]22-,上恒成立,利用二次函数知识可求得结果; (2)构造函数()()2225xh x x x e x =++--,利用导数可得()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,其中()01,0x ∈-,再根据零点存在性定理可证结论成立. 【详解】(1)因为()f x 在[]22-,上是单调增函数, 所以()()()()2222222140xxxf x ax e ax x e ax a x e '⎡⎤=++++=+++⎦≥⎣在[]22-,上恒成立,又0x e >,所以()22140ax a x +++≥在[]22-,上恒成立. 令()()2214g x ax a x =+++,又0a >,故对称轴为110x a=--<. ①当112a--≤-,即01a <≤时,()g x 在[]22-,上单调递增, 则()()min 244(1)40g x g a a =-=-++=,所以此时()()20g x g ≥-=恒成立. ②当1210a -<--<,即1a >时,()g x 在12,1a ⎡⎤---⎢⎥⎣⎦上单调递减,在11,2a ⎛⎤-- ⎥⎝⎦上单调递增,所以min 1()1g x g a ⎛⎫=-- ⎪⎝⎭()21112114a a a a ⎛⎫⎛⎫=--++--+ ⎪ ⎪⎝⎭⎝⎭1()2a a =-++()21a a-=-0<,所以()0g x ≥在[]22-,上不恒成立,故1a >不合题意, 综上所述,a 的取值范围是(]0,1.(2)因为1a =,设()()2225xh x x x e x =++--,则()()()()2222221441xxxh x x e x x e x x e =++'++-=++-.令()()2441xx x x e ϕ=++-,则()()()()()()2224446842xxxxx x e x x e x x e x x e ϕ=+++'+=++=++,由()()()420xx x x e ϕ'=++=,得4x =-或2x =-.所以4410x e =-=-<极大值,210x =-=-<极小值 因为()1110eϕ-=-<,()030ϕ=>,所以存在()01,0x ∈-,使()00x ϕ=, 当()0,x x ∈-∞时,()0x ϕ<,()0h x '<;当()0,x x ∈+∞时,()0x ϕ>,()0h x '>, 所以()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增. 又因为()51750h e -=>,()410410h e-=-<,()030h =-<,()1560h e =->,故根据零点存在定理,可知()0h x =的根()15,4x ∈--,()20,1x ∈, 所以方程()5f x x =+有且只有两个零点. 【点睛】关键点点睛:第(1)问转化为()22140ax a x +++≥在[]22-,上恒成立是解题关键,第(2)问构造函数()()2225xh x x x e x =++--,利用导数研究函数的零点是解题关键.22.(1)()f x 单调递增区间为(0,)+∞,无递减区;(2)证明见解析. 【分析】(1)求导数()'f x ,由()0f x '>确定增区间,由()0f x '<得减区间;(2)由(1)得1x >时,()0f x >,即11ln ()2x x x<-,令1,1,2,,kx k n n =+=,代入后得n 个不等式,相加后可得证明题设结论. 【详解】(1)解:函数()f x 的定义域为(0,)+∞由21()ln 2x f x x x -=-,得()ln 1f x x x '=--令1()ln 1()1g x x x g x x'=--⇒=-()0(1,)()0(0,1)g x x g x x ''>⇒∈+∞<⇒∈即()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)0f x f '''≥=,于是()f x 单调递增区间为(0,)+∞,无递减区(2)证明:由(1)可知()f x 在(0,)+∞上单调递增函数,又(1)0f =,∴当1x >时,()0f x >,11ln 2x x x ⎫⎛∴<- ⎪⎝⎭1ln 112k k k n k k a n n n k +-⎫⎫⎛⎛∴=+<+- ⎪ ⎪+⎝⎝⎭⎭1(1,2,)2kk k n n n k ⎫⎛=+=⋅⋅⋅ ⎪+⎝⎭123112122111n n n a a a a n n n n n n ⎫⎛∴+++⋅⋅⋅+<++⋅⋅⋅++++⋅⋅⋅+ ⎪+++⎝⎭1121221n n n n ++⋅⋅⋅+++⋅⋅⋅+⎫⎛=+ ⎪+⎝⎭(1)(1)12122214n n n n n n n ++⎫⎛⎪ +=+=⎪ +⎪ ⎝⎭于是()*123214n n a a a a n ++++⋅⋅⋅+<∈N 得证. 【点睛】关键点点睛:本题考查用导数求单调区间,用导数证明数列不等式.这类问题的解决,通常后一小题需要用到前一小题(或前面所有)的结论,通过变形,赋值等手段进行证明求解.如本题第(1)小题函数单调性得出不等式11ln ()2x x x<-,只要在此不等式中对x 赋值1,1,2,,kx k n n=+=,n 个不等式相加即可.23.(1)单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦;(2)最大值为9,最小值为10027-. 【分析】(1)先求出()'f x ,由()'10f -=求出a 的值,再由()'0f x >得增区间,()'0f x <得减区间;(2)根据(1)的结论求出函数的极值,与端点处函数值进行比较即可结果. 【详解】(1) 函数()()()242(f x x x a a =--∈ R ),()()()22'2242628f x x x a x x ax ∴=-+-⨯=--.()'10,6280f a -=∴+-=,解得1a =.则()()()232421284,f x x x x x x x =--=--+∈ R .()()()2'6282341f x x x x x =--=-+,令()'0f x =,解得1241,3x x =-=. 由()'0f x >得43x >或1x <-,此时函数单调递增, 由()'0f x <得413x -<<,此时函数单调递减, 即函数的单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦. (2)当22x -≤≤时,函数()f x 与()'f x 的变化如下表:由表格可知:当1x =-时,函数f x 取得极大值,19f -=, 当43x =时,函数()f x 取得极小值,4100327f ⎛⎫=- ⎪⎝⎭,又()()20,20f f -==,可知函数()f x 的最大值为9,最小值为10027-. 【方法点睛】本题主要考查利用导数判断函数的单调性以及函数在闭区间上的最值,属于难题. 求函数()f x 最值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值得函数值与极值的大小24.(1)单调递减区间为(),0-∞,单调递增区间为()0,+∞,最小值为1-,无最大值;(2)①证明见解析;②31627e ⎛⎤⎥⎝⎦,.【分析】(1)对()f x 求导,由()0f x '>可得单调递增区间,由()0f x '<可得单调递减区间,比较极值即可得最值; 【详解】(1)()f x 的定义域为R()()()()()()()2322222446262424646x x xx e x x x e x x e f x xx xx ⎡⎤-++--+⎣⎦==++++'当(),0x ∈-∞时,()0f x '<,()f x 在(),0-∞单调递减, 当()0,+x ∈∞时,()0f x '>,()f x 在()0,+∞单调递增, 所以()f x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞,()()min 01f x f ==-,()f x 最小值为()()min 01f x f ==-,无最大值.(2)①()()()()()()()22244242646464626=22462x x x e a x x x x x x x e g a f x a x x x x x x -+++++++⎡⎤-==++⎡⎤⎢⎥⎣⎦++⎣⎦'令()()x f x a ϕ=+,()0,+x ∈∞ ,由(1)知,()x ϕ单调递增,()010a ϕ=-<,()30a ϕ=≥ 所以存在唯一的(]00,3x ∈,使得()00x ϕ=,即()0020026046xx e a x x -+=++当00x x <<时,()0x ϕ<,()g x 单调递减;当0x x >时,()0x ϕ>,()g x 单调递增故()()()00200min 032000222246x x e a x x e g x g x x x x -++===++, 所以()g x 有最小值得证②令()020046x e h a x x =++,()00,3x ∈, ()()22222204646x xx x e e x x x x '++⎡⎤=>⎢⎥++⎣⎦++,所以()h a 单增, 所以,由()00,3x ∈,得()0033222001= < =6040646343627x e e e e h a x x =≤+⨯++++⨯+ 因为246xe x x ++单调递增,对任意31627e λ⎛⎤∈ ⎥⎝⎦,,存在唯一的()00,3x ∈,()[)00,1a f x =-∈,使得()h a λ=,所以()h a 的值域为31627e ⎛⎤ ⎥⎝⎦, 综上:当[)0, 1a ∈,函数()g x 最小值为()h a ,函数()h a 的值域为31627e ⎛⎤ ⎥⎝⎦, 【点睛】利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.25.(1)1y =;(2)0a ≥.【分析】(1)利用导数的几何意义可求得结果;(2)转化为()0g x '≥,即222a x x≥-在[1,+)∞上恒成立,再构造函数求出最大值即可得解.【详解】(1)当2a =-时,()22f x x lnx =-,定义域为(0,)+∞, 2222()2x f x x xx -'=-=,所以函数()f x 在点()()11f ,处的切线的斜率为2212(1)01f ⨯-'==, 又(1)1201f =-⨯=,所以函数()f x 在点()()11f ,处的切线方程为1y =(2)因为()()2g x f x x=+22ln x a x x =++在[1,+)∞上是单调增函数, 所以322222()2a x ax g x x x x x+-'=-+=0≥在[1,+)∞上恒成立, 即222a x x≥-在[1,+)∞上恒成立, 因为222y x x =-在[1,+)∞上为单调递减函数,所以当1x =时,222y x x=-取得最大值0, 所以0a ≥.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;26.(1)3211()8333f x x x x -=++;(2)极大值为(2)7f =,无极小值;最小值为1(0)3f =. 【分析】 (1)求出导数,根据题意有(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩,解出,a b 代入解析式即可; (2)根据导数求出函数的单调区间,判定函数在区间[]0,3上的单调性,根据极值定义求出函数的极值,比较端点函数值即可解出最小值.【详解】解:(1)函数()f x 求导得2()2f x x ax b '=++因为函数()f x 在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值 所以(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩解得38a b =-⎧⎨=⎩所以函数()f x 的解析式为3211()8333f x x x x -=++(2)由(1)可知2()68(2)(4)f x x x x x '=-+=-- 所以当2x <或4x >时,()0,()f x f x '>单调递增; 当24x <<时,()0f x '<,()f x 单调递减,则函数()f x 在[]0,3上有极大值为(2)7f =,无极小值 又因为119(0),(3),33f f == 所以(0)(3)f f < 则函数()f x 在[]0,3上的最小值为1(0)3f =. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.。
一、选择题1.已知,a b ∈R ,若函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>,则下列结论可能成立的是( ). A .0ae b >>B .0ae b >>C .0b ae >>D .0ae b >> 2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<4.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是( )A .(,2e ⎤-∞⎦B .()0,2eC .(,4e ⎤-∞⎦D .()0,4e5.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .6.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞B .[,)e C .2[,)e -+∞ D .[1,)-+∞7.已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :()()ln a xg x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定8.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( )A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,9.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .10.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是() x2-0 4 ()f x11-1A .33,22⎛⎫-⎪⎝⎭ B .13,22⎛⎫-⎪⎝⎭ C .33,22⎡⎤-⎢⎥⎣⎦ D .13,22⎡⎤-⎢⎥⎣⎦ 11.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0-∞12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.对于函数22,0()12,02x x e x f x x x x ⎧⋅≤⎪=⎨-+>⎪⎩有下列命题: ①在该函数图象上一点(﹣2,f (﹣2))处的切线的斜率为22e -; ②函数f (x )的最小值为2e-; ③该函数图象与x 轴有4个交点;④函数f (x )在(﹣∞,﹣1]上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是_____.14.已知函数()cos sin f x x x x =-,下列结论中, ①函数()f x 的图象关于原点对称; ②当(0,)x π∈时,()0f x π-<<; ③若120x x π<<<,则1122sin sin x x x x >;④若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1. 所有正确结论的序号为______.15.若a 是区间[]0,3e 上任意选取的一个实数,则xea x>对()0,x ∈+∞恒成立的概率为______.16.已知函数()()()3ln 06x f x a x x x a =-->,当0x >时,()0f x '≥(()f x '为函数()f x 的导函数),则实数a 的取值范围为______.17.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中2.71828e =)则实数m 的取值范围是________.18.函数()cos f x x x =+在()0,π上的极大值为M ,极小值为N ,则M N +=__________.19.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.20.函数31()3f x x ax =-的极大值为a =__________. 三、解答题21.已知函数22()1ln f x x ax a x =++-. (1)当1a =时,求()f x 的单调区间; (2)若0a =,且(0,1)x ∈,求证:2()2ln 122xf x x x e x-+-<. 22.已知函数()xf x e ax a =--.(1)当1a =时,求过点()0,1-且与曲线()y f x =相切的直线方程; (2)若()0f x ≥,求实数a 的取值范围.23.已知函数()()21xf x x a e =-+.(1)讨论()f x 的单调性;(2)若()f x 存在零点,求a 的取值范围. 24.已知曲线3211()33f x x ax bx =+++在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值.(1)求函数()f x 的解析式;(2)求函数()f x 在[]0,3上的极值和最小值. 25.已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程; (2)若()y f x =在区间1,e e⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.26.已知函数()ln f x x ax =-有两个不同的零点()1212,x x x x <,其中e 2.71828=是自然对数的底数.(1)求实数a 的取值范围; (2)求证:(i )11x a<;(ii )212x x ->【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意将问题转化为方程xb e a x=在0,上有两个实数根,进而令()(),0,xe g x x x=∈+∞,再研究函数()g x 的单调性得0b e a >>,进而分0a >和0a <讨论即可得答案. 【详解】解:当0a =时,函数()f x 只有一个零点,故0a ≠, 因为函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>所以方程xb e a x=在0,上有两个不相等的实数根.令()(),0,x e g x x x =∈+∞,()()21'x x e g x x-=, 所以当()1,∈+∞x 时()'0g x >,()0,1∈x 时()'0g x <,故函数()(),0,xe g x x x=∈+∞在1,上单调递增,在0,1上单调递减;所以()()min 1g x g e ==,所以0be a>>, 当0a >时,0b ae >>,当0a <时,0b ae <<. 故选:D. 【点睛】本题考查利用导数研究函数零点问题,解题的关键在于将问题转化为方程xb e a x=在0,上有两个不相等实数根,进而令()g x 研究函数的单调性即可.考查运算求解能力与化归转化思想,是中档题.2.A解析:A【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增,()f x 的最小值是()1f 1=,故1a =, ()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x x x g x x e xe x x+=+--=-', 令()1x h x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->,故存在0(0,1)x ∈使得()0h x =即001xx e =,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =, 所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.4.A解析:A 【分析】先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120x g x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数; 1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数; ()f x的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A. 【点睛】利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立; (2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.5.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.D解析:D 【分析】由题意得32x x x a e e e =--,令32()x x x g x e e e =--,求()g x 的取值范围可得答案. 【详解】由32()0x x x f x e e e a =---=,则32x x x a e e e =--, 令32()x x x g x e e e =--, 则()()()3223()3211213xx x x x x x x x g x ee e e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124xxxxx g x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.7.A解析:A 【分析】先对函数()xf x xe =和()ln a xg x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln xh x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数. 【详解】∵()xf x xe =,∴()()1xf x x e '=+,又()ln a x g x x =,∴()2ln a a xg x x -'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =,则()()()ln ln xx xh x f x g x xe e x x==⋅=, ∴()()ln 1ln xx xx x ee h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+, 当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减; 当1,x e⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增;∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A . 【点睛】 思路点睛:利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)8.C解析:C 【分析】构造函数()()3x x g x e f x e =⋅--,解不等式()0g x >即可,对()g x 求导得()[()()1]0x g x e f x f x ''=+->,可得()g x 在R 上单调递增,且(0)0g =,根据单调性可得0x >,即得正确答案. 【详解】令()()3x x g x e f x e =⋅--,则()()()[()()1]0x x x x g x e f x e f x e e f x f x '''=⋅+⋅-=+->, 所以()g x 在R 上单调递增, 又因为00(0)(0)30g e f e =⋅--=, 所以()0>g x ⇒0x >,即不等式的解集是(0)+∞,, 故选:C 【点睛】关键点点睛:本题的关键点是构造函数()()3x x g x e f x e =⋅--,所要解的不等式等价于 ()0g x >,且(0)0g =,所以()()0g x g >,因此需要对()g x 求导判断单调性即可. 9.B解析:B【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项.【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增,又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减,又0ac <,()00f c ∴=>,排除C 选项.故选:B .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;(2)从函数的值域,判断图象的上下位置.(3)从函数的单调性,判断图象的变化趋势;(4)从函数的奇偶性,判断图象的对称性;(5)函数的特征点,排除不合要求的图象.10.A解析:A【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围.【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增,因为()211f a +≤,()21f -=,()41f =,所以2214a -<+<,可得:3322a -<<, 故选:A.【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.11.D解析:D【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解.【详解】令2()()x g x e f x =,则2()[2()()]x g x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D .【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.12.B解析:B【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解.【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>,所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >,根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞,故选B.【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.二、填空题13.①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③【详解】x≤0时f(x)=2xexf′(x)=2(1+x )ex 故f′(﹣2)=①正确;且f(解析:①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③.【详解】x ≤0时,f (x )=2xe x ,f ′(x )=2(1+x )e x ,故f ′(﹣2)=22e-,①正确; 且f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,故x ≤0时,f (x )有最小值f (﹣1)=2e-, x >0时,f (x )=2122x x -+在(0,1)上单调递减,在(1,+∞)上单调递增,故x >0时,f (x )有最小值f (1)=122e ->- 故f (x )有最小值2e-,②④正确;令20x x e ⋅=得0x =,令21202x x -+=得22x =,故该函数图象与x 轴有3个交点,③错误;故答案为:①②④【点睛】本题考查导数的几何意义,考查利用导数判断函数的单调性、求函数的最值一定注意定义域.14.①②④【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性求得函数的值域判断②正确;利用导数研究函数的单调性进行变形得到③是错误的数形结合思想可以判断④是正确的【详解】因为所以所以解析:①②④【分析】首先对函数的奇偶性进行判断得出①正确;利用导数研究函数的单调性,求得函数的值域,判断②正确;利用导数研究函数sin ()x g x x=的单调性,进行变形得到③是错误的,数形结合思想可以判断④是正确的.【详解】因为()cos sin f x x x x =-, 所以()()cos()sin()cos sin ()f x x x x x x x f x -=----=-+=-,所以()f x 为奇函数,所以函数()f x 的图象关于原点对称,所以①正确;因为'()cos sin cos sin f x x x x x x x =--=-,因为(0,)x π∈,所以'()0f x <,所以()f x 在(0,)π上单调递减,所以()()(0)0f f x f ππ-=<<=,所以()0f x π-<<,所以②正确; 令sin ()x g x x=,2cos sin '()x x x g x x -=, 由②可知,()f x 在(0,)π上单调递减,所以)'(0g x <, 所以()g x 在(0,)π上单调递减,若120x x π<<<,所以1212sin sin x x x x >, 即1122sin sin x x x x <,所以③错误; 若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,相当于sin y x =在0,2π⎛⎫ ⎪⎝⎭上落在直线y ax =的上方,落在直线y bx =的下方,结合图形,可知a 的最大值为连接(0,0),(,1)2π的直线的斜率,即2π,b 的最小值为曲线sin y x =在(0,0)处的切线的斜率,即0'|1x y ==,所以④正确;故正确答案为:①②④.【点睛】方法点睛:该题属于选择性填空题,解决此类问题的方法:(1)利用函数的奇偶性判断函数图象的对称性;(2)利用导数研究函数的单调性,从而求得其值域;(3)转化不等式,构造新函数,求导解决问题;(4)数形结合,找出范围.15.【分析】由对恒成立可知只要小于的最小值所以构造函数利用导数求出从而得然后利用区间长度比求出概率即可【详解】设则当时;当时在递减在递增∴∴当时对恒成立故所求概率为故答案为:【点睛】此题考查的是几何概型解析:13【分析】 由x e a x >对()0,x ∈+∞恒成立,可知只要a 小于x e x的最小值,所以构造函数()xe f x x=,利用导数求出()()min 1f x f e ==,从而得()0,a e ∈,然后利用区间长度比求出概率即可.【详解】设()x e f x x =,则()()'21x e x f x x -=,0x >.当01x <<时,()'0f x <;当1x >时,()'0f x >,()f x 在()0,1递减,在()1,+∞递增∴()()min 1f x f e ==,∴当a e <时,xe a x>对()0,x ∈+∞恒成立.故所求概率为1303e e =-. 故答案为:13【点睛】此题考查的是几何概型,不等式恒成立问题,属于基础题. 16.【分析】转化条件得设求导后求出函数的最小值令即可得解【详解】由题意得由于时故设则由于所以当时单调递减;当时单调递增于是所以即故实数的取值范围是故答案为:【点睛】本题考查了利用导数解决不等式恒成立问题 解析:(]0,e【分析】转化条件得()min 0f x '≥,设()()g x f x '=,求导后求出函数()g x 的最小值()min g x ,令()min 0g x ≥即可得解.【详解】由题意得()2ln 2x f x a x '=-. 由于0x >时,()0f x '≥,故()min 0f x '≥.设()()g x f x '=,则()(2x x x a g x x x+-'==. 由于0x >,所以当(x ∈时,()0g x '<,()g x 单调递减;当)x ∈+∞时,()0g x '>,()g x 单调递增. 于是()()()min min ln 1ln 022a a f x g x g a a '===-=-≥,所以ln 1a ≤即0a e <≤,故实数a 的取值范围是(]0,e .故答案为:(]0,e【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.17.【分析】由条件转化为换元令由导数确定函数的值域即可求解【详解】设且设那么恒成立所以是单调递减函数当时当时函数单调递增当函数单调递减所以在时取得最大值即解得:故答案为:【点睛】本题主要考查了利用导数研 解析:(),0-∞【分析】 由条件转化为11ln y y m x x ⎛⎫=-⋅ ⎪⎝⎭,换元0y t x=>,令()()1ln g t t t =-,由导数确定函数的值域即可求解.【详解】()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y y m x x x --⎛⎫==-⋅ ⎪⎝⎭ 设0y t x =>且1t ≠, 设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t'=-+-⋅=-+-, ()221110t g t t t t+''=--=-<恒成立, 所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增,当()1,t ∈+∞,()0g t '<,函数单调递减,所以()g t 在1t =时,取得最大值,()10g =,即10m <, 解得:0m <,故答案为:(),0-∞【点睛】本题主要考查了利用导数研究函数的单调性、最值,考查了变形运算能力,属于中档题. 18.【分析】直接求导再判断函数单调性进而求出极值即可【详解】因为令解得或当时单调递增;当时单调递减;当时单调递增所以极大值极小值则故答案为:【点睛】本题考查函数的导数的应用函数的极值以及求法考查分析问题【分析】直接求导,再判断函数单调性,进而求出极值即可.【详解】因为()sin (0)f x x x π'=-<<,令()0f x '=,解得3x π=或23x π=, 当(0,)3x π∈时,()0f x '>,()f x 单调递增; 当(,)33x π2π∈时,()0f x '<,()f x 单调递减; 当2(,)3x ππ∈时,()0f x '>,()f x 单调递增,所以极大值()cos 333M f πππ==+=极小值222()cos 333N f πππ==+=则M N +==,. 【点睛】 本题考查函数的导数的应用,函数的极值以及求法,考查分析问题解决问题的能力,是中档题.19.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解.【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立, 所以()()22+20,[()]0x f x xf x x f x ''>∴>, 令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增,由题得22()()()g(x),g x x f x x f x -=-=-=-所以函数g(x)是奇函数,所以函数在R 上单调递增.因为对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,所以()()222,()()e x x x x e f e a x f ax g e g ax ax >∴>∴>,, 因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>, 所以2(1)()xx e h x x-'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增. 所以min ()(1)h x h e ==,所以a <e,所以正整数a 的最大值为2.故答案为2【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.20.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3【分析】求导数,取导数为0,计算x =.【详解】函数31()3f x x ax =-的极大值为 2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a =故答案为3【点睛】本题考查了函数的极大值,意在考查学生的计算能力.三、解答题21.(1)单调递增区间为(]0,1,单调递减区间为[1,)+∞;(2)证明见解析.【分析】(1)先求出函数的定义域,再对函数求导,然后分别令0f x 和0f x ,解不等式可求出函数的单调区间;(2)22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<,即()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<和()3()221x h x e x x =-++,利用导数分别求出()()11g x g <=,()1h x >,从而可得结论【详解】(1)当1a =时,2()1ln f x x x x =++-,定义域为(0,)+∞, ∴1(1)(21)()12x x f x x x x --+'=+-=, 令0f x ,得01x <<;令0f x ,得1x >,∴()f x 的单调递增区间为(]0,1,单调递减区间为[1,)+∞.(2)当0a =时,()1ln f x x =+, ∴22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<, 即()3(1ln )221(01)x x x e x x x -<-++<<,令()(1ln )(01)g x x x x =-<<,∴()ln 0g x x '=->,∴()g x 在0,1上单调递增,∴()()11g x g <=.令()3()221x h x e x x =-++(01x <<),∴()32()2623x h x e x x x '=--++, 令32()2623x x x x ϕ=--++,∴2()6122x x x ϕ'=--+在0,1上递减,又(0)20ϕ'=>,(1)160ϕ'=-<,∴0(0,1)x ∃∈使()00x ϕ'=,且()00,x x ∈时,()0x ϕ'>,()ϕx 递增, ()0,1x x ∈时,()0x ϕ'<,()ϕx 递减,而(0)30ϕ=>,(1)30ϕ=-<,∴1(0,1)x ∃∈使()10x ϕ=,即()10h x '=,()10,x x ∈时()0h x '>,()h x 单调递增,()1,1x x ∈时()0h x '<,()h x 单调递减, 而(0)1h =,(1)h e =,∴()1h x >恒成立,∴()()g x h x <,即()3(1ln )221(01)x x x ex x x -<-++<<, 即2()2ln 122x f x x x e x-+-<. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间,利用导数求函数的最值,第2问解题的关键是把2()2ln 122x f x x x e x-+-<等价转化为()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<,()3()221x h x e x x =-++,分别求出两个函数的最值即可,考查数学转化思想,属于中档题22.(1)()110e x y ---=;(2)01a ≤≤.【分析】(1)设切点坐标,求出导数及切线方程,把()0,1-代入切线方程可得0x ,然后再求出切线方程;(2)求出导函数,对a 进行讨论并判断函数的单调性,利用函数的最小值可得答案.【详解】(1)当1a =时,点()0,1-不在函数图象上,()1xf x e '=-, 设切点为()000, x x e ax a --,则切线方程为()()()0000x y e ax a f x x x '---=-, 因为过点()0,1-,所以0000()111x xe x e x --++=--, 解得01x =,因此所求的直线方程为()110e x y ---=.(2)()x f x e a '=-,当0a ≤时,()'0f x >,所以在R 上单调递增,其中0a =,()0xf x e =>,符合题意, 当0a <时,取110a x a-=<,()1110x f x e =-<,不符合题意; 当0a >时,()()n 0,,l x a f x '∈-∞<,所以()f x 在(),ln a -∞上单调递减,()()ln ,,0x a f x '∈+∞>,所以()f x 在()ln ,a +∞上单调递增,所以()()ln f x f a ≥,要使()0f x ≥,只需()ln 0f a ≥,()ln ln ln 0a f a e a a a =--≥,解得01a <≤;综上所述,01a ≤≤.【点睛】本题考查求函数过一点的切线方程和求参数问题,对于求切线的问题时需要讨论此点是否是切点;对于求参数问题,有时可采用对原函数进行求导讨论其单调性和最值方法求解,也可以采用对参数实行分离的方法,构造新函数并求新函数的值域可得解.23.(1)()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增;(2)(][),11,-∞-+∞.【分析】(1)先求导并解得()0f x '=的根,再判断根附近导数值的正负,即得单调性;(2)先判断极小值即最小值,再结合()210f a =>可知()min 0f x ≤,解不等式即得结果.【详解】解:(1)()()21x f x x a e '=-+,定义域为R , 由()0f x '=,得21x a =-,当21x a <-时,()0f x '<;当21x a >-时,()0f x '>,故()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增; (2)由(1)知()f x 在21x a =-处取得极小值,也是最小值,则()()221min 11a f x f a e -=-=-,因为()f x 存在零点,且()210f a =>,故只需()21min 10a f x e -=-≤,即2101a e e -≥=,故210a -≥,解得1a ≤-或1a ≥,所以a 的取值范围为(][),11,-∞-+∞. 【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.24.(1)3211()8333f x x x x -=++;(2)极大值为(2)7f =,无极小值;最小值为1(0)3f =. 【分析】(1)求出导数,根据题意有(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩,解出,a b 代入解析式即可; (2)根据导数求出函数的单调区间,判定函数在区间[]0,3上的单调性,根据极值定义求出函数的极值,比较端点函数值即可解出最小值.【详解】解:(1)函数()f x 求导得2()2f x x ax b '=++因为函数()f x 在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值 所以(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩解得38a b =-⎧⎨=⎩所以函数()f x 的解析式为3211()8333f x x x x -=++ (2)由(1)可知2()68(2)(4)f x x x x x '=-+=--所以当2x <或4x >时,()0,()f x f x '>单调递增;当24x <<时,()0f x '<,()f x 单调递减,则函数()f x 在[]0,3上有极大值为(2)7f =,无极小值 又因为119(0),(3),33f f == 所以(0)(3)f f < 则函数()f x 在[]0,3上的最小值为1(0)3f =. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.25.(1)322ln 20x y ---=;(2)(22,e e ⎤⎦. 【分析】(1)求出导函数,令()3f x '=求得切点坐标后可得切线方程;(2)求导函数()'f x ,确定()f x 在定义域内只有一个极值点,因此这个极值点必在区间1e e ⎛⎫ ⎪⎝⎭,上,然后得函数在1,e e ⎡⎤⎢⎥⎣⎦上的极小值,由极小值小于0,区间两个端点处函数值大于或等于0可得结论.【详解】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=,由2()23f x x x'=-=解得2x =(12x =-舍去), 又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛ -⎝⎭⎝⎭'=-==, 易知()f x()f x有两个零点,则1e e <<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =2a f a =-,所以22111ln 0()ln 002f a e e e f e e a e a f a ⎧⎛⎫⎪=-≥ ⎪⎪⎝⎭⎪=-≥⎨⎪⎪=-<⎪⎩解得22e a e <≤.综上a 的范围是(22,e e ⎤⎦. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点问题.函数在某个区间上的零点,解题时先从大处入手,由导数确定函数的极值点,利用单调区间上的零点最多只有一个,因此函数的极值点必在给定区间内,从而缩小参数的a 范围,在此范围内计算()f x 的单调性与极值,结合零点存在定理可得结论.26.(1)10,a e ⎛⎫∈ ⎪⎝⎭;(2)(i )证明见解析;(ii )证明见解析.【分析】(1)函数()ln f x x ax =-有两个不同的零点,等价于ln x a x =在(0,)+∞上有两个不同的实根,记ln ()x g x x=,对函数求导判断单调性,可得实数a 的取值范围; (2)(i )将()1212,x x x x <代入方程并参变分离,利用分析法可知,需证明111ln 20x x x e -+>,构造()ln 2,(1,)h x x x x e x e =-+∈,求导判断单调性与最值即可证明不等式成立;(ii )设()()()21ln 11x x x x x ϕ-=->+,对函数求导判断单调性可得:()()21ln 011x x x x ->>>+,由1122ln ln x ax x ax =⎧⎨=⎩,两式作差可得2121ln x x a x x =-,利用证得的不等式进行放缩,可得不等式成立.【详解】(1)函数()ln f x x ax =-有两个不同的零点()1212,x x x x <,变量分离得ln x a x=在(0,)+∞上有两个不同的实根,记ln ()x g x x =,则21ln ()x g x x -'= 当(0,)x e ∈时,()0,()'>g x g x 单调递增; 当(,)x e ∈+∞时,()0,()g x g x '<单调递减.且0x →时,()g x →-∞;x →+∞时,()0g x → 故10,a e ⎛⎫∈ ⎪⎝⎭.(2)(i )因为12,x x 是ln x ax =的两根,由(1)可知121x e x <<<,且1122ln ln x ax x ax =⎧⎨=⎩(只涉及变量1x ,故只用11ln x ax =),所以11ln x a x =要证211111111120ln 20x ax ax x e x x x e a<⇔->⇔-+>⇔-+> 构造函数()ln 2,(1,)h x x x x e x e =-+∈,则()ln 10h x x '=-<,()h x 在()1,e 上递减 所以()()0>=h x h e ,原不等式成立.(ii )解析1:放缩设()()()21ln 11x x x x x ϕ-=->+,则()()()()222114011x x x x x x ϕ-'=-=>++恒成立, ()x ϕ∴在()1,+∞单调递增,()()10x ϕϕ>=,即()()21ln 011x x x x ->>>+ 由1122ln ln x ax x ax =⎧⎨=⎩,可得221211221212112121ln ln ln 121x x x x x x a x x x x x x x x x x ⎛⎫- ⎪-⎝⎭==>⋅=---++,从而212x x a >-,则21112x x x a ->->212x x ->>11ae a ⇔>⇔<,证毕! 解析2:对数平均不等式 由对数平均不等式2112211ln ln 2x x x x a x x -+=<-,所以122x x a+>,由(i)可知1x <,所以212x x a >->21x x -=,即212x x -=,只需证:a > 下同解法1.【点睛】方法点睛:本题考查导数研究函数的单调性与零点问题,考查导数证明不等式,设函数()y f x =在[],a b 上连续,在(),a b 上可导,则:1.若()0f x '>,则()y f x =在[],a b 上单调递增;2.若()0f x '<,则()y f x =在[],a b 上单调递减.。
(新课标)2017-2018学年北师大版高中数学选修1-1第三章 变化率与导数一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x 2B .(log 2x)′=1xln 2C .(5x )′=5x log 5eD .(x 2cos x)′=2xsin x解析: ∵⎝ ⎛⎭⎪⎫x +1x ′=1-1x 2;(5x )′=5x ln 5; (x 2cos x)′=(x 2)′cos x +x 2(cos x)′=2x ·cos x -x 2sin x ∴B 选项正确. 答案: B 2.已知函数y =x 2+1的图像上一点(1,2)及邻近一点(1+Δx,2+Δy),则limΔx →0Δy Δx等于( )A .2B .2xC .2+ΔxD .2+(Δx)2解析: ∵Δy Δx =f (1+Δx )-f (1)Δx=(1+Δx )2+1-2Δx =2+Δx∴limΔx →0ΔyΔx =lim Δx →0(2+Δx)=2. 答案: A3.已知函数f(x)=xsin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π2的值为( )A.π2 B .0 C .-1D .1解析: f ′(x)=sin x +xcos x -sin x =xcos x.∴f ′⎝ ⎛⎭⎪⎫π2=π2cos π2=0.答案: B4.一个物体的运动方程是s =1-t +t 2,s 的单位是米,t 的单位是秒,该物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒解析: ∵s ′=-1+2t ,∴s ′(3)=5,故选C. 答案: C5.若对于任意x ,有f ′(x)=4x 3,f(1)=-1,则此函数为( ) A .f(x)=x 4 B .f(x)=x 4-2 C .f(x)=x 4+1D .f(x)=x 4+2解析: ∵A 、B 、C 、D 满足f ′(x)=4x 3, ∴只要验证f(1)=-1即可. 答案: B6.已知直线y =kx 是y =ln x 的切线,则k 的值为( ) A .e B .-e C.1eD .-1e解析: y ′=1x ,则1x =k.∴直线x =1k y 过⎝ ⎛⎭⎪⎫1k ,1.∴1=ln 1k ,∴k =1e .答案: C7.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成三角形的面积为( ) A.94e 2 B .2e 2 C .e 2D .e 22解析: ∵y =e x ,∴y ′=e x ,∴y ′|x =2=e 2=k ,∴切线为y -e 2=e 2(x -2),即y =e 2x -e 2.在切线方程中,令x =0,得y =-e 2,令y =0,得x =1,∴S 三角形=12×|-e 2|=e 22.答案: D8.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =( )A .2B .12C .-12D .-2解析: 由y =x +1x -1=1+2x -1,求导得y ′=-2(x -1)2,所以切线斜率k =y ′|x =3=-12,则直线ax +y +1=0的斜率为2,所以-a =2,即a =-2. 答案: D9.若f(x)=-x 2+2ax 与g(x)=ax +1在区间(1,2]上切线的倾斜角都是钝角,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]解析: g ′(x)=-a(x +1)2,要使g(x)在(1,2]上切线的倾斜角为钝角,则有g ′(x)=-a(x +1)2<0,所以a >0.而f(x)=-x 2+2ax 的对称轴为x =a ,由f(x)在(1,2]上切线的倾斜角为钝角知a ≤1,故0<a ≤1.答案: D 10.若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,点P 处的切线的倾斜角为α,则角α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2 B .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,πC.⎣⎢⎡⎭⎪⎫2π3,π D .⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎦⎥⎤π2,2π3解析: y ′=3x 2-6x +3-3=3(x -1)2-3≥-3,即tan α≥-3,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π. 答案: B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 11.已知a 为实数,f(x)=(x 2-4)(x -a),且f ′(-1)=0,则a =________. 解析: f ′(x)=(x 3-ax 2-4x +4a)′=3x 2-2ax -4,由f ′(-1)=0,得a =12.答案: 1212.设f(x)为偶函数,若曲线y =f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点(-1,f(-1))处的切线的斜率为________.解析: ∵f(x)为偶函数,∴f ′(x)为奇函数. 又∵f ′(1)=1,∴f ′(-1)=-f ′(1)=-1. 答案: -113.已知直线y =kx +1与曲线y =x 3+ax +b 切于点(1,3),则b 的值为________. 解析: 点(1,3)在直线y =kx +1上,则k =2. ∴2=f ′(1)=3×12+a ⇒a =-1,∴f(x)=x 3-x +b. ∵点(1,3)又在曲线上,∴b =3. 答案: 314.若曲线f(x)=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析: ∵f ′(x)=5ax 4+1x ,x ∈(0,+∞),∴由题知5ax 4+1x=0在(0,+∞)上有解. 即a =-15x 5在(0,+∞)上有解.∵x ∈(0,+∞),∴-15x 5∈(-∞,0).∴a ∈(-∞,0) 答案: (-∞,0)三、解答题(本大题共4小题,满分50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)求下列函数的导数: (1)y =x 5+x +sin x x 2;(2)f(x)=(x 3+1)(2x 2+8x -5); (3)y =1-sin x1+cos x.解析: (1)y =x 5+x +sin x x 2=x 3+x -32 +x -2sin x.∴y ′=3x 2-32x -52 -2x -3sin x +x -2cos x. (2)f(x)=(x 3+1)(2x 2+8x -5) =2x 5+8x 4-5x 3+2x 2+8x -5, ∴f ′(x)=10x 4+32x 3-15x 2+4x +8.(3)y ′=⎝⎛⎭⎪⎫1-sin x 1+cos x ′ =(1-sin x )′(1+cos x )-(1-sin x )(1+cos x )′(1+cos x )2=sin x -cos x -1(1+cos x )2.16.(12分)已知函数f(x)=ax 2-43ax +b ,f(1)=2,f ′(1)=1. (1)求f(x)的解析式;(2)求f(x)在(1,2)处的切线方程. 解析: (1)f ′(x)=2ax -43a由已知得⎩⎪⎨⎪⎧f ′(1)=2a -43a =1,f (1)=a -43a +b =2.解得⎩⎪⎨⎪⎧a =32,b =52.∴f(x)=32x 2-2x +52. (2)函数f(x)在(1,2)处的切线方程为 y -2=x -1,即x -y +1=0.17.(12分)已知函数f(x)=2x 3+ax 与g(x)=bx 2+c 的图像都经过点P(2,0),且在点P 处有公共的切线,求函数f(x)和g(x)的解析式.解析: 由f(x)的图像经过点P(2,0), 得a =-8,从而f(x)=2x 3-8x ,f ′(x)=6x 2-8.由g(x)的图像经过点P(2,0),得4b +c =0,又g ′(x)=2bx ,且f(x)、g(x)的图像在点P 处有公共的切线, 所以g ′(2)=f ′(2),即4b =16,b =4,所以c =-16. 综上f(x)=2x 3-8x ,g(x)=4x 2-16.18.(14分)已知f(x)=x 2+ax +b ,g(x)=x 2+cx +d ,又f(2x +1)=4g(x),且f ′(x)=g ′(x),f(5)=30,求g(4).解析: 由f(2x +1)=4g(x),得4x 2+2(a +2)x +(a +b +1)=4x 2+4cx +4d.于是有⎩⎪⎨⎪⎧a +2=2c , ①a +b +1=4d. ②由f ′(x)=g ′(x),得2x +a =2x +c. ∴a =c. ③ ∴由①③可得a =c =2.由f(5)=30,得25+10+b =30. ④ 由④得b =-5.再由②得d =-12.∴g(x)=x 2+2x -12. 故g(4)=16+8-12=472.。
一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞ D .(-1,0)()0,1⋃2.已知函数32()22sin 524x f x x x π⎛⎫=++++⎪⎝⎭,且()22(34)12f t t f t -+-+<,则实数t 的取值范围是( )A .(1,4)B .(,1)(4,)-∞⋃+∞C .(4,1)-D .(,4)(1,)-∞-+∞3.定义在[0,)+∞的函数()f x ,对任意0x ≥,恒有()()f x f x '>,(1)f a e=,2(2)f b e=,则a 与b 的大小关系为( ) A .a b >B .a b <C .a b =D .无法确定 4.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦ B .1,2⎛⎤-∞ ⎥⎝⎦ C .(],1-∞ D .(],e -∞ 5.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充分必要条件6.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f <<B .()()()623428f f f <<C .()()()346229f f f <<D .()()()286234f f f << 7.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( )A .4B .C .D .68.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( )A .34B .16C .24D .17 9.已知曲线1C :()x f x xe =在0x =处的切线与曲线2C :()()ln a x g x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定 10.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点11.设函数()x f x e x =-,直线y ax b =+是曲线()y f x =的切线,则+a b 的最大值是( )A .11e -B .1C .1e -D .22e - 12.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2x f x e->的解集是( ) A .()0,1 B .()1,+∞ C .()0,∞+ D .(),0-∞二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________. 14.已知函数()()1ln 1x f x x x+=>,若对任意两个不同的1x ,2x ,都有()()1212ln ln f x f x k x x -≤-成立,则实数k 的取值范围是________________ 15.已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.16.已知函数()3x f x e-=,()1ln 22x g x =+,若()()f m g n =成立,则n m -的最小值为______.17.若函数()()32f x x ax a R =--∈在(),0-∞内有且只有一个零点,则()f x 在[]1,2-上的最小值为______.18.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______. 19.已知函数()(ln )f x x x ax =-有且仅有一个极值点,则实数a 的取值范围是_____. 20.已知函数()x f x e x =-,()22g x x mx =-,若对任意1x ∈R ,存在[]21,2x ∈,满足()()12f x g x ≥,则实数m 的取值范围为______.三、解答题21.已知()21ln f x ax x =-- (1)当2a =时,求()f x 的单调增区间;(2)若()0f x ≥,求实数a 的取值范围.22.已知函数21()ln 2x f x x x -=-. (1)求()f x 的单调区间;(2)设()*ln 1,1,2,k k a n k n n ⎫⎛=+∈=⋅⋅⋅ ⎪⎝⎭N ,在(1)的条件下,求证:123214n n a a a a ++++⋅⋅⋅+<()*n ∈N . 23.已知()()2log 1f x x =+.(1)若()()0121f x f x <--<,求x 的取值范围;(2)若关于x 的方程()40xf x m -+=有解,求实数m 的取值范围. 24.某偏远贫困村积极响应国家“扶贫攻坚”政策,在对口帮扶单位的支持下建了一个工厂,已知每件产品的成本为a 元,预计当每件产品的售价为x 元()38x ≤≤时,年销量为()29x -万件.若每件产品的售价定为6元时,预计年利润为27万元(1)试求每件产品的成本a 的值;(2)当每件产品的售价定为多少元时?年利润y (万元)最大,并求最大值.25.设函数1()ln ,f x a x a x=+∈R . (Ⅰ)设l 是()y f x =图象的一条切线,求证:当0a =时,l 与坐标轴围成的三角形的面积与切点无关;(Ⅱ)若函数()()g x f x x =-在定义域上单调递减,求a 的取值范围.26.已知函数()()ln 2xf x e x =-+. (1)求()f x 在()()0,0f 处的切线方程;(2)求证:()0f x >.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围.【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-<设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g <即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞,故选:C【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.A解析:A【分析】先利用二倍角公式和诱导公式化简函数,构造()()6g x f x =-为R 上单调递增的奇函数,再转化不等式为()22(34)g t t g t -<-,利用单调性解不等式即得结果.【详解】 解:33()26cos 2sin 62f x x x x x x x π⎛⎫=++-+=+++⎪⎝⎭ 令3()()62sin g x f x x x x =-=++,则2()32cos 0g x x x '=++>,()()g x g x -=-,故()g x 在R 上单调递增,且()g x 为奇函数.不等式()22(34)12f t t f t -+-+<,即()226(34)60f t t f t --+-+-<,即()22(34)0g t t g t -+-+<,则()22(34)g t t g t -<-故2234t t t -<-,即2540t t -+<,所以14t <<.故选:A.【点睛】方法点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.3.A解析:A【分析】 构造函数()()x f x g x e =,对其求导得''()()()x f x f x g x e-=,由()()f x f x '>,可得'()0g x <,从而可得()g x 在[0,)+∞上单调递减,进而可比较出a 与b 的大小【详解】 解:令()()x f x g x e =,则''()()()xf x f xg x e -=, 因为()()f x f x '>,所以'()0g x <,所以()g x 在[0,)+∞上单调递减,因为12<,所以(1)(2)g g >,即2(1)(2)f f e e>,所以a b >, 故选:A【点睛】 关键点点睛:此题考查导数的应用,考查数学转化思想,解题的关键是构造函数()()x f x g x e=,然后求导后可判断出()g x 在[0,)+∞上单调递减,从而可比较出a 与b 的大小,属于中档题 4.A解析:A【分析】由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案.【详解】 由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-, 故12a ≤-. 故选:A.【点睛】 本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.5.D解析:D【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项.【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数,0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.6.B解析:B【分析】构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论.【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>,所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<,故选:B.7.B解析:B【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围. 【详解】由题意可得()160f x x a x '=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立因为16x x +≥16x x =即x =时取最小值所以a ≤故选:B【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.8.A解析:A【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值.【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A .【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.9.A解析:A【分析】先对函数()x f x xe =和()ln a x g x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln x h x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数.【详解】∵()x f x xe =,∴()()1xf x x e '=+, 又()ln a xg x x =,∴()2ln a a x g x x-'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =, 则()()()ln ln xx x h x f x g x xe e x x ==⋅=, ∴()()ln 1ln x x x x x e e h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增; ∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A .【点睛】思路点睛:利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)10.C解析:C【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误.【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误; 对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误.故选:C.【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.11.C解析:C【分析】先设切点写出曲线的切线方程,得出a 、b 的值,再利用构造函数利用导数求+a b 的最大值即可.【详解】解:由题得()1x f x e '=-,设切点(t ,())f t ,则()t t f t e =-,()1t f t e '=-;则切线方程为:()(1)()t ty e t e x t --=--,即(1)(1)t t y e x e t =-+-,又因为y ax b =+,所以1t a e =-,(1)t b e t =-,则12t t a b e te +=-+-,令()12t t g t e te =-+-,则()(1)t g t t e '=-,则有1t >,()0g t '<;1t <,()0g t '>,即()g t 在(),1-∞上递增,在()1,+∞上递减, 所以1t =时,()g t 取最大值(1)121g e e e =-+-=-,即+a b 的最大值为1e -.故选:C.【点睛】本题考查了利用导数求曲线的切线方程和研究函数的最值,属于中档题.12.D解析:D【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解.【详解】令2()()x g x e f x =,则2()[2()()]x g x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D .【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--. 【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】先对求导判断其单调性不妨设可对原不等式去绝对值得等价于构造函数可得在单调递增分离得由即可求解【详解】当时所以所以在单调递减不妨设则所以等价于即设则所以在单调递增对于恒成立所以可得对于恒成立设解析:1,e ⎡⎫+∞⎪⎢⎣⎭【分析】先对()f x 求导判断其单调性,不妨设121x x <<,可对原不等式去绝对值得()()1122ln ln f x k x f x k x +≤+,等价于()()1122ln ln f x k x f x k x +≤+,构造函数()()ln g x f x k x =+,可得()()ln g x f x k x =+在()1,+∞单调递增,()0g x '≥,分离得ln xk x ≥,由maxln x k x ⎛⎫≥ ⎪⎝⎭即可求解. 【详解】()()2211ln ln x x x x f x x x ⋅-+-'==, 当1x >时,ln 0x >,所以()0f x '<,所以()1ln xf x x+=在()1,+∞单调递减, 不妨设121x x <<,则()()120f x f x ->,12ln ln 0x x -<,所以()()1212ln ln f x f x k x x -≤-等价于()()()1221ln ln f x f x k x x -≤-, 即()()1122ln ln f x k x f x k x +≤+, 设()()ln g x f x k x =+,则()()12g x g x <, 所以()()1ln ln ln xg x f x k x k x x+=+=+在()1,+∞单调递增, ()22ln ln 0x k kx xg x x x x --'=+=≥对于()1,x ∈+∞恒成立, 所以ln 0kx x -≥,可得ln xk x≥对于()1,x ∈+∞恒成立, 设()ln xh x x=,只需()max k x h ≥, ()221ln 1ln x xx x h x x x ⋅--'==, 当1x e <<时()0h x '>,()ln xh x x=单调递增, 当x e >时,()0h x '<,()ln xh x x=单调递减, 所以()()max ln 1e h x h e e e===,所以1k e ≥,故答案为:1,e ⎡⎫+∞⎪⎢⎣⎭【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.15.【分析】不等式等价变形利用同构函数的单调性得解【详解】令∴在上单调递增∵∴∴恒成立令只需∴单调递增∴单调递减时的最大值为∴∴的最小值为故答案为:【点睛】不等式等价变形同构函数是解题关键解析:3e【分析】不等式等价变形()()()4ln 3ln 3ln 3ln xxxe x x a a x x a a e e-≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=, ∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33xx eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=, ∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,∴3a e ≥,∴a 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键.16.【分析】根据得到mn 的关系利用消元法转化为关于t 的函数构造函数求函数的导数利用导数研究函数的最值即可得到结论【详解】解:不妨设∴()∴即故()令()所以在上是增函数且当时当时即当时取得极小值同时也是 解析:ln21-【分析】根据()()f m g n t ==得到m ,n 的关系,利用消元法转化为关于t 的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论. 【详解】解:不妨设()()f m g n t ==, ∴31ln 22m net -=+=,(0t >) ∴3ln m t -=,即3ln m t =+,122t n e -=⋅,故1223ln t n m e t --=⋅--(0t >), 令()1223ln t h t et -=⋅--(0t >),()1212t h t et-'=⋅-,()1221''20t h t e t -=⋅+>所以()h t '在()0,∞+上是增函数,且102h ⎛⎫'= ⎪⎝⎭, 当12t >时,()0h t '>, 当102t <<时,()0h t '<, 即当12t =时,()h t 取得极小值同时也是最小值, 此时1123ln ln 2122h ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,即n m -的最小值为ln21-, 故答案为:ln21-. 【点睛】本题考查利用导数求函数的最小值,考查化归转化思想与运算能力,是中档题.17.【分析】利用导数分析函数在区间上的单调性根据该函数在区间上有且只有一个零点求得参数的值进而利用导数可求得函数在区间上的最小值【详解】则①当时对任意的恒成立此时函数在区间上单调递增且不合乎题意;②当时 解析:4-【分析】利用导数分析函数()y f x =在区间(),0-∞上的单调性,根据该函数在区间(),0-∞上有且只有一个零点求得参数a 的值,进而利用导数可求得函数()y f x =在区间[]1,2-上的最小值. 【详解】()32f x x ax =--,则()23f x x a '=-.①当0a ≤时,对任意的(),0x ∈-∞,()0f x '>恒成立,此时,函数()y f x =在区间(),0-∞上单调递增,且()()020f x f <=-<,不合乎题意;②当0a >时,令()230f x x a '=-=,可得x =x =当x <()0f x '>,此时函数()y f x =单调递增;当0x <<时,()0f x '<,此时函数()y f x =单调递减.所以,()max20f x f ⎛=== ⎝,解得3a =,()332f x x x ∴=--. ()()()233311f x x x x '=-=-+,当11x -<<时,()0f x '<,此时函数()y f x =单调递减; 当12x <<时,()0f x '>,此时函数()y f x =单调递增.因此,函数()y f x =在1x =处取得极小值,亦即最小值,故()()min 14f x f ==-. 故答案为:4-. 【点睛】本题考查利用导数求解函数在区间上的最值,同时也考查了利用导数研究函数的零点,考查计算能力,属于中等题.18.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-, 故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.19.【分析】根据题意可得只有一个解只有一个解与只有一个交点求导数分析单调性及当时;当时画出函数的草图及可得的取值范围再检验是否符合题意即可得出答案【详解】解:因为函数有且仅有一个极值点所以只有一个解即只 解析:(,0]-∞【分析】根据题意可得()210f x lnx ax '=-+=只有一个解12lnx a x+⇒=只有一个解2y a ⇒=与1()lnx y g x x+==只有一个交点,求导数()g x ',分析单调性,及当0x →时,()g x →-∞;当x →+∞时,()0g x →,画出函数()g x 的草图,及可得a 的取值范围,再检验是否符合题意,即可得出答案. 【详解】解:因为函数()(ln )f x x x ax =-有且仅有一个极值点, 所以1()ln ln 210f x x ax x a x ax x ⎛⎫'=-+-=-+= ⎪⎝⎭只有一个解, 即ln 12x a x+=,只有一个解, 即2y a =与ln 1()x y g x x+==只有一个交点, 因为2ln ()xg x x-'=, 当(0,1)x ∈时,()0g x '>,函数()g x 单调递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 单调递减, 所以max ()(1)1g x g ==,当0x →时,()g x →-∞;当x →+∞时,()0g x →, 画出函数()g x 的草图如下:结合图象可得21a =或20a ≤, 解得12a =或0a ≤, 当12a =时,21()ln 2f x x x x =-, 所以()1ln f x x x '=+-,令()1ln h x x x =+-,所以1()1h x x'=-, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以()(1)0h x h ≤=,所以()1ln 0f x x x '=+-≤恒成立, 所以()f x 在(0,)+∞上单调递减, 所以函数()f x 没有极值点. 所以实数a 的取值范围是(,0]-∞. 故答案为:(,0]-∞ 【点睛】本题考查利用导数分析极值,解题关键是转化思想的应用,属于中档题.20.【分析】首先对进行求导利用导数研究函数的最值问题根据题意对任意存在使只要的最小值大于等于在指定区间上有解【详解】由得当时当时∴在上单调递减在上单调递增∴在上有解在上有解函数在上单调增故答案为:【点睛 解析:[)0,+∞【分析】首先对()f x 进行求导,利用导数研究函数()f x 的最值问题,根据题意对任意1x R ∈,存在[]21,2x ∈,使12()()f x g x ,只要()f x 的最小值大于等于()g x 在指定区间上有解 . 【详解】由()xf x e x =-,得()1xf x e '=-,当()1,0x ∈-时,()0f x '<,当()0,1x ∈时,()0f x '>, ∴()f x 在()1,0-上单调递减,在()0,1上单调递增, ∴()()min 01f x f ==()1g x ≤在[]1,2上有解,21212x mx m x x -≤⇔≥-在[]1,2上有解,函数1y x x =-在[]1,2上单调增,1101min y ∴=-=,20,0m m ≥≥.故答案为: [)0,+∞ 【点睛】不等恒成立与能成立的等价转换:任意1x A ∈,存在2x B ∈,使()()12min min ()()f x g x f x g x ⇔≥ 任意1x A ∈,任意2x B ∈,使()()12min max ()()f x g x f x g x ⇔= 存在1x A ∈,存在2x B ∈,使()()12max min ()()f x g x f x g x ⇔⇔三、解答题21.(1)1,2⎛⎫+∞ ⎪⎝⎭;(2)12a e ≥.【分析】(1)求出导函数()'f x ,在定义域内由()0f x '>得增区间;(2)分离参数得21ln x a x +≥.设()21ln x g x x+=,由导数求得()g x 最大值即可得结论. 【详解】(1)当2a =时,()()221ln ,0,f x x x x =--∈+∞.由()()()221211414x x x f x x x x x+--'=-==, 令()0f x '>,得12x >, 所以()f x 的单调增区间为1,2⎛⎫+∞⎪⎝⎭. (2)由()21ln 0f x ax x =--≥,则21ln xa x +≥.设()21ln x g x x +=,则()312ln xg x x --'=. 令()0g x '=,得12x e -=,且当120,x e -⎛⎫∈ ⎪⎝⎭时,()0g x '>;当12,x e -⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 所以()g x 在120,e -⎛⎫ ⎪⎝⎭上单调递增,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递减, 所以当12x e -=到时,()g x 取得最大值为12e , 所以12a e ≥. 【点睛】方法点睛:本题考查用导数求函数的单调区间,研究不等式恒成立问题.不等式恒成立问题的解题方法通常是利用分离参数法分离参数,然后引入新函数,利用导数求得新函数的最值,则可得参数范围.22.(1)()f x 单调递增区间为(0,)+∞,无递减区;(2)证明见解析. 【分析】(1)求导数()'f x ,由()0f x '>确定增区间,由()0f x '<得减区间;(2)由(1)得1x >时,()0f x >,即11ln ()2x x x<-,令1,1,2,,k x k n n =+=,代入后得n 个不等式,相加后可得证明题设结论. 【详解】(1)解:函数()f x 的定义域为(0,)+∞由21()ln 2x f x x x -=-,得()ln 1f x x x '=--令1()ln 1()1g x x x g x x'=--⇒=-()0(1,)()0(0,1)g x x g x x ''>⇒∈+∞<⇒∈即()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)0f x f '''≥=,于是()f x 单调递增区间为(0,)+∞,无递减区(2)证明:由(1)可知()f x 在(0,)+∞上单调递增函数,又(1)0f =,∴当1x >时,()0f x >,11ln 2x x x ⎫⎛∴<- ⎪⎝⎭1ln 112k k k n k k a n nn k +-⎫⎫⎛⎛∴=+<+- ⎪ ⎪+⎝⎝⎭⎭1(1,2,)2kk k n n n k ⎫⎛=+=⋅⋅⋅ ⎪+⎝⎭123112122111n n n a a a a n n n n n n ⎫⎛∴+++⋅⋅⋅+<++⋅⋅⋅++++⋅⋅⋅+ ⎪+++⎝⎭1121221n n n n ++⋅⋅⋅+++⋅⋅⋅+⎫⎛=+ ⎪+⎝⎭(1)(1)12122214n n n n n n n ++⎫⎛⎪ +=+=⎪+⎪⎝⎭于是()*123214n n a a a a n ++++⋅⋅⋅+<∈N 得证. 【点睛】关键点点睛:本题考查用导数求单调区间,用导数证明数列不等式.这类问题的解决,通常后一小题需要用到前一小题(或前面所有)的结论,通过变形,赋值等手段进行证明求解.如本题第(1)小题函数单调性得出不等式11ln ()2x x x<-,只要在此不等式中对x 赋值1,1,2,,kx k n n=+=,n 个不等式相加即可.23.(1)10,3⎛⎫ ⎪⎝⎭;(2)(],1-∞-. 【分析】(1)利用对数的运算法则化简,求解对数不等式. 注意化简前保证真数大于零.(2)分离参数,利用方程()2log 41xx m +-=-有解,构造函数()()2log 41x g x x =+-,求导,分析函数单调性,求出最值,得到m 的取值范围.【详解】(1)()()212log 22f x x -=-()()()()222lo 2212log 22g 1log 11f x x x x x xf ----+-=<+= 1220110222x x x x ⎧⎪->⎪+>⎨⎪-<+⎩<⎪ 则103x <<故x 的取值范围为10,3⎛⎫ ⎪⎝⎭.(2)()40xf x m -+=则()()2log 4104xxf x m m x =+-++=-()2log 41x x m +-=-设()()2log 41x g x x =+- ()()'ln 444111441ln 2x x x x g x ⋅-=-=++⋅ 当(),0x ∈-∞时,'0g x 当()0,x ∈+∞时,()'0g x >且x →-∞时,()g x →+∞()2min log 21g x ==故1m -≥则1m ≤-故m 的取值范围为:(],1-∞-【点睛】利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.24.(1)3a =;(2)每件产品的售价定为5元时,年利润y 最大,最大值为32万元.【分析】(1)求得利润为()()29y x a x =--,代入点()6,27可求得实数a 的值; (2)由(1)可得出()()239y x x =--,()38x ≤≤,利用导数求出y 的最大值及其对应的x 的值,即可得出结论.【详解】(1)由题意可知,该产品的年利润为()()29y x a x =--,()38x ≤≤, 当6x =时,()9627y a =⨯-=,解得:3a =;(2)由()()239y x x =--,()38x ≤≤, 得:()()()()()292399315y x x x x x '=-+--=--,由0y '=,得5x =或9x =(舍).当[)3,5x ∈时,0y '>,当(]5,8x ∈时,0y '<.所以当5x =时,max 32y =(万元)即每件产品的售价定为5元时,年利润y 最大,最大值为32万元.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.25.(Ⅰ)证明见解析;(Ⅱ)(,2]-∞.【分析】(Ⅰ)设切点为001(,)P x x ,求出切线方程并计算l 与坐标轴围成的三角形的面积为2,故可得相应的结论.(Ⅱ)由题设可得()0g x '≤,利用参变分离可得a 的取值范围.【详解】 (Ⅰ)当0a =时,1(),0f x x x =>,21()f x x'=-, 设()f x 图象上任意一点001(,)P x x ,切线l 斜率为0201()k f x x =-'=. 过点001(,)P x x 的切线方程为020011()y x x x x -=--. 令0x =,解得02y x =;令0y =,解得02x x =. 切线与坐标轴围成的三角形面积为0012|||2|22S x x =⋅=. 所以l 与坐标轴围成的三角形的面积与切点无关.(Ⅱ)由题意,函数()g x 的定义域为(0,)+∞.因为()g x 在(0,)+∞上单调递减, 所以21()10a g x x x '=--≤在(0,)+∞上恒成立, 即当(0,)x ∈+∞,1a x x ≤+恒成立, 所以min 1()a x x ≤+因为当(0,)x ∈+∞,12x x+≥,当且仅当1x =时取等号. 所以当1x =时,min 1()2x x +=所以2a ≤.所以a 的取值范围为(,2]-∞.【点睛】结论点睛:一般地,若()f x 在区间(),a b 上可导,且()()()00f x f x ''><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()00f x f x ''≥≤.26.(1)11ln 22y x =+-;(2)证明见解析. 【分析】(1)求出()f x 的导函数,由()0k f '=,可得答案.(2)求出()f x 的导函数,讨论出函数()f x 的单调性,得出其最小值,可证明.【详解】(1)解:1()2x f x e x '=-+, 当0x =时,()102k f '==, 又()01ln 2f =-, 所以切线方程为()11ln 22y x --=,即11ln 22y x =+-. (2)解:1()2x f x e x '=-+在区间()2,-+∞上单调递增, 又()10f '-<,()00f '>,故()0f x '=在区间()2,-+∞上有唯一实根0x ,且()01,0x ∈-, 当()02,x x ∈-时,()0f x '<;当()0,x x ∈+∞时,()0f x '>, 从而当0x x =时,()f x 取得最小值.由()00f x '=,得0012x e x =+,()00ln 2x x +=-, 故()()20000011()022x f x f x x x x +≥=+=>++. 【点睛】本题考查求函数在某点出的切线方程和利用导数证明不等式.解答本题的关键是由1()2x f x e x '=-+在区间()2,-+∞上单调递增,得出()0f x '=在区间()2,-+∞上有唯一实根0x ,从而得出()f x 的单调区,即()()20000011()22x f x f x x x x +≥=+=++,属于中档题.。
(新课标)2017-2018学年北师大版高中数学选修1-1第四章 导数应用建议用时 实际用时满分 实际得分120分钟一、选择题(每小题6分)1. 下列说法正确的是 ( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值 2.函数()323922y x x x x =---<<有()A .极大值5,极小值-27B .极大值5,极小值11C .极大值5,无极小值D .极小值-27,无极大值 3.函数xx y 142+=的单调递增区间是() A .),0(+∞B .)1,(-∞C .),21(+∞D .),1(+∞4.函数xxy ln =的最大值为() A.1e - B.e C.2e D.310 5.函数在区间[0,3]上的最大值与最小值分别是( ) A.5,-15 B.5,-4 C.-4,-15 D.5,-16 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内的极小值点有( )A.1个B.2个C.3个D.4个7.已知函数f(x)=12x 3-x 2-72x ,则f(-a 2)与f(-1)的大小关系为( ) A .f(-a 2)f(-1) B .f(-a 2)f(-1) C .f(-a 2)f(-1)D .f(-a 2)与f(-1)的大小关系不确定 8.函数的极值情况是( )A .有极大值2,极小值-2B .有极大值1,极小值-1C .无极大值,但有极小值-2D .有极大值2,无极小值二、填空题(本题共4小题,每小题5分,共16分)9.已知函数既存在极大值又存在极小值,则实数的取值范围是. 10.函数x x x f -⋅=e )(的单调递增区间是.11.函数的极值点为.12.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的长、宽、高各为时,其体积最大. 13.函数y=x+2cos x 在[0,]上取得最大值时,x 的值为三、解答题(共76分)14.(15分)一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10千米时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每千米的费用总和最小?15.(14分)已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-.(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间.16.(14分)已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值-3-c ,其中c b a ,,为常数.(1)试确定b a ,的值(2)讨论函数)(x f 的单调区间;(3)若对任意x >0,不等式22)(c x f -≥恒成立,求c 的取值范围.17.(16分)已知函数2()ln (0).f x x ax x a =-->(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为-2,求a 的值以及切线方程; (2)若()f x 是单调函数,求a 的取值范围.18.(16分)已知函数f(x)=aln x++1.(1)当a=-时,求f(x)在区间[,e]上的最值; (2)讨论函数f(x)的单调性.19.(16分)已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()hx f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1e x x ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围一、 选择题1.D 解析:函数的极值与最值没有必然联系.2.C 解析:令'23690,1y x x x =--==-得,或3当时,不满足题意,故舍去.当x 在(-2,2)上变化时,的变化情况如下表:x(-2,-1)-1(-1,2)+-y5由上表可知,函数y 有极大值5,无极小值.3.C 解析:令3'322181180,810,.2x y x x x x x -=-=>->>即得 4.A 解析:令'''22(ln )ln 1ln 0, e.x x x x x y x x x -⋅-====得当x 变化时,随x 的变化情况如下表:x(0,e) e(e ,+∞)+-y由上表可知,函数y在x=e时取得最大值,最大值.5.A 解析:由,得.令,得当变化时,,f(x)的变化情况如下表:0 (0,2) 2 (2,3) 3-0 +f(x) 5 -15 -4所以函数的最大值与最小值分别是5,-15.6.A 解析:若处取得极小值点,则,在的左侧,在的右侧.据此可知,f(x)在开区间(a,b)内的极小值点有1个.7.A 解析:由题意可得.由=12(3x-7)(x+1)=0,得x=-1或x=73.当时,为增函数;当时,为减函数;当x>时,为增函数.所以f(-1)是函数f(x)在(-∞,0]上的最大值.又因为-a2≤0,故f(-a2)≤f(-1).8.A 解析:函数的定义域为,因为,所以解得.当或时,;当或时,<0,所以当时函数有极大值;当时函数有极小值2.故选A . 二、填空题9. 解析:因为函数f(x)=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,所以方程有两个不同的实数根. 由得m 的取值范围为.10. 解析:∵ ()e exx x f x x -=⋅=∴,21e e ()e x xx x f x ⋅-⋅'=()0,1x >∴<. ∴ 函数x x x f -⋅=e )(的单调递增区间是.11.解析:函数的定义域为(0,+∞),.令,得.当时,,当时,,所以当时函数取得极大值,为函数的极大值点.12.2 cm,1 cm, cm 解析:设长方体的宽为x cm ,则长为2x cm ,高为181293(3)(c m)0422xh x x -==-⎛⎫ ⎪⎝⎭<<. 故长方体的体积为223393()2(3)(96(c m )(0).22V x x x x x x =-=-)<< 从而).1(181818)(2x x xx x V -=-='令0)(='x V ,解得x =0(舍去)或x =1,因此x =1. 当0<x <1时,0)(>'x V ;当1<x <32时,0)(<'x V , 故在x =1处()V x 取得极大值,并且这个极大值就是()V x 的最大值. 从而体积最大时长方体的长为2 cm ,宽为1 cm ,高为32cm. 13.f( 解析:y ′=1-2sin x ,令1-2sin x=0,得sin x=.∵ x ∈[0,],∴ x=. 当x ∈[0,)时,y ′>0;当x ∈[,]时,y ′≤0,∴ f(). 二、解答题14.解:设轮船速度为x 千米/时(x >0),每小时的燃料费用为Q 元,则Q=kx 3.由6=k ×103可得,所以, ∴ 轮船行驶中每千米的费用总和, .令y ′=0得x=20.当x ∈(0,20)时,y ′<0,此时函数单调递减; 当x ∈(20,+∞)时,y ′>0,此时函数单调递增. ∴ 当x=20时,y 取得最小值.因此当轮船以20千米/时的速度航行时,能使行驶每千米的费用总和最小,为元.15.解:(1)因为c bx ax x f ++=24)(的图象经过点(0,1),所以1c =. ①'3'()42,(1)421f x ax bx k f a b =+==+=. ②由题意得切点为(1,1)-,则c bx ax x f ++=24)(的图象经过点(1,1)-,得. ③ 联立①②③得 所以(2)令得 当x 变化时, x-+-+由上表可知,函数的单调递增区间为 16.解:(1)由题意知(1)3f c =--,因此3b c c -=--,从而3b =-.又对()f x 求导得3431()4ln 4f x ax x ax bx x'=+⨯+3(4ln 4)x a x a b =++.由题意(1)0f '=,因此40a b +=,解得12a =.(2)由(1)知3()48ln f x x x '=(0x >),令()0f x '=,解得1x =.当01x <<时,()0f x '<,此时()f x 为减函数;当1x >时,()0f x '>,此时()f x 为增函数.因此()f x 的单调递减区间为(01),,而()f x 的单调递增区间为(1)+,∞.(3)由(2)知,()f x 在1x =处取得极小值(1)3f c =--,此极小值也是最小值,要使2()2f x c -≥(0x >)恒成立,只需232c c ---≥. 即2230cc --≥,从而(23)(1)0c c -+≥,解得32c ≥或1c -≤.所以c 的取值范围为3(1]2⎡⎫-∞-+∞⎪⎢⎣⎭,,. 17.解:(1)由题设,f '(1)=-2a =-2,所以a =1,此时f(1)=0,切线方程为y =-2(x -1),即2x +y -2=0. (2),令=1-8a .当a ≥ 1 8时,≤0,f '(x)≤0,f(x)在(0,+∞)上单调递减.当0<a <1 8时,>0,方程+1=0有两个不相等的正根,不妨设,则当时,f '(x)<0,当时,f '(x)>0,这时f(x)不是单调函数.综上,a 的取值范围是[ 1 8,+).18.解:(1)当a=-时,f(x)=-ln x++1,∴ f ′(x)=+=.∵ f(x)的定义域为(0,+∞),∴ 由f ′(x)=0,得x=1.∴ f(x)在区间[,e]上的最值只可能在f(1), f(),f(e)取到,而f(1)=,f()=+,f(e)=+, ∴ =f(e)=+,=f(1)=. (2)f ′(x)=,x ∈(0,+∞).①当a+1≤0,即a ≤-1时,f ′(x)<0,∴ f(x)在(0,+∞)上单调递减; ②当a ≥0时,f ′(x)>0,∴ f(x)在(0,+∞)上单调递增;③当-1<a<0时,由f ′(x)>0,得>,∴ x>或x<-(舍去),∴ f(x)在(,+∞)上单调递增,在(0,)上单调递减.综上,当a ≥0时,f(x)在(0,+∞)上单调递增;当-1<a<0时,f(x)在(,+∞)上单调递增,在(0,)上单调递减;当a ≤-1时,f(x)在(0,+∞)上单调递减.19.解:(1)方法1:∵ ()22ln a h x x x x =++,其定义域为()0 +∞,,∴ ()2212a h x x x'=-+. ∵1x =是函数()hx 的极值点,∴ ()10h '=,即230a -=. ∵ 0a >,∴ 3a =. 经检验当3a =时,1x =是函数()h x 的极值点,∴ 3a =. 方法2:∵ ()22ln a h x x x x =++,其定义域为()0+∞,,∴ ()2212a h x x x'=-+. 令()0h x '=,即22120a x x-+=,整理,得2220x x a +-=. ∵ △2180a =+>,∴ ()0h x '=的两个实根为211184a x --+=(舍去),221184a x -++=, 当x 变化时,()h x ,()h x '的变化情况如下表: x ()20,x2x ()2,x +∞ ()h x '- 0 + ()h x 单调递减 极小值 单调递增依题意,211814a -++=,即23a =,∵ 0a >,∴ 3a =.(2)对任意的[]12,1e x x ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1e x x ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦. 当x ∈[1,e ]时,()110g x x '=+>.∴ 函数()ln g x x x =+在[]1e ,上是增函数. ∴ ()()max e e 1g x g ==+⎡⎤⎣⎦.∵ ()()()2221x a x a a f x x x +-'=-=,且[]1,e x ∈,0a >. ① 01a <<且x ∈[1,e ]时,()()()20x a x a f x x +-'=>, ∴ 函数()2a f x x x=+在[1,e ]上是增函数, ∴ ()()2min11f x f a ==+⎡⎤⎣⎦. 由21a +≥e 1+,得a ≥e .又01a <<,∴a 不合题意. ②当1≤a ≤e 时,若1≤x <a ,则()()()20x a x a f x x +-'=<, 若a <x ≤e ,则()()()20x a x a f x x +-'=>. ∴ 函数()2a f x x x=+在[)1,a 上是减函数,在(]e a ,上是增函数. ∴ ()()min 2f x f a a ==⎡⎤⎣⎦.由2a ≥e 1+,得a ≥e 12+.又1≤a ≤e ,∴e 12+≤a ≤e . ③当e a >且x ∈[1,e ]时,()()()20x a x a f x x +-'=<, ∴ 函数()2a f x x x =+在[]1e ,上是减函数.∴ ()()2min e e ea f x f ==+⎡⎤⎣⎦.由2eea+≥e1+,得a≥e,又ea>,∴ea>.综上所述,a的取值范围为e1,2+⎡⎫+∞⎪⎢⎣⎭。
(新课标)2017-2018学年北师大版高中数学选修1-1第四章 导数应用(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数f(x)=x 3+ax -2在区间(1,+∞)内是增函数,则实数a 的取值范围是( ) A .[3,+∞) B .[-3,+∞) C .(-3,+∞) D .(-∞,-3)2.若函数f(x)=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( ) A .(0,1) B .(-∞,1)C .(0,+∞) D.⎝ ⎛⎭⎪⎫0,123.函数f(x)=x1-x 的单调增区间是( )A .(-∞,1)B .(1,+∞)C .(-∞,1),(1,+∞)D .(-∞,-1),(1,+∞)4.函数f(x)=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b<1 B .b<1 C .b>0 D .b<125.若函数f(x)=asin x +sin x 在x =π3处有极值,那么a 等于( )A .2B .-1 C.233 D .06.函数f(x)=x 3-3x 2+1的单调减区间为( ) A .(2,+∞) B .(-∞,2) C .(-∞,0) D .(0,2)7.若函数f(x)=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x)的图象是( )8.方程x 3+x 2+x +a =0 (a ∈R)的实数根的个数为( )A .0个B .1个C .2个D .3个9.函数y =4x -x 4在x ∈[-1,2]上的最大值,最小值分别是( ) A .f(1)与f(-1) B .f(1)与f(2) C .f(-1)与f(2) D .f(2)与f(-1) 10.函数f(x)=2x 2-13x 3在区间[0,6]上的最大值是( )A.323B.163C .12D .9 11.对于函数f(x)=x 3-3x (|x|<1),正确的是( ) A .有极大值和极小值 B .有极大值无极小值 C .无极大值有极小值 D .无极大值无极小值12.函数f(x)=x 3+ax 2+bx +a 2在x =1处有极值10,则a ,b 的值是( ) A .a =-11,b =4 B .a =-4,b =11 C .a =11,b =-4 D .a =4,b =-11 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案二、填空题(本大题共4小题,每小题5分,共20分)13.若f(x)=-12x 2+bln x +2在(0,+∞)上是减函数,则b 的取值范围是__________.14.设函数f(x)=ax 3-3x +1 (x ∈R),若对于x ∈[-1,1],都有f(x)≥0,则实数a 的值为________. 15.如图所示,内接于抛物线y =1-x 2的矩形ABCD ,其中A 、B 在抛物线上运动,C 、D 在x 轴上运动,则此矩形的面积的最大值是________.16.已知函数f(x)=x 3+ax 2+bx +c ,x ∈[-2,2]表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,有以下命题:①f(x)的解析式为f(x)=x 3-4x ,x ∈[-2,2]. ②f(x)的极值点有且只有一个. ③f(x)的最大值与最小值之和等于零.其中正确命题的序号为________. 三、解答题(本大题共6小题,共70分)17.(10分)若函数f(x)=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.18.(12分)已知函数f(x)=x 3+ax 2+bx +c在x =-23与x =1时都取得极值.(1)求a ,b 的值与函数f(x)的单调区间;(2)若对x ∈[-1,2],不等式f(x)<c 2恒成立,求c 的取值范围.19.(12分)已知函数f(x)=-x 3+3x 2+9x +a. (1)求f(x)的单调减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.20.(12分)某大型商厦一年内需要购进电脑5 000台,每台电脑的价格为4 000元,每次订购电脑的其它费用为1 600元,年保管费用率为10%(例如,一年内平均库存量为150台,一年付出的保管费用60 000元,则60 000150×4 000=10%为年保管费用率),求每次订购多少台电脑,才能使订购电脑的其它费用及保管费用之和最小?21.(12分)设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.22.(12分)已知函数f(x)=x 2+ln x.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x ∈(1,+∞)时,函数f(x)的图像在g(x)=23x 3+12x 2的下方.第四章 导数应用(B)1.B [f ′(x)=3x 2+a.令3x 2+a ≥0, 则a ≥-3x 2,x ∈(1,+∞).∴a ≥-3.] 2.D [∵f ′(x)=3x 2-6b ,由题意,函数f ′(x)图像如图所示.∴⎩⎪⎨⎪⎧f ′(0)<0,f ′(1)>0,即⎩⎪⎨⎪⎧-6b<0,3-6b>0,得0<b<12.]3.C [∵f ′(x)=x ′(1-x )-x (1-x )′(1-x )2=1-x +x (1-x )2=1(1-x )2>0,又x ≠1. ∴f(x)的单调增区间为(-∞,1),(1,+∞).] 4.A [∵f ′(x)=3x 2-3b =3(x 2-b), 若b ≤0,均不满足题意, 若b>0,则由f ′(x)=0,得x =±b ,由题意得0<b<1.∴0<b<1.]5.B [∵f ′(x)=acos x +cos x ,由题意f ′⎝ ⎛⎭⎪⎫π3=0,即a ·12+12=0,∴a =-1.]6.D [f ′(x)=3x 2-6x 2=3x(x -2). 令f ′(x)<0,得0<x<2.所以函数f(x)=x 3-3x 2+1的单调减区间为(0,2).]7.A[由已知,⎩⎪⎨⎪⎧-b 2>0c -b24<0,b<0.f ′(x)=2x +b ,只有A 适合.] 8.B [构造函数利用单调性. f(x)=x 3+x 2+x +a ,f ′(x)=3x 2+2x +1,因为Δ=-8<0, 所以f ′(x)>0,所以f(x)在R 上单调递增. 所以f(x)与x 轴有一个交点. 即f(x)=0只有一根.]9.B [利用导数求最值. y ′=4-4x 3=0,所以x =1,因为f(1)=3,f(-1)=-5,f(2)=-8, 所以,f(x)max =f(1),f(x)min =f(2).] 10.A [f ′(x)=4x -x 2,令f ′(x)=0, 得x =0,x =4,比较f(0),f(4),f(6), 得f(x)max =f(4)=323.]11.D [∵f ′(x)=3x 2-3=3(x +1)(x -1), ∴f ′(x)=0在(-1,1)内无解,函数无极值点.] 12.D [由f(x)=x 3+ax 2+bx +a 2, 得f ′(x)=3x 2+2ax +b ,根据已知条件⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧2a +b +3=0,a 2+a +b +1=10.解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3.(经检验应舍去)]13.(-∞,0]解析 ∵f ′(x)=-x +b x =-x 2+b x ,又f(x)在(0,+∞)上是减函数, 即f ′(x)≤0在(0,+∞)上恒成立,又x>0,故-x 2+b ≤0在(0,+∞)上恒成立, 即b ≤x 2在(0,+∞)上恒成立. ∴b ≤0. 14.4解析 若x =0,则不论a 取何值,f(x)≥0,显然成立;当x>0,即x ∈(0,1]时, f(x)=ax 3-3x +1≥0可转化为a ≥3x 2-1x 3,设g(x)=3x 2-1x 3,则g ′(x)=3(1-2x )x 4.所以g(x)在区间⎝ ⎛⎭⎪⎫0,12上单调递增,在区间⎝ ⎛⎦⎥⎤12,1上单调递减,因此g(x)max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4;当x<0,即x ∈[-1,0)时,f(x)=ax 3-3x +1≥0. 可转化为a ≤3x 2-1x 3,g(x)在区间[-1,0)上单调递增. 因此g(x)min =g(-1)=4,从而a ≤4, 综上所述a =4. 15.439解析 设CD =x (0<x<2),则点C 坐标为⎝ ⎛⎭⎪⎫x 2,0.点B 坐标为⎝ ⎛⎭⎪⎫x 2,1-⎝ ⎛⎭⎪⎫x 22.∴矩形ABCD 的面积S =f(x)=x ·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫x 22=-x 34+x (x ∈(0,2)).由f ′(x)=-34x 2+1=0,得x 1=-23(舍),x 2=23,∴x ∈⎝ ⎛⎭⎪⎪⎫0,23时,f ′(x)>0,f(x)是递增的, x ∈⎝ ⎛⎭⎪⎪⎫23,2时,f ′(x)<0,f(x)是递减的, 当x =23时,f(x)取最大值439.16.①③解析 f ′(x)=3x 2+2ax +b ,由题意得f(0)=0,f ′(-1)=f ′(1)=tan 3π4=-1.∴⎩⎪⎨⎪⎧c =03-2a +b =-13+2a +b =-1,∴a =0,b =-4,c =0.∴f(x)=x 3-4x ,x ∈[-2,2].故①正确. 由f ′(x)=3x 2-4=0得x 1=-233,x 2=233.根据x 1,x 2分析f ′(x)的符号、f(x)的单调性和极值点.∴x =-233是极大值点也是最大值点.x =233是极小值点也是最小值点.f(x)min +f(x)max =0.∴②错,③正确. 17.解 f ′(x)=x 2-ax +a -1, 由题意知f ′(x)≤0在(1,4)上恒成立, 且f ′(x)≥0在(6,+∞)上恒成立. 由f ′(x)≤0得x 2-ax +a -1≤0, 即x 2-1≤a(x -1). ∵x ∈(1,4),∴x -1∈(0,3), ∴a ≥x 2-1x -1=x +1.又∵x +1∈(2,5),∴a ≥5,① 由f ′(x)≥0得x 2-ax +a -1≥0, 即x 2-1≥a(x -1). ∵x ∈(6,+∞),∴x -1>0, ∴a ≤x 2-1x -1=x +1.又∵x +1∈(7,+∞),∴a ≤7,② ∵①②同时成立,∴5≤a ≤7. 经检验a =5或a =7都符合题意,∴所求a 的取值范围为5≤a ≤7. 18.解 (1)f(x)=x 3+ax 2+bx +c , f ′(x)=3x 2+2ax +b ,由f ′⎝ ⎛⎭⎪⎫-23=129-43a +b =0,f ′(1)=3+2a +b =0得a =-12,b =-2.f ′(x)=3x 2-x -2=(3x +2)(x -1), 令f ′(x)>0,得x<-23或x>1,令f ′(x)<0,得-23<x<1.所以函数f(x)的递增区间是⎝ ⎛⎭⎪⎫-∞,-23和(1,+∞),递减区间是⎝ ⎛⎭⎪⎫-23,1.(2)f(x)=x 3-12x 2-2x +c ,x ∈[-1,2],由(1)知,当x =-23时,f ⎝ ⎛⎭⎪⎫-23=2227+c 为极大值,而f(2)=2+c ,则f(2)=2+c 为最大值, 要使f(x)<c 2,x ∈[-1,2]恒成立,则只需要c 2>f(2)=2+c ,得c<-1或c>2. 19.解 (1)f ′(x)=-3x 2+6x +9. 令f ′(x)<0,解得x<-1或x>3, 所以函数f(x)的单调递减区间为 (-∞,-1),(3,+∞).(2)因为f(-2)=8+12-18+a =2+a , f(2)=-8+12+18+a =22+a , 所以f(2)>f(-2).因为在(-1,3)上f ′(x)>0,所以f(x)在[-1,2]上单调递增,又由于f(x)在[-2,-1]上单调递减,因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值. 于是有22+a =20,解得a =-2. 故f(x)=-x 3+3x 2+9x -2. 因此f(-1)=1+3-9-2=-7, 即函数f(x)在区间[-2,2]上的最小值为-7.20.解 设每次订购电脑的台数为x ,则开始库存量为x 台,经过一个周期的正常均匀销售后,库存量变为零,这样又开始下一次的订购,因此平均库存量为12x 台,所以每年的保管费用为12x ·4 000·10%元,而每年的订货电脑的其它费用为5 000x·1 600元,这样每年的总费用为5 000x ·1 600+12x ·4 000·10%元. 令y =5 000x ·1 600+12x ·4 000·10%, y ′=-1x 2·5 000·1 600+12·4 000·10%. 令y ′=0,解得x =200(台).也就是当x =200台时,每年订购电脑的其它费用及保管费用总费用达到最小值,最小值为80 000元.21.(1)解 由f(x)=e x -2x +2a ,x ∈R 知f ′(x)=e x -2,x ∈R.令f ′(x)=0,得x =ln 2. 于是当x 变化时,f ′(x),f(x)的变化情况如下表:故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f(x)在x =ln 2处取得极小值,极小值为f(ln 2)=2(1-ln 2+a).(2)证明 设g(x)=e x -x 2+2ax -1,x ∈R ,于是g ′(x)=e x -2x +2a ,x ∈R.由(1)知当a>ln 2-1时,g ′(x)取最小值为g ′(ln 2)=2(1-ln 2+a)>0.于是对任意x ∈R ,都有g ′(x)>0,所以g(x)在R 内单调递增.于是当a>ln 2-1时,对任意x ∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x ∈(0,+∞),都有g(x)>0,即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.22.(1)解 ∵f(x)=x 2+ln x ,∴f ′(x)=2x +1x .∵x>1时,f ′(x)>0,∴f(x)在[1,e]上是增函数,∴f(x)的最小值是f(1)=1,最大值是f(e)=1+e 2.(2)证明 令F(x)=f(x)-g(x)=12x 2-23x 3+ln x ,∴F ′(x)=x -2x 2+1x =x 2-2x 3+1x=x 2-x 3-x 3+1x =(1-x )(2x 2+x +1)x. ∵x>1,∴F ′(x)<0,∴F(x)在(1,+∞)上是减函数,∴F(x)<F(1)=12-23=-16<0. ∴f(x)<g(x).∴当x ∈(1,+∞)时,函数f(x)的图像在g(x)=23x 3+12x 2的下方.。
一、选择题1.已知函数()()22ln x x t f x x+-=,若对任意的[]2,3x ∈,()()0f x f x x '+>恒成立,则实数t 的取值范围是( )A .(),2-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .103⎛⎫-∞ ⎪⎝⎭,D .()2,+∞2.已知函数32()22sin 524x f x x x π⎛⎫=++++ ⎪⎝⎭,且()22(34)12f t t f t -+-+<,则实数t 的取值范围是( ) A .(1,4) B .(,1)(4,)-∞⋃+∞ C .(4,1)-D .(,4)(1,)-∞-+∞3.已知函数2()sin f x x x x =+,,22x ππ⎛⎫∈- ⎪⎝⎭,则下列式子成立的是( ) A .13(1)22f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭B .13(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭C .13(1)22f f f ⎛⎫⎛⎫<<-⎪ ⎪⎝⎭⎝⎭D .31(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭4.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫- ⎪⎝⎭ B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫-⎪⎝⎭ D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭5.将一个边长为a 的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a 的最小值为( )A .1B .2C .3D .6.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f << D .()()()286234f f f <<7.已知函数()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R .若函数()f x 有三个零点,则( )A .1a >,0b <B .01a <<,0b >C .0a <,0b >D .01a <<,0b <8.已知函数,0(),0x e x f x x x ⎧≥=⎨-<⎩(其中e 为自然对数的底数),若函数2()y f x ax =-恰有三个零点,则( )A .24e a >B .24e aC .22e a >D .2e a >9.已知对任意实数x 都有()()2xf x f x e '-=,()01f =-,若()()1f x k x >-恒成立,则k 的取值范围是( ) A .()1,+∞B .323,42e ⎛⎫ ⎪⎝⎭C .()121,4eD .()321,4e10.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( )A .[1B .[1,)+∞C .(1D .(1,)+∞11.若函数()()11xf x e a x =--+在(0,1)上不单调,则a 的取值范围是( ) A .()2,1e +B .[]2,1e +C .(][),21,e -∞⋃++∞ D .()(),21,e -∞⋃++∞12.已知函数()xx f x e e ax -=-+(a 为常数)有两个不同极值点,则实数a 的取值范围是( ) A .[)1,+∞B .[)2,+∞C .()2,+∞D .()1,+∞二、填空题13.已知函数1()ln (0)a x f x x a x x a e=++-<,若()0f x ≥在[)2,x ∈+∞上恒成立,则实数a 的取值范围为___________.14.已知函数()3x f x e -=,()1ln 22xg x =+,若()()f m g n =成立,则n m -的最小值为______.15.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________. 16.函数()31443f x x x =-+的极大值为______. 17.已知函数()2cos sin 2f x x x =+,则()f x 的最小值是______. 18.定义在(0,)+∞上的函数()f x 满足()1xf x '<,且(1)1f =,则不等式(31)ln(31)1f x x ->-+的解集是________.19.已知函数()xe f x mx x=-(e 为自然对数的底数),若()0f x <在0,上有解,则实数m 的取值范围是______.20.已知函数()()31f x x ax b =---,x ∈R ,其中a 、b ∈R ,若()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,则102x x +=_______.三、解答题21.已知函数2()ln ()f x a x a x=-∈R . (1)当1a =-时,求()f x 的单调区间; (2)若()f x 在21,e ⎛⎫+∞⎪⎝⎭上有两个零点,求a 的取值范围. 22.已知函数21()ln 2x f x x x -=-.(1)求()f x 的单调区间; (2)设()*ln 1,1,2,k k a n k n n ⎫⎛=+∈=⋅⋅⋅ ⎪⎝⎭N ,在(1)的条件下,求证:123214n n a a a a ++++⋅⋅⋅+<()*n ∈N . 23.设23()252x f x x x =--+(1)求函数()f x 的单调递增、递减区间;(2)当[1,2]x ∈-时,()f x m <恒成立,求实数m 的取值范围.24.设函数1()ln ,f x a x a x=+∈R .(Ⅰ)设l 是()y f x =图象的一条切线,求证:当0a =时,l 与坐标轴围成的三角形的面积与切点无关;(Ⅱ)若函数()()g x f x x =-在定义域上单调递减,求a 的取值范围.25.已知函数21()ln (1)12f x a x x a x =+-++. (I )当0a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;(Ⅱ)若函数()f x 在1x =处取得极小值,求实数a 的取值范围.26.设函数33,().()2,x x x af x a R x x a ⎧-=∈⎨->⎩(1)若0a =,则()f x 的最大值为;(2)若()f x 无最大值,则求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求导函数()f x ',化简()()0f x f x x'+>得10x t x+->在[]2,3x ∈恒成立,参变分离即可求参数范围. 【详解】∵()2222ln 2x x t f x x-+-'=, ∴对任意的[]2,3x ∈,()()0f x f x x'+>恒成立⇔对任意的[]2,3x ∈,()()0xf x f x '+>恒成立, ⇔对任意的[]2,3x ∈,10x t x+->恒成立, ⇔1x t x+>恒成立, 又()1g x x x =+在[]2,3上单调递增,∴()()225min g x g ==, ∴52t <.则实数t 的取值范围是5,2⎛⎫-∞ ⎪⎝⎭.故选:B 【点睛】对于恒成立问题,常用到以下两个结论: (1)()a f x ≥ 恒成立()max a f x ⇔≥; (2) ()a f x ≤ 恒成立()min a f x ⇔≤.2.A解析:A 【分析】先利用二倍角公式和诱导公式化简函数,构造()()6g x f x =-为R 上单调递增的奇函数,再转化不等式为()22(34)g t t g t -<-,利用单调性解不等式即得结果. 【详解】解:33()26cos 2sin 62f x x x x x x x π⎛⎫=++-+=+++ ⎪⎝⎭令3()()62sin g x f x x x x =-=++,则2()32cos 0g x x x '=++>,()()g x g x -=-,故()g x 在R 上单调递增,且()g x 为奇函数.不等式()22(34)12f t t f t -+-+<,即()226(34)60f t t f t --+-+-<, 即()22(34)0g t t g t -+-+<,则()22(34)g t t g t -<- 故2234t t t -<-,即2540t t -+<,所以14t <<. 故选:A. 【点睛】 方法点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.3.B解析:B 【分析】由奇偶性的定义得到函数()f x 为偶函数,求导数得到函数()f x 在(0,)2π上为增函数,则函数在(,0)2π-上为减函数.结合单调性和奇偶性即可判断出答案.【详解】函数2()sin f x x x x =+, 22x ππ⎛⎫∈- ⎪⎝⎭,,定义域关于原点对称,且()()()()()22sin sin f x x x x x x x f x -=-+--=+=.所以函数()f x 为偶函数,所以()()11f f -= 又当0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>. ()f x ∴在0,2π⎛⎫ ⎪⎝⎭上为增函数,则()f x 在,02π⎛⎫- ⎪⎝⎭上为减函数.13π1222<<<,所以()13122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 则()13122f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭. 故选:B .关键点睛:本题考查利用函数的奇偶性和单调性比较函数值大小,解答本题的关键是先得出函数为偶函数,再由0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>利用单数判断出单调性,属于中档题.4.A解析:A 【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<. 故选:A 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.5.C解析:C 【分析】设出小正方形的边长,表示出方盒的体积,然后求导,判断出单调性,然后求解最大值即可. 【详解】设截去的小正方形边长为x ,则方盒高为x ,底边长为2a x -,所以()22,0,2a V a x x x ⎛⎫=-⋅∈ ⎪⎝⎭,则()224(2)(2)(6)V a x x a x x a x a '=-+-=--,令0V '=,得2a x =(舍) 或6a x =,当06ax <<时,0V '>,单调递增;当62a a x <<时,0V '<,单调递减;由题意,则23max 2263627a a a a V V a ⎛⎫⎛⎫==-⋅=≥ ⎪ ⎪⎝⎭⎝⎭,则3a ≥,故a 的最小值为3. 故选:C.导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.6.B解析:B 【分析】 构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.7.B解析:B 【分析】首先求出函数的导函数,要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即可求出参数a 的取值范围,再求出函数的单调区间,从而得到()10f a ->,即可判断b 的范围;【详解】解:因为()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R 所以()()()()()()()222111111ax a a x a a ax x a f x ax a a xxx+--+---+-'=++--==要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即11x a=,21x a =-,所以1010a a->⎧⎪⎨>⎪⎩解得01a <<,此时111x a =>,211x a =-<,令()0f x '>,解得01x a <<-或1x a >,即函数在()0,1a -和1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,解得11a x a -<<或1x a >,即函数在11,a a ⎛⎫- ⎪⎝⎭上单调递减,所以()f x 在1x a =-处取得极大值,在1x a=处取得极小值; 因为当0x →时,()f x →-∞;当x →+∞时,()f x →+∞,要使函数函数()f x 有三个零点,则()10f a ->,10f a ⎛⎫<⎪⎝⎭即()()()()()()2211ln 11112a f a a a a a a ab -=--+-+---+ ()()()()211ln 102a a a a b -+⎡⎤=--++>⎢⎥⎣⎦且()()2211111ln 102a f a a a b a a a a ⎛⎫⎛⎫=-++--+< ⎪ ⎪⎝⎭⎝⎭ 因为01a <<,所以011a <-<,20a -<,所以()()2102a a -+<,()ln 10a -<,所以()()()()211ln 102a a a a -+⎡⎤--+<⎢⎥⎣⎦,又()()()()211ln 102a a a ab -+⎡⎤--++>⎢⎥⎣⎦,所以0b >故选:B 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.8.A解析:A 【分析】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x=≠,令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点,利用导数研究函数()y g x =的性质并作出示意图可求得答案. 【详解】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x =≠, 令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点, 当0x >时,2()x e g x x =,则4(2)()x xe x g x x -'=,则()g x 在(0,2)上递减,在(2,)+∞上递增,当2x =时,()g x 有最小值为2(2)4e g =,当0x →时,()g x →+∞,作出()y g x =的示意图如图所示:由图知,若函数()2y f x ax =-恰有三个零点,则24e a >. 故选:A. 【点睛】方法点睛:求函数()f x 的零点个数的方法如下: 直接解方程()0f x =,求出零点可得零点个数.; 数形结合法:转化为两个函数的交点;参变分离法:将参数分离出来,再作函数的图像进而转化为y a =与()y g x =(分离后的函数)的交点问题.9.D解析:D 【分析】由导数的运算求出()f x ,然后用分离参数法得出1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-,再设(21)()1x e x h x x -=-,求出()h x 在1x >时最小值,在1x <时的最大值,从而可得k 的范围. 【详解】因为()()2xf x f x e '-=,所以()()2x f x f x e '-=,即()2x f x e '⎡⎤=⎢⎥⎣⎦,所以()2x f x x c e =+(c 为常数),()(2)x f x e x c =+,由(0)1f c ==-,()(21)x f x e x =-,不等式()()1f x k x >-为(21)(1)xe x k x ->-,1x =时,不等式为0e >,成立,1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-, 设(21)()1x e x h x x -=-,则2(23)()(1)x xe x h x x -'=-, 当312x <<或01x <<时,()0h x '<,当32x >或0x <时,()0h x '>,所以()h x 在(0,1)和31,2⎛⎫⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭和(,0)-∞上是增函数, 1x >时,()h x 在32x =时取得极小值也最小值32342h e ⎛⎫= ⎪⎝⎭,由(21)1x e x k x -<-恒成立得324k e <,1x <时,()h x 在0x =时取得极大值也是最大值(0)1h =,由(21)1xe x k x ->-恒成立得1k >,综上有3214k e <<. 故选:D . 【点睛】本题考查导数的运算,考查用导数研究不等式恒成立问题,用分离参数法转化为求函数的最值是解题关键,解题时注意分类讨论思想的应用.10.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解 【详解】.3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. 函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)(3)0f f ==,f (1)2=,13m ∴≤≤故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.11.A解析:A 【分析】求导得()1xf x e a '=-+,原问题可转化为()'f x 在(0,1)上有变号零点,由于()'f x 单调递增,只需满足()()010f f ''<,解之即可. 【详解】 解:()(1)1x f x e a x =--+,()1x f x e a '∴=-+,若()f x 在(0,1)上不单调,则()'f x 在(0,1)上有变号零点,又()f x '单调递增,()()010f f ''∴<,即(11)(1)0a e a -+-+<,解得21a e <<+.a ∴的取值范围是(2,e +1).故选:A . 【点睛】本题考查利用导数研究函数的单调性、零点存在定理,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.12.C解析:C 【分析】由导数与极值的关系知可转化为方程()0f x '=在R 上有两个不等根,结合函数的性质可求.【详解】函数有两个不同极值点,()0x x f x e e a -'∴=--+=有2个不等的实数根,即x x a e e -=+有2个不等的实数根, 令()xxg x e e-=+,则()xxg x e e '-=-在R 上单调递增且(0)0g '=,当0?x <时 ()0,()g x g x '<单调递减,当0 x >时,()0,()'>g x g x 单调递增, 所以函数有极小值也是最小值(0)2g =,又当x →-∞时,()g x →+∞,x →+∞,()g x →+∞, 所以2a >即可, 故选:C 【点睛】本题主要考查了利用导数研究函数的单调性、极值、最值,转化思想,属于中档题.二、填空题13.【分析】根据不等式恒成立得到在上恒成立令函数对其求导判定其在区间上的单调性得到在上恒成立再令利用导数的方法求出其最大值即可得出结果【详解】由在上恒成立得:在上恒成立易知当时令函数则在上恒成立则单调递 解析:[,0)e -【分析】根据不等式恒成立,得到ln ln a a x x x x e e ---≥-在[2,)x ∈+∞上恒成立,令函数()ln (01)g t t t t =-<<,对其求导,判定其在区间[2,)+∞上的单调性,得到ln xa x≥-在[2,)x ∈+∞上恒成立,再令()(2)ln xF x x x=-≥,利用导数的方法求出其最大值,即可得出结果. 【详解】由()0f x ≥在[2,)x ∈+∞上恒成立,得:ln ln a a x x x x e e ---≥-在[2,)x ∈+∞上恒成立,易知当[2,)x ∈+∞,0a <时,01a x <<,01x e -<<,令函数()ln (01)g t t t t =-<<,则1()10g t t'=->在()0,1t ∈上恒成立,则()g t 单调递增,故有a x x e -≥,则log ln xx xa ex-≥=-在[2,)x ∈+∞上恒成立, 令()(2)ln x F x x x=-≥,则21ln ()(ln )x F x x '-=,由()0F x '=得x e =, 所以()2x e ∈,时,()0F x '>,则()F x 单调递增;,)[x e ∈+∞时,()0F x '<,则()F x 单调递减;故max ()()F x F e e ==-,则a e ≥-,所以0e a -≤<. 故答案为:[,0)e -. 【点睛】 方法点睛:由不等式恒成立(或能成立)求参数时,一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.14.【分析】根据得到mn 的关系利用消元法转化为关于t 的函数构造函数求函数的导数利用导数研究函数的最值即可得到结论【详解】解:不妨设∴()∴即故()令()所以在上是增函数且当时当时即当时取得极小值同时也是 解析:ln21-【分析】根据()()f m g n t ==得到m ,n 的关系,利用消元法转化为关于t 的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论. 【详解】解:不妨设()()f m g n t ==, ∴31ln 22m net -=+=,(0t >) ∴3ln m t -=,即3ln m t =+,122t n e -=⋅,故1223ln t n m e t --=⋅--(0t >), 令()1223ln t h t et -=⋅--(0t >),()1212t h t et-'=⋅-,()1221''20t h t e t -=⋅+>所以()h t '在()0,∞+上是增函数,且102h ⎛⎫'= ⎪⎝⎭, 当12t >时,()0h t '>, 当102t <<时,()0h t '<, 即当12t =时,()h t 取得极小值同时也是最小值, 此时1123ln ln 2122h ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,即n m -的最小值为ln21-, 故答案为:ln21-. 【点睛】本题考查利用导数求函数的最小值,考查化归转化思想与运算能力,是中档题.15.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22x f x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,所以()()22420a a ∆=+-+>, 即()()2240a a ++->, 解得:2a >或2a <-, 故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题.16.【分析】求函数导数解得的根判断导函数在两侧区间的符号即可求解【详解】由解得或时当时是的极大值点函数的极大值为故答案为:【点睛】本题主要考查了基本初等函数的求导公式二次函数的图象以及函数极大值点的定义 解析:283【分析】求函数导数,解得()0f x '=的根,判断导函数在2x =±两侧区间的符号,即可求解. 【详解】()31443f x x x =-+,2()4,f x x '∴=-由()0f x '=解得2x =±,2x ∴<-或2x >时,()0f x '>,当22x -<<时,()0f x '<, 2x ∴=-是()f x 的极大值点,∴函数的极大值为128(2)(8)8433f -=⨯-++=,故答案为:283【点睛】本题主要考查了基本初等函数的求导公式,二次函数的图象,以及函数极大值点的定义及其求法,属于中档题.17.【分析】由解析式可分析得到的一个周期为则只需考虑在上的值域即可利用导函数求得其最值即可【详解】由题的一个周期为故只需考虑在上的值域令解得或可得此时或或所以的最小值只能在点或或和边界点中取到因为所以的解析: 【分析】由解析式可分析得到()f x 的一个周期为2T π=,则只需考虑()f x 在[)0,2π上的值域即可,利用导函数求得其最值即可. 【详解】由题,()f x 的一个周期为2T π=, 故只需考虑()f x 在[)0,2π上的值域,()()()()22sin 2cos 22sin 212sin 22sin 1sin 1f x x x x x x x '=-+=-+-=--+,令()0f x '=,解得1sin 2x =或sin 1x =-, 可得此时6x π=或56π或π, 所以()2cos sin 2f x x x =+的最小值只能在点6x π=或56π或π和边界点0x =中取到,因为6f π⎛⎫=⎪⎝⎭,56f π⎛⎫= ⎪⎝⎭()2f π=-,()02f =,所以()f x 的最小值为故答案为:【点睛】本题考查导数的运算,考查利用导函数求最值,考查运算能力.18.【分析】构造函数利用导数判断单调性再利用单调性解不等式即可【详解】构造函数则依题意知即在上是减函数又因为所以所以的解为即即的解为所以的解为即即解集是故答案为:【点睛】本题考查了利用函数单调性解不等式解析:12,33⎛⎫⎪⎝⎭【分析】构造函数()()ln 1(0)g x f x x x =-->,利用导数判断单调性,再利用单调性解不等式即可. 【详解】构造函数()()ln 1(0)g x f x x x =-->,则1()1()()xf x g x f x x x'-''=-=,依题意知()0g x '<,即()()ln 1g x f x x =--在0,上是减函数.又因为(1)1f =,所以(1)(1)ln110g f =--=,所以()(1)g x g >的解为01x <<,即()ln 10f x x -->即()ln 1f x x >+的解为01x <<,所以(31)ln(31)1f x x ->-+的解为0311x <-<,即1233x <<,即解集是12,33⎛⎫ ⎪⎝⎭. 故答案为:12,33⎛⎫⎪⎝⎭. 【点睛】本题考查了利用函数单调性解不等式,属于中档题.19.【分析】由题意得存在使得即设问题转化为在上的最小值对求导后易得到在上单调递减在上单调递增于是从而得解【详解】解:因为在上有解所以存在使得即设问题转化为在上的最小值当时则在上单调递减当时则在上单调递增解析:2,4e ⎛⎫+∞ ⎪⎝⎭【分析】由题意得,存在(0,)x ∈+∞,使得0x e mx x -<,即2x e m x >,设2()xe g x x =,(0,)x ∈+∞,问题转化为()g x 在(0,)+∞上的最小值,对()g x 求导后,易得到()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,于是min ()(2)g x g =,从而得解【详解】解:因为()0f x <在0,上有解,所以存在(0,)x ∈+∞,使得0x e mx x -<,即2xe m x>,设2()xe g x x =,(0,)x ∈+∞,问题转化为()g x 在(0,)+∞上的最小值,'3(2)()x e x g x x -=, 当02x <<时,'()0g x <,则()g x 在(0,2)上单调递减,当2x >时,'()0g x >,则()g x 在(2,)+∞上单调递增,所以2min()(2)4e g x g ==,所以24e m >,故答案为:2,4e ⎛⎫+∞ ⎪⎝⎭【点睛】此题考查利用导数研究函数的存在性问题,将问题转化为函数的最值问题是解此题的关键,考查转化思想和计算能力,属于中档题20.【分析】根据得出再根据利用作差因式分解可得出的值【详解】由题意可得则即即故答案为:【点睛】本题考查利用极值点求代数式的值主要考查因式分解考查计算能力属于中等题 解析:3【分析】根据()00f x '=得出()2031a x =-,再根据()()10f x f x =利用作差因式分解可得出102x x +的值.【详解】()()31f x x ax b =---,()()231f x x a '∴=--,由题意可得()()200310f x x a '=--=,则()2031a x =-,10x x ≠,100x x ∴-≠,()()10f x f x =,()()33110011x ax b x ax b ∴---=---,()()()33101011x x a x x ∴---=-,()()()()()()22101100101111x x x x x x a x x ⎡⎤∴--+--+-=-⎣⎦,()()()()()22211000111131x x x x a x ∴-+--+-==-,()()()()221100111210x x x x ∴-+----=,()()()()1010111210x x x x ∴---⋅-+-=⎡⎤⎡⎤⎣⎦⎣⎦,即()()1010230x x x x -+-=,10230x x ∴+-=,即1023x x +=.故答案为:3. 【点睛】本题考查利用极值点求代数式的值,主要考查因式分解,考查计算能力,属于中等题.三、解答题21.(1)单调递减区间为(0,2),单调递增区间为[2,)+∞;(2)()22,e e --.【分析】(1)求出导函数()'f x ,由()0f x '>确定增区间,由()0f x '<确定减区间;(2)首先说明0a =无零点,0a ≠时,()0f x =变形为1ln 2x x a =.引入ln ()2x x g x =,利用导数研究的单调性与极值,结合方程有两个解可得参数范围. 【详解】解:(1)当1a =-时,2()ln f x x x=+,则22212()(0)x f x x x x x -'=-+=>.令()0f x ',得2x ,所以函数()f x 在[2,)+∞上单调递增; 令()0f x '<,得02x <<,所以函数()f x 在(0,2)上单调递减. 故当1a =-时,()f x 的单调递减区间为(0,2),单调递增区间为[2,)+∞. (2)当0a =时,2()f x x=没有零点,则0a =不符合题意. 当0a ≠时,令2()ln 0f x a x x =-=,得1ln 2x x a =. 设ln ()2x x g x =,则ln 1()2x g x +'=. 由()0g x '>,得1x e >;由()0g x '<,得211x e e<<. 则()g x 在211,e e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,故min 11()2g x g e e⎛⎫==- ⎪⎝⎭. 因为2211g e e ⎛⎫=-⎪⎝⎭,所以21112e a e -<<-, 解得22e a e -<<-.故a 的取值范围为()22,e e --. 【点睛】思路点睛:本题考查用导数求函数的单调区间,研究函数零点个数问题.解题思路是函数零点个数转化为方程的解的个数,再转化为直线与函数图象交点个数,利用导数研究函数的单调性与极值等性质后可得结论,关键是转化.22.(1)()f x 单调递增区间为(0,)+∞,无递减区;(2)证明见解析. 【分析】(1)求导数()'f x ,由()0f x '>确定增区间,由()0f x '<得减区间;(2)由(1)得1x >时,()0f x >,即11ln ()2x x x<-,令1,1,2,,kx k n n =+=,代入后得n 个不等式,相加后可得证明题设结论. 【详解】(1)解:函数()f x 的定义域为(0,)+∞由21()ln 2x f x x x -=-,得()ln 1f x x x '=--令1()ln 1()1g x x x g x x'=--⇒=-()0(1,)()0(0,1)g x x g x x ''>⇒∈+∞<⇒∈即()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)0f x f '''≥=,于是()f x 单调递增区间为(0,)+∞,无递减区(2)证明:由(1)可知()f x 在(0,)+∞上单调递增函数,又(1)0f =,∴当1x >时,()0f x >,11ln 2x x x ⎫⎛∴<- ⎪⎝⎭1ln 112k k k n k k a n n n k +-⎫⎫⎛⎛∴=+<+- ⎪ ⎪+⎝⎝⎭⎭1(1,2,)2kk k n n n k ⎫⎛=+=⋅⋅⋅ ⎪+⎝⎭123112122111n n n a a a a n n n n n n ⎫⎛∴+++⋅⋅⋅+<++⋅⋅⋅++++⋅⋅⋅+ ⎪+++⎝⎭1121221n n n n ++⋅⋅⋅+++⋅⋅⋅+⎫⎛=+ ⎪+⎝⎭(1)(1)12122214n n n n n n n ++⎫⎛⎪ +=+=⎪ +⎪⎝⎭于是()*123214n n a a a a n ++++⋅⋅⋅+<∈N 得证. 【点睛】关键点点睛:本题考查用导数求单调区间,用导数证明数列不等式.这类问题的解决,通常后一小题需要用到前一小题(或前面所有)的结论,通过变形,赋值等手段进行证明求解.如本题第(1)小题函数单调性得出不等式11ln ()2x x x<-,只要在此不等式中对x 赋值1,1,2,,kx k n n=+=,n 个不等式相加即可.23.(1)单调递增区间为2,3⎛⎤-∞- ⎥⎝⎦和[1,)+∞,递减区间2,13⎡⎤-⎢⎥⎣⎦;(2)7m >. 【分析】(1)求导2()32f x x x '=--,分别由()0f x '>和()0f x '<求解.(2)根据[1,2]x ∈-时,()f x m <恒成立,则由max ()f x m <求解即可. 【详解】(1)2()32f x x x '=--,令()0f x '=,解得1x =或23x =-,当23x <-或1x >时,()0f x '>,()f x 为增函数, 当213x -<<时, ()0f x '<,()f x 为减函数 综上:函数()f x 的单调递增区间为2,3⎛⎤-∞- ⎥⎝⎦和[1,)+∞,递减区间为2,13⎡⎤-⎢⎥⎣⎦. (2)当[1,2]x ∈-时,()f x m <恒成立, 只需使()f x 在[1,2]-上最大值小于m 即可 由(1)知()f x 最大值为2225327f ⎛⎫-=+ ⎪⎝⎭、端点值1(1)5,(2)72f f -==中的较大者. ∴()f x 在[1,2]-上的最大值为(2)7f =, ∴7m >,所以实数m 的取值范围是7m > 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.24.(Ⅰ)证明见解析;(Ⅱ)(,2]-∞. 【分析】(Ⅰ)设切点为001(,)P x x ,求出切线方程并计算l 与坐标轴围成的三角形的面积为2,故可得相应的结论.(Ⅱ)由题设可得()0g x '≤,利用参变分离可得a 的取值范围.【详解】(Ⅰ)当0a =时,1(),0f x x x =>,21()f x x'=-,设()f x 图象上任意一点001(,)P x x ,切线l 斜率为0201()k f x x =-'=. 过点001(,)P x x 的切线方程为020011()y x x x x -=--. 令0x =,解得02y x =;令0y =,解得02x x =. 切线与坐标轴围成的三角形面积为0012|||2|22S x x =⋅=.所以l 与坐标轴围成的三角形的面积与切点无关.(Ⅱ)由题意,函数()g x 的定义域为(0,)+∞.因为()g x 在(0,)+∞上单调递减, 所以21()10a g x x x '=--≤在(0,)+∞上恒成立, 即当(0,)x ∈+∞,1a x x ≤+恒成立, 所以min 1()a x x ≤+因为当(0,)x ∈+∞,12x x+≥,当且仅当1x =时取等号. 所以当1x =时,min 1()2x x +=所以2a ≤.所以a 的取值范围为(,2]-∞.【点睛】结论点睛:一般地,若()f x 在区间(),a b 上可导,且()()()00f x f x ''><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()00f x f x ''≥≤.25.(I )1y x =-;(Ⅱ)1a <.【分析】(Ⅰ)当0a =时,利用导数的几何意义求切线方程;(Ⅱ)首先求函数的导数,2(1)()10a x a x a f x x a x x'-++=+--==时,11x =和2x a =,并讨论a 与0,1的大小关系,求实数a 的取值范围.【详解】 (I )当0a =时,21()12f x x x =-+. 所以()1f x x '=-,所以(2)1k f '==, 因为21(2)22112f =⨯-+=. 所以切线方程为1y x =-. (Ⅱ)函数()f x 的定义域为(0,)+∞. 因为21()ln (1)12f x a x x a x =+-++所以2(1)()1a x a x a f x x a x x '-++=+--=. 令()0f x '=,即2(1)0x a x a -++=,解得1x =或x a =.(1)当0a 时,当x 变化时,(),()f x f x '的变化状态如下表:所以0a 成立.(2)当01a <<时,当x 变化时,(),()f x f x '的变化状态如下表:所以当时,取得极小值.所以01a <<成立.(3)当1a =时,()0f x '在(0,)+∞上恒成立,所以函数()f x 在(0,)+∞上单调递增,没有板小值,不成立.(4)当1a >时,当x 变化时,(),()f x f x '的变化状态如下表:所以当时,取得极大值所以1a >不成立.综上所述,1a <.【点睛】关键点点睛:本题考查根据极值点求a 的取值范围,本题容易求出导函数的零点1和a ,但需讨论a 的范围,这是易错的地方,容易讨论不全面,需注意.26.(1)2;(2)(,1)-∞-.【分析】(1)将0a =代入,求出函数的导数,分析函数的单调性可得当1x =-时,()f x 有最大值2;(2)若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩或312322a a a a a >-⎧⎪->-⎨⎪->⎩,解得可得答案. 【详解】(1)若0a =,33,0()2,0x x x f x x x ⎧-=⎨->⎩,所以233,0()2,0x x f x x ⎧-=⎨->⎩', 当1x <-时,()0f x '>,此时函数为单调递增函数,当1x >-时,()0f x '<,此时函数为单调递减函数,故当1x =-时()f x 有最大值为2 .(2)233,()2,x x a f x x a⎧-=⎨->'⎩,令()0f x '=,则1x =±,若()f x 无最大值,则 3123a a a a ≤-⎧⎨->-⎩ ① 或312322a a a a a >-⎧⎪->-⎨⎪->⎩②, 由①得(,1)a ∈-∞-,由②得无解,所以(,1)a ∈-∞-.故答案为:2;(,1)-∞-.【点睛】分段函数在高考中的常见题型有:已知分段函数求值、已知分段函数求值域、已知分段函数求不等式解集、已知分段函数求参数取值范围等,分段函数问题要注意分类讨论,涉及分段函数的单调性、奇偶性、周期性等问题,要善于利用数形结合的思想解决问题.。
一、选择题1.已知函数32()22sin 524x f x x x π⎛⎫=++++ ⎪⎝⎭,且()22(34)12f t t f t -+-+<,则实数t 的取值范围是( ) A .(1,4) B .(,1)(4,)-∞⋃+∞ C .(4,1)-D .(,4)(1,)-∞-+∞2.定义在[0,)+∞的函数()f x ,对任意0x ≥,恒有()()f x f x '>,(1)f a e=,2(2)f b e=,则a 与b 的大小关系为( ) A .a b >B .a b <C .a b =D .无法确定3.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .(],e -∞4.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞- B .(),1-∞-C .[)1,-+∞D .()1,-+∞5.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫- ⎪⎝⎭ B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫-⎪⎝⎭ D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭6.将一个边长为a 的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a 的最小值为( )A .1B .2C .3D .7.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >8.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .9.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π10.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .211.设函数()y f x =在区间(,)a b 上的导函数为()f x ',记()f x '在区间(,)a b 上的导函数为()f x ''.若函数()f x 在区间(,)a b 上为“凸函数”,则在区间(,)a b 上有()0f x ''<恒成立.已知2()(2)(1)e x kxf x e e e +=-++在(0,3)上为“凸函数”,则实数k 的取值范围是( ) A .(,1)-∞B .(,)e -∞C .(1,)+∞D .(,)e +∞12.若函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,则a 的取值范围为( ) A .21,e ⎛⎫--⎪⎝⎭B .2{1},e ⎡⎫-⋃-+∞⎪⎢⎣⎭ C .2,e ⎡⎫-+∞⎪⎢⎣⎭D .2{1},0e ⎡⎫-⋃-⎪⎢⎣⎭二、填空题13.若直线l 与曲线C 满足下列两个条件:(1)直线l 在点()00,P x y 处与曲线C 相切;(2)曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线l :0y =在点()0,0P 处“切过”曲线C :3y x =. ②直线l :1x =-在点()1,0P -处“切过”曲线C :()21y x =+.③直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =. ④直线l :1y x =+在点()0,1P 处“切过”曲线C :x y e =. ⑤直线l :1y x =-在点()1,0P 处“切过”曲线C :ln y x =.14.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.15.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.16.已知函数()()3211f x ax bx a b x =++++-在1x x =处取得极小值,在2x x =处取得极大值,且12102x x <-<<<,则321a b -+的取值范围是______.17.已知奇函数()f x 是定义在R 上的可导函数,当0x >时,有22()()f x xf x x '+>,则不等式2(2021)(2021)4(2)0x f x f +++-<的解集为________. 18.若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______.19.已知函数()xe f x mx x=-(e 为自然对数的底数),若()0f x <在0,上有解,则实数m 的取值范围是______.20.已知函数22(0)()4(0)x e x f x x x ⎧>=⎨+≤⎩,若x R ∀∈,()f x mx ≥,则实数m 的取值范围是________. 三、解答题21.已知函数()2ln 2f x x x =-,函数()212g x x a x=--+.(1)求函数()f x 的单调区间;(2)若对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立,求实数a 的取值范围. 22.如图一边长为10cm 的正方形硬纸板,四角各截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体手工作品.所得作品的体积V (单位:cm 2)是关于截去的小正方形的边长x (单位:cm )的函数.(1)写出体积V 关于x 的函数表达式()f x .(2)截去的小正方形的边长为多少时,作品的体积最大?最大体积是多少?23.在①()14f -=-,()10f '=;②()10f =,()01f '=;③()f x 在()()1,1f --处的切线方程为84y x =+,这三个条件中任选一个,补充在下面问题中求解. 已知函数()32f x x ax bx =++,且______.(1)求a 、b 的值; (2)求函数()f x 的极小值.24.已知函数()ln(1)f x x a =++,()x a g x e -=,a R ∈.(1)若0a =,曲线()y f x =在点()()00,x f x 处的切线也是曲线()y g x =的切线,证明:()0001ln 1x x x ++=; (2)若()()1g x f x -≥,求a 的取值范围. 25.已知函数()()x f x x a e =+,其中a 为常数.(1)若函数()f x 在区间[1,)-+∞上是增函数,求实数a 的取值范围; (2)若3()x f x e xe ≥-在[0,1]x ∈时恒成立,求实数a 的取值范围.26.已知函数()1ln f x ax x =--.(1)当1a =时,证明:()f x 存在唯一的零点; (2)若()0f x ≥,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用二倍角公式和诱导公式化简函数,构造()()6g x f x =-为R 上单调递增的奇函数,再转化不等式为()22(34)g t t g t -<-,利用单调性解不等式即得结果. 【详解】解:33()26cos 2sin 62f x x x x x x x π⎛⎫=++-+=+++⎪⎝⎭令3()()62sin g x f x x x x =-=++,则2()32cos 0g x x x '=++>,()()g x g x -=-, 故()g x 在R 上单调递增,且()g x 为奇函数.不等式()22(34)12f t t f t -+-+<,即()226(34)60f t t f t --+-+-<, 即()22(34)0g t t g t -+-+<,则()22(34)g t t g t -<- 故2234t t t -<-,即2540t t -+<,所以14t <<. 故选:A. 【点睛】 方法点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.2.A解析:A 【分析】构造函数()()x f x g x e =,对其求导得''()()()xf x f xg x e -=,由()()f x f x '>,可得'()0g x <,从而可得()g x 在[0,)+∞上单调递减,进而可比较出a 与b 的大小【详解】解:令()()x f x g x e =,则''()()()xf x f xg x e-=, 因为()()f x f x '>,所以'()0g x <, 所以()g x 在[0,)+∞上单调递减, 因为12<,所以(1)(2)g g >,即2(1)(2)f f e e>,所以a b >, 故选:A 【点睛】关键点点睛:此题考查导数的应用,考查数学转化思想,解题的关键是构造函数()()x f x g x e=,然后求导后可判断出()g x 在[0,)+∞上单调递减,从而可比较出a 与b 的大小,属于中档题 3.A解析:A 【分析】 由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案. 【详解】 由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-, 故12a ≤-. 故选:A. 【点睛】本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.4.B解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.5.A解析:A 【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<. 故选:A【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.6.C解析:C 【分析】设出小正方形的边长,表示出方盒的体积,然后求导,判断出单调性,然后求解最大值即可. 【详解】设截去的小正方形边长为x ,则方盒高为x ,底边长为2a x -,所以()22,0,2a V a x x x ⎛⎫=-⋅∈ ⎪⎝⎭,则()224(2)(2)(6)V a x x a x x a x a '=-+-=--,令0V '=,得2a x =(舍) 或6a x =,当06ax <<时,0V '>,单调递增;当62a a x <<时,0V '<,单调递减;由题意,则23max 2263627a a a a V V a ⎛⎫⎛⎫==-⋅=≥ ⎪ ⎪⎝⎭⎝⎭,则3a ≥,故a 的最小值为3. 故选:C. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.7.A解析:A 【分析】 构造函数()()3xf xg x e=,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''', 因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减,所以()()10g g <,即()()3010f f e e <,即()()310f e f <, 故选:A. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.8.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.9.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r rππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.10.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0. 故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.11.A解析:A 【分析】首先根据题中所给的函数解析式,对其求导,再求二阶导,根据题中所给的条件,得到则有''()0f x <在(0,3)上恒成立,构造函数()xe e g x x=,利用导数求得其最小值,得到结果.【详解】因为2()(2)(1)e x kx f x e e e +=-++,所以11(2)'()(2)(1)1e e xx k e x kx f x e e e e e +++=-=-+++, (1)''()1ex e x k e x f x e kx e e +=-=-+,要使2()(2)(1)e x kxf x e e e +=-++在(0,3)上为“凸函数”, 则有''()0f x <在(0,3)上恒成立,即0e x kx e -<,即xe e k x<在(0,3)上恒成立,令()x e e g x x =,1122()'()x e x e x e e ee x e ex e x x e g x x x--⋅-⋅⋅-==, 所以()g x 在(0,)e 上单调递减,在(,1)e 上单调递增,所以min ()()1ee e g x g e e===,所以k 的取值范围是(,1)-∞,故选:A. 【点睛】思路点睛:该题属于新定义问题,在解题的过程中,注意: (1)细读题文,理解题中所给的信息,明确凸函数的定义;(2)根据定义,对所给的函数求导,再求二阶导,令二阶导小于零在给定区间上恒成立; (3)构造新函数,利用导数研究函数的单调性,求得最值,得到所求的结果.12.B解析:B 【分析】先对函数求导,可得当10x -<<时,()0f x '<;当0x >时,()0f x '>,从而得min ()(0)1f x f a ==--,而x →+∞时,()f x →+∞,所以要函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,只要满足10a --=或20a e--,从而可求出a 的取值范围 【详解】()x f x xe '=,当10x -<<时,()0f x '<;当0x >时,()0f x '>.从而min ()(0)1f x f a ==--,又2(1)f a e-=--,且x →+∞时,()f x →+∞, ∴10a --=或20a e --, 即1a =-或2a e-. 故选:B 【点睛】此题考查由导数解决函数零点问题,考查转化思想和计算能力,属于中档题二、填空题13.①③【分析】根据直线在点处切过曲线的定义对5个函数逐个判断可得答案【详解】对于①由得所以则直线:是曲线:在点处的的切线又当时当时满足曲线在附近位于直线的两侧故直线:在点处切过曲线:故①正确;对于②由解析:①③ 【分析】根据直线l 在点P 处“切过”曲线C 的定义,对5个函数逐个判断可得答案. 【详解】对于①,由3y x =,得23y x '=,所以0|0x y ='=,则直线l :0y =是曲线C :3y x =在点()0,0P 处的的切线,又当0x >时,0y >,当0x <时,0y <,满足曲线C 在P 附近位于直线l 的两侧,故直线l :0y =在点()0,0P 处“切过”曲线C :3y x =,故①正确;对于②,由()21y x =+,得2(1)y x '=+,所以1|0x y =-'=,而直线l :1x =-的斜率不存在,在点()1,0P -处与曲线C :()21y x =+不相切,故②不正确;对于③,由sin y x =,得cos y x '=,所以0|1x y ='=,则直线l :y x =是曲线C :sin y x =在点()0,0P 处的切线,令sin y x x =-,则1cos y x '=-,当02x π-<<时,0y '>,函数sin y x x =-递增,所以当02x π-<<时,0sin 0y x <-=,当02x π<<时,0y '>,函数sin y x x =-递增,所以当02x π<<时,0sin 00y >-=,所以当02x π-<<时,sin x x <,当02x π<<时,sin x x >,所以曲线C 在P 附近位于直线l 的两侧,故直线l :y x =在点()0,0P 处“切过”曲线C :sin y x =,故③正确;对于④,由x y e =,得e xy '=,所以0|1x y ='=,则曲线C :x y e =在点()0,1P 处的切线方程为10y x -=-,即1y x =+,令()1xg x e x =--,则()1xg x e '=-,当0x >时,()0g x '>,函数()g x 递增,当0x <时,()0g x '<,函数()g x 递减,则当0x =时,函数()g x 取得极小值,同时也是最小值(0)0g =,则()0g x ≥,即1x e x ≥+,则曲线C :xy e =不在切线l :1y x =+的两侧,故④不正确;对于⑤,由ln y x =,得1y x'=,所以|11y x '==,所以曲线C :ln y x =在点()1,0P 处的切线方程为01y x -=-,即1y x =-,令()1ln g x x x =--,则1()1g x x'=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,函数()g x 取得极小值,也是最小值,所以()(1)0g x g ≥=,所以曲线C :ln y x =不在切线l :1y x =-的两侧,故⑤不正确.故答案为:①③ 【点睛】关键点点睛:对直线l 在点P 处“切过”曲线C 的定义正确理解是解题关键.14.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果. 【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x '--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦ 【点睛】关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.15.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-, 所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<, 所以当2x <时()0f x '>,()f x 单调递增, 当2x >时()0f x '<,()f x 单调递减, 又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <, 当x 与()f x 同号时,()0xf x >, 所以()0xf x >的解集为:()(),01,3-∞⋃, 故答案为:()(),01,3-∞⋃ 【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.16.【分析】求导数利用导函数的图象开口向下且得的约束条件根据据线性规划求出目标函数的最值即可求得的取值范围【详解】由所以由函数在处取得极小值在处取得极大值所以是的两个根且导函数的图象开口向下由得即化简得 解析:(,1)-∞【分析】求导数,利用导函数()()2321f x ax bx a b '=+-++的图象开口向下且12102x x <-<<<,得a ,b 的约束条件,根据据线性规划求出目标函数的最值,即可求得321a b -+的取值范围. 【详解】由()()3211f x ax bx a b x =++++-,所以()()2321f x ax bx a b '=+-++,由函数()f x 在1x x =处取得极小值,在2x x =处取得极大值,所以1x ,2x 是()0f x '=的两个根,且导函数()()2321f x ax bx a b '=+-++的图象开口向下,由12102x x <-<<<,得()()()100020f f f ⎧-'''<⎪>⎨⎪<⎩,即 ()()()32101012410a b a b a b a b a b ⎧--++<⎪-++>⎨⎪+-++<⎩, 化简得23101011310a b a b a b --<⎧⎪++<⎨⎪+-<⎩, 满足条件的约束条件的可行域如图阴影部分所示:令321z a b =-+,则当直线321z a b =-+,经过点A 时,z 取得最大值,联立方程 231010a b a b --=⎧⎨++=⎩,可得点A 的坐标为23,55⎛⎫-- ⎪⎝⎭,所以3211a b -+<,所以321a b -+的取值范围是(,1)-∞. 故答案为:(,1)-∞. 【点睛】本题考查函数的极值以及不等式求解函数的最值,同时考查了学生的转化思想,考查分析问题解决问题的能力.17.【分析】构造函数判断函数的单调性和奇偶性得到解得答案【详解】设函数当时函数单调递增为奇函数故为奇函数故函数在上单调递增即即解得故答案为:【点睛】本题考查了利用函数的单调性和奇偶性解不等式构造函数判断 解析:(),2019-∞-【分析】构造函数()()2g x x f x =,判断函数的单调性和奇偶性,得到()()20212g x g +<,解得答案. 【详解】设函数()()2g x x f x =,当0x >时,()()()()()23220g x xf x x f x x f x xf x x '''=+=+>>⎡⎤⎣⎦,函数单调递增,()f x 为奇函数,故()g x 为奇函数,故函数()g x 在R 上单调递增,22(2021)(2021)4(2)(2021)(2021)4(2)0x f x f x f x f +++-=++-<,即()()20212g x g +<,即20212x +<,解得2019x <-. 故答案为:(),2019-∞-. 【点睛】本题考查了利用函数的单调性和奇偶性解不等式,构造函数判断单调性和奇偶性是解题的关键.18.3【分析】首先求解导函数然后利用导函数研究函数的性质确定实数a 的最大值即可【详解】由题意可得:由题意导函数在区间上的函数值要么恒非负要么恒非正很明显函数值不可能恒非负故即在区间上恒成立据此可得:即的解析:3 【分析】首先求解导函数,然后利用导函数研究函数的性质确定实数a 的最大值即可. 【详解】由题意可得:2'3y x a =-+,由题意导函数在区间[)1,+∞上的函数值要么恒非负,要么恒非正,很明显函数值不可能恒非负,故230x a -+≤, 即23a x ≤在区间[)1,+∞上恒成立,据此可得:3a ≤, 即a 的最大值是3. 故答案为3. 【点睛】本题主要考查导函数研究函数的单调性,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.19.【分析】由题意得存在使得即设问题转化为在上的最小值对求导后易得到在上单调递减在上单调递增于是从而得解【详解】解:因为在上有解所以存在使得即设问题转化为在上的最小值当时则在上单调递减当时则在上单调递增解析:2,4e ⎛⎫+∞ ⎪⎝⎭【分析】由题意得,存在(0,)x ∈+∞,使得0x e mx x -<,即2x e m x >,设2()xe g x x =,(0,)x ∈+∞,问题转化为()g x 在(0,)+∞上的最小值,对()g x 求导后,易得到()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,于是min ()(2)g x g =,从而得解【详解】解:因为()0f x <在0,上有解,所以存在(0,)x ∈+∞,使得0x e mx x -<,即2xe m x>,设2()xe g x x =,(0,)x ∈+∞,问题转化为()g x 在(0,)+∞上的最小值,'3(2)()x e x g x x-=, 当02x <<时,'()0g x <,则()g x 在(0,2)上单调递减,当2x >时,'()0g x >,则()g x 在(2,)+∞上单调递增, 所以2min()(2)4e g x g ==,所以24e m >,故答案为:2,4e ⎛⎫+∞ ⎪⎝⎭【点睛】此题考查利用导数研究函数的存在性问题,将问题转化为函数的最值问题是解此题的关键,考查转化思想和计算能力,属于中档题20.【分析】由函数的解析式分类讨论利用分离参数结合导数和基本不等式即可求解【详解】由题意函数(1)当时由可得即设可得当时单调递减;当时单调递增所以即;(2)当时由可得当时显然成立;当时可得因为当且仅当时 解析:[4,2]e -【分析】由函数的解析式,分类讨论,利用分离参数,结合导数和基本不等式,即可求解. 【详解】由题意,函数22,0,()4,0,x e x f x x x ⎧>=⎨+≤⎩,(1)当0x >时,由()f x mx ≥,可得2xe mx ≥,即2xe m x≤,设2()x e g x x =,可得22(21)()x e x g x x-'=, 当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增, 所以min 1()22g x g e ⎛⎫== ⎪⎝⎭,即2m e ≤;(2)当0x ≤时,由()f x mx ≥,可得24x mx +≥,当0x =时显然成立; 当0x <时,可得4m x x ≥+,因为444x x x x ⎛⎫+=--+≤- ⎪-⎝⎭,当且仅当1x =-时取等号, 所以4m ≥-.综上可得,实数m 的取值范围是[4,2]e -, 故答案为:[4,2]e -. 【点睛】本题主要考查了函数的恒成立问题的求解,以及分段函数的性质的应用,其中解答中根据分段函数的分段条件,合理分类讨论,利用分离参数,结合导数和基本不等式求解是解答的关键,着重考查了转化思想,分类讨论思想,以及推理与运算能力.三、解答题21.(1)单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭;(2)(],1-∞. 【分析】(1)求导,判断导函数正负,进而判断函数单调区间; (2)()()f x g x ≥恒成立,可转化为不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,设()1ln h x x x=+,求导,判断单调性并求得最小值,()min a h x ≤. 【详解】(1)函数()2ln 2f x x x =-的定义域为0,,则()()()21212114'4x x x f x x x x x-+-=-==, 由题意120x +>,得 当10,2⎛⎫∈ ⎪⎝⎭x 时,()()'0,f x f x >递增, 当1,2⎛⎫∈+∞⎪⎝⎭x 时,令()()'0,f x f x <递减, 所以()f x 的单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞⎪⎝⎭; (2)对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立, 即不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,令()1ln h x x x=+, 则()22111'x h x x x x-=-=, 当1,12x ⎡⎫∈⎪⎢⎣⎭时,()'0h x <, 函数()h x 单调递减, 当时()1,∈+∞x ,()'0h x >, 函数()h x 单调递增,所以当1x =时,()h x 有最小值()1ln111h =+=, 从而a 的取值范围是(],1-∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.(1)()()2102V f x x x ==-⋅,()0,5x ∈;(2)小正方形的边长为53cm 时,作品的体积最大,最大体积是200027cm 3. 【分析】(1)根据长方体的体积公式可得答案; (2)利用导数求()f x 单调区间及极值可得答案. 【详解】(1)由题意可得()()2102V f x x x ==-⋅,()0,5x ∈.(2)()()()()24320254355f x x x x x '=-+=--,令()0f x '=得53x =,5x =,∴53x =时,()f x 的最大值为52000327f ⎛⎫= ⎪⎝⎭, 截去的小正方形的边长为53cm 时,作品的体积最大,最大体积是()3200027cm . 【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系; 第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.23.选①或②或③,(1)2a =-,1b =;(2)0.【分析】(1)求出()232f x x ax b '=++,根据所选条件可得出关于a 、b 的方程组,即可解得a 、b 的值;(2)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极小值.【详解】(1)方案一:选择①,()32f x x ax bx =++,则()232f x x ax b '=++,由已知可得()()1141320f a b f a b ⎧-=-+-=-⎪⎨=++='⎪⎩,解得21a b =-⎧⎨=⎩; 方案二:选择②,()32f x x ax bx =++,则()232f x x ax b '=++, 由已知可得()()11001f a b f b ⎧=++=⎪⎨=='⎪⎩,解得21a b =-⎧⎨=⎩; 方案三:选择③,()32f x x ax bx =++,则()232f x x ax b '=++,因为函数()f x 在()()1,1f --处的切线方程为84y x =+, 所以,()()1328114f a b f a b ⎧-=-+=⎪⎨-=-+-=-'⎪⎩,解得21a b =-⎧⎨=⎩; (2)由(1)得()322f x x x x =-+,()2341f x x x '∴=-+, 由()0f x '=得:113x =,21x =,列表如下:所以,函数f x 的极小值为10f =.【点睛】思路点睛:求函数()f x 的极值的步骤:(1)求函数()f x 的定义域;(2)求导()f x ';(3)解方程()00f x '=,当()00f x '=;(4)利用导数分析函数()f x 的单调性;(5)将极值点代入函数解析式计算即可.24.(1)证明见解析;(2)(,0]-∞.【分析】(1)求出导函数()'f x ,()'g x ,求出()f x 在00(,())x f x 切线方程,利用切线斜率求得()y g x =的切点坐标,得切线方程,由两条切线方程是相同的,可证结论;(2)令()()()ln(1)x a h x g x f x e x a -=-=-+-,求得()h x ',确定单调性,最小值,由最小值不小于1可得a 的范围.【详解】(1)若0a =,则()ln(1)f x x =+,()x g x e =.所以1()1f x x '=+,()xg x e '=, 曲线()y f x =在点()()00,x f x 处的切线方程为()()0001ln 11y x x x x =-+++, 令01()1x g x e x '==+,则01ln 1x x =+, 曲线()y g x =在点0011ln ,11x x ⎛⎫ ⎪++⎝⎭处的切线方程为()00011ln 111y x x x x ⎡⎤=+++⎣⎦++, 由题意知()()()000000111ln 1ln 1111x x x x x x x x ⎡⎤-++=+++⎣⎦+++, 整理可得()000ln 111x x x +=+,00x =显然不满足,因此()0001ln 1x x x ++=. (2)令()()()ln(1)x a h x g x f x e x a -=-=-+- 若0a >,0(0)01a h e a e -=-<-=,不符合条件;若0a =,()ln(1)x h x e x =-+,1()1x h x e x '=-+, 当(1,0)x ∈-时,()0h x '<,()h x 单调递减,当(0,)x ∈+∞时,()0h x '>,()h x 单调递增,所以()(0)1h x h ≥=,符合条件;若0a <,则()ln(1)ln(1)1x a x h x e x a e x -=-+->-+≥,符合条件.所以a 的取值范围是(,0]-∞.【点睛】思路点睛:本题考查导数的几何意义,考查用导数研究不等式恒成立问题.求切线方程时要注意是函数图象在某点处的切线,还是过某点的切线,由导数得斜率得切线方程,若不知切点时一般需设出切点坐标,写出切线方程,代入所过点的坐标求出切点,再得切线方程,不能弄错.25.(1)0a ≥;(2)3[,)e+∞.【分析】(1)求导函数()'f x ,令()0f x '≥恒成立,可求参数范围; (2)变量分离转化为32x a e x -≥-,求函数3()2x g x ex -=-最大值.【详解】 (1)由函数()()x f x x a e =+,得()(1)x f x x a e '=++,∵函数()f x 在区间[1,)-+∞上是增函数,∴()(1)0x f x x a e '=++≥,即1a x ≥--在区间[1,)-+∞上恒成立,∴当[1,)x ∈-+∞时,1(,0]x --∈-∞,∴0a ≥.(2)3()x f x e xe ≥-在[0,1]x ∈时恒成立,等价于32x a e x -≥-在[0,1]x ∈时恒成立,令3()2x g x e x -=-,则max ()a g x ≥,∵3()20x g x e -'=--<,∴()g x 在[0,1]上单调递减, ∵()g x 在区间[0,1]上的最大值3max()(0)g x g e ==,∴3a e ≥, 即实数a 的取值范围是3[,)e+∞.【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.26.(1)证明见解析;(2)1a ≥.【分析】(1)当1a =时,求导得到()111x f x x x -'=-=,判断出函数的单调性,求出最值,可证得命题成立;(2)当0a ≤且1x >时,()0f x <不满足题意,故0a >,又定义域为()0,∞+,讲不等式化简,参变分离后构造新函数,求导判断单调性并求出最值,可得实数a 的取值范围.【详解】(1)函数()f x 的定义域为()0,∞+,当1a =时,由()111x f x x x -'=-=, 当()0,1x ∈时,()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增;.且()10f =,故()f x 存在唯一的零点;(2)当0a ≤时,不满足()0f x ≥恒成立,故0a >由定义域为()0,∞+,()1ln 0f x ax x =--≥可得1ln x a x +≥, 令1()lnx h x x +=,则2()lnx h x x'=-, 则当01x <<时,()0h x '>,函数()h x 单调递增,当1x >时,()0h x '<,函数()h x 单调递减,故当1x =时,函数()h x 取得最大值h (1)1=,故实数a 的取值范围是1a ≥.【点睛】方法点睛:本题考查函数零点的问题,考查导数的应用,考查不等式的恒成立问题,关于恒成立问题的几种常见解法总结如下:1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.。
一、选择题1.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .22.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm 的最大值为( ) A .4e B .2eC .eD .2e3.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34B .16C .24D .174.已知函数()ln f x x ax =-,其中[)1+x ∈∞,,若不等式()0f x ≤恒成立,则实数a 的取值范围为( ) A .[)1,+∞B .1,1e⎛⎤-∞- ⎥⎦⎝C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[)0,+∞5.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B.126-C.12+D .236.已知函数()()()0ln 10x e x f x x x ax x -⎧-<⎪=⎨++>⎪⎩,若()f x 的图象上存在关于原点对称的点,则实数a 的取值范围是( ) A .(),1e -∞-B .()1,e -+∞C .[)1,e -+∞D .(],1e -∞-7.已知函数22(1)2,0()log 0x x f x x x ⎧-++≤⎪=⎨>⎪⎩,,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则23423121()x x x x x +⋅+⋅的取值范围是( ) A .71(,]42-- B .37[,]24--C .71[,)42--D .313(,]42-- 8.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+9.函数()327f x x kx x =+-在区间[]1,1-上单调递减,则实数k 的取值范围是( )A .(],2-∞-B .[]22-,C .[)2,-+∞D .[)2,+∞10.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞11.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-12.已知函数()xx f x e e ax -=-+(a 为常数)有两个不同极值点,则实数a 的取值范围是( ) A .[)1,+∞B .[)2,+∞C .()2,+∞D .()1,+∞二、填空题13.函数()y f x =的导函数的图像如图所示,给出下列判断:①函数()y f x =在区间(3)5,内单调递增; ②函数()y f x =在区间1(3)2-,内单调递减; ③函数()y f x =在区间(22)-,内单调递增; ④当12x =-时,函数()y f x =有极大值;⑤当2x =时,函数()y f x =有极大值; 则上述判断中正确的是________. 14.已知一个母线长33___________米.15.若函数()()()()21222xf x a x e ax ax a R ⎡⎤=---+∈⎢⎥⎣⎦在1,12⎛⎫⎪⎝⎭上有最大值,则a 的取值范围是___________.16.如果定义在R 上的函数()f x ,对任意两个不相等的实数1x ,2x ,都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”,给出下列函数:①e 1x y =+ ②()32sin cos y x x x =--③32331y x x x =+++ ④ln ,0,0x x y x x ⎧≠=⎨=⎩以上函数是“H 函数”的所有序号为________.17.设函数f (x )在R 上存在导数f '(x ),当x ∈(0,+∞)时,f '(x )<x .且对任意x ∈R ,有f (x )=x 2﹣f (﹣x ),若f (1﹣t )﹣f (t )12≥-t ,则实数t 的取值范围是_____. 18.已知函数()()ln ,11,1x x x f x x e x ≥⎧=⎨-<⎩,若函数()()()2g x f x f x a =--⎡⎤⎣⎦有6个零点,则实数a 的取值范围是______.19.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______.20.已知函数()()31f x x ax b =---,x ∈R ,其中a 、b ∈R ,若()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,则102x x +=_______.三、解答题21.已知函数()2ln 2f x x x =-,函数()212g x x a x=--+. (1)求函数()f x 的单调区间;(2)若对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立,求实数a 的取值范围. 22.已知函数()323f x x ax x m =-++在3x =处取得极值.(1)求实数a 的值;(2)函数()y f x =有三个零点,求m 的取值范围. 23.已知()21ln f x ax x =--(1)当2a =时,求()f x 的单调增区间; (2)若()0f x ≥,求实数a 的取值范围. 24.已知函数()21x f x ae x =-+. (1)讨论()f x 的单调性;(2)函数()()ln g x f x x x =+,当0a >时,讨论()g x 零点的个数. 25.设函数(),02alnxf x x a =->. (1)求()f x 的单调区间;(2)求证:当1,ax e ∈⎡⎤⎣⎦时,()22aaf x e ≤- 26.已知函数()ln 1ln f x x x x x =+--.(Ⅰ)设函数()y f x =在1x =和x e =处的切线交直线1y =于,M N 两点,求||MN ; (Ⅱ)设()0f x 为函数()y f x =的最小值,求证:()0102f x -<<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可. 【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-, 整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.2.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象, 再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭, 可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点), 要求nm 的最大值,且满足不等式恒成立,可得2n m的最大值, 由于点,02n m ⎛⎫⎪⎝⎭在x 轴上移动, 只需找到合适的0m >,且()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,如图所示:此时2n e m =,即nm 的最大值为2e . 故选:D 【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.3.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下: x()3,2--2-()2,2-2()2,3()f x '+- 0+()f x极大值极小值所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34,故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.4.C解析:C 【分析】不等式()0f x ≤恒成立等价于ln xa x ≥在[)1,+∞上恒成立,则maxln x a x ⎛⎫≥ ⎪⎝⎭,运用导数求出函数ln xx在[)1,+∞上的最大值. 【详解】解:当[)1+x ∈∞,时,不等式()0f x ≤恒成立等价于ln xa x≥在[)1,+∞上恒成立, 令ln ()xg x x=,则21ln ()x g x x -'=当0x e <<时,()0g x '>;当x e >时,()0g x '<;所以max 1()()g x g e e==,所以1a e ≥故选:C. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-336()(66p p -+=---则函数y 在单调递减,在单调递增,故函数在p =处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.6.C解析:C 【分析】转化条件为当0x >时,ln 1x e x x a x--=有解,令()ln 1,0x e x x g x x x --=>,通过导数确定()g x 的取值范围即可得解. 【详解】若()f x 的图象上存在关于原点对称的点, 则当0x >时,()()ln 1x ex x ax ----=++有解,即当0x >时,ln 1x e x x ax =++有解,所以当0x >时,ln 1x e x x a x--=有解,令()ln 1,0x e x x g x x x--=>,则()()()2ln 1ln 1xx e x x e x x g x x -----'=()()()221111xx x e x e x x x ----+==, 当()0,1x ∈时,()0g x '<,()g x 单调递减, 当()1,x ∈+∞时,()0g x '>,()g x 单调递增, 所以()()min 11g x g e ==-,()[)1,g x e ∈-+∞, 所以[)1,a e ∈-+∞. 故选:C. 【点睛】本题考查了函数与方程的综合应用及利用导数研究方程有解问题,考查了运算求解能力与转化化归思想,属于中档题.7.D解析:D 【分析】画出图形,数形结合解答.注意到122x x +=-,2324log log x x -=,化简结论得32312x x-,311,42x ⎛⎤∈ ⎥⎝⎦,构造函数21()2f x x x =-,11,42x ⎛⎤∈ ⎥⎝⎦,利用导数判断出函数的单调性即可. 【详解】已知函数图象如下:方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<, 则122x x +=-,2324log log x x -=,所以341x x ⋅=,且311,42x ⎛⎤∈ ⎥⎝⎦, 所以234322312311()2x x x x x x x ⋅=+⋅+-, 令21()2f x x x =-,11,42x ⎛⎤∈ ⎥⎝⎦, 则31()1f x x =+'在11,42⎛⎤⎥⎝⎦上恒大于0, 故()f x 在11,42x ⎛⎤∈⎥⎝⎦上单调递增, 所以313(),42f x ⎡⎫∈--⎪⎢⎣⎭, 故选:D . 【点评】本题考查了函数的图像运用,利用数形结合判断函数交点问题,属于中档题.8.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x x F x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.9.B解析:B 【分析】由题意得出()0f x '≤对于任意的[]1,1x ∈-恒成立,由此得出()()1010f f ⎧-≤⎪⎨≤''⎪⎩,进而可求得实数k 的取值范围. 【详解】()327f x x kx x =+-,()2327f x x kx '∴=+-,由题意可知,不等式()0f x '≤对于任意的[]1,1x ∈-恒成立,所以,()()12401240f k f k ⎧-='--≤⎪⎨='-≤⎪⎩,解得22k -≤≤.因此,实数k 的取值范围是[]22-,. 故选:B. 【点睛】本题考查利用函数在区间上的单调性求参数,一般转化为导数不等式在区间上恒成立,考查运算求解能力,属于中等题.10.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数,f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.11.B解析:B 【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解. 【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>, 所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >, 根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞, 故选B. 【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.12.C解析:C 【分析】由导数与极值的关系知可转化为方程()0f x '=在R 上有两个不等根,结合函数的性质可求. 【详解】函数有两个不同极值点,()0x x f x e e a -'∴=--+=有2个不等的实数根,即x x a e e -=+有2个不等的实数根, 令()xxg x e e-=+,则()xxg x e e '-=-在R 上单调递增且(0)0g '=,当0?x <时 ()0,()g x g x '<单调递减,当0 x >时,()0,()'>g x g x 单调递增, 所以函数有极小值也是最小值(0)2g =,又当x →-∞时,()g x →+∞,x →+∞,()g x →+∞, 所以2a >即可, 故选:C 【点睛】本题主要考查了利用导数研究函数的单调性、极值、最值,转化思想,属于中档题.二、填空题13.③⑤【分析】根据导函数图像得出导数正负根据导数正负判定单调区间根据左正右负和左负有正判定极值【详解】解:对于①当时单调递减当时单调递增所以①错;对于②当时单调递增当时单调递减所以②错;对于③当时单调解析:③⑤ 【分析】根据导函数图像得出导数正负,根据导数正负判定单调区间,根据左正右负和左负有正判定极值. 【详解】解:对于①,当(34)x ∈,时()0f x '<,()f x 单调递减, 当(4,5)x ∈时()0f x '>,()f x 单调递增,所以①错;对于②,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,所以②错; 对于③,当(22)x ∈-,时()0f x '>,()f x 单调递增,所以③对; 对于④,当(22)x ∈-,时()0f x '>,()f x 单调递增,故当12x =-时()f x 不是极大值,所以④错;对于⑤,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,故2x =时函数()y f x =取得极大值,所以⑤对.故答案为:③⑤. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.14.【分析】设圆锥的高为米可得出底面圆的半径为求出圆锥形容器的体积关于的表达式利用导数可求得的最大值及其对应的的值【详解】设圆锥形容器的高为米半径为米由勾股定理可得其中圆锥形容器的体积为则令由于可得当时 解析:3【分析】设圆锥的高为h 米,可得出底面圆的半径为r =V 关于h 的表达式,利用导数可求得V 的最大值及其对应的h 的值. 【详解】设圆锥形容器的高为h 米,半径为r 米,由勾股定理可得2227h r +=,2227r h ∴=-,其中0h << 圆锥形容器的体积为()()2231112727333V r h h h h h πππ==-=-,则()29V h π'=-,令0V '=,由于(h ∈,可得3h =.当03h <<时,0V '>;当3h <<0V '<.所以,当3h =时,圆锥形容器的体积V 取得最大值. 故答案为:3. 【点睛】方法点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.15.【分析】先通过有根在上求得参数范围再验证其左右的导数符号以保证取得极大值即得结果【详解】依题意在开区间上函数有最大值即说明在上有极大值故在上有根易见导函数的一个根故有根且在上故即故此时有两个根要使为解析:)【分析】先通过()0f x '=有根在1,12⎛⎫⎪⎝⎭上求得参数范围,再验证其左右的导数符号,以保证取得极大值,即得结果. 【详解】依题意,在开区间1,12⎛⎫ ⎪⎝⎭上,函数()f x 有最大值,即说明()f x 在1,12⎛⎫⎪⎝⎭上有极大值,故()()()()()()21210x xf x a x e ax a a x e a '⎡⎤=---+=---=⎣⎦在1,12⎛⎫ ⎪⎝⎭上有根,易见,导函数的一个根11,12x ⎛⎫=∉ ⎪⎝⎭,故0x e a -=有根,且在1,12⎛⎫⎪⎝⎭上,故10,ln ,12a x a ⎛⎫>=∈⎪⎝⎭,即ln ln ln a e <e a <<, 此时()()()()210xf x a x e a '=---=有两个根,要使ln x a =为极大值点,则需(),ln x a ∈-∞时,()0f x '>,()ln ,1x a ∈时,()0f x '<,故20a ->,即2a <.综上,a 的取值范围是).故答案为:).【点睛】 易错点点睛:()00f x '=是0x x =为极值点的必要条件,利用其求得参数值(或范围)后必须验证()f x '在0x x =左右的符号,也进而能确定0x x =是极大值点还是极小值点,这是这类题的易错点.16.①②③【分析】根据题意可知H 函数为增函数转化为判断函数在上是否为增函数根据解析式可知①正确;根据导数可知②③正确;根据解析式可知④不正确【详解】因为可化为所以根据题意可知函数为上的增函数即H 函数为增解析:①②③ 【分析】根据题意可知“H 函数”为增函数,转化为判断函数在R 上是否为增函数,根据解析式可知①正确;根据导数可知②③正确;根据解析式可知④不正确. 【详解】因为()()()()11221221x f x x f x x f x x f x +>+可化为[]1212()()()0f x f x x x -->, 所以根据题意可知,函数()f x 为R 上的增函数,即“H 函数”为增函数, ①e 1x y =+显然是增函数,故①正确; ②()32sin cos y x x x =--,因为32cos 2sin y x x '=--=3)4x π-+30≥->,所以函数()32sin cos y x x x =--为R 上的增函数,故②正确;③32331y x x x =+++,223633(1)0y x x x '=++=+≥,且只有当1x =-时,y '0=,所以函数32331y x x x =+++为R 上的增函数,故③正确;④ln ,0,0x x y x x ⎧≠=⎨=⎩,当0x >时,ln y x =在(0,)+∞上递增,当0x <时,()ln y x =-在(,0)-∞上递减,所以ln ,0,0x x y x x ⎧≠=⎨=⎩不是R 上的增函数,故④不正确.故答案为:①②③ 【点睛】关键点点睛:转化为判断函数在R 上是否为增函数是解题关键.17.+∞)【分析】构造函数可得即是奇函数由时可得进而根据奇函数及可知在R 上是减函数再根据可得则即可求解【详解】令因为则所以所以是奇函数易知所以因为当时所以所以在上单调递减所以在R 上是减函数所以因为所以即解析:[12,+∞) 【分析】构造函数()()212g x f x x =-,可得()()0g x g x -+=,即()g x 是奇函数,由()0,x ∈+∞时,()f x x '<可得()()0g x f x x ''=-<,进而根据奇函数及()00g =可知()g x 在R 上是减函数,再根据()()112f t f t t --≥-可得()()1g t g t -≥,则1t t -≤,即可求解. 【详解】 令()()212g x f x x =-, 因为()()2f x x f x =--,则()()2f x f x x +-=, 所以()()()()()()22211022g x g x f x x f x x f x f x x -+=--+-=-+-=, 所以()g x 是奇函数,易知()00f =,所以()00g =,因为当()0,x ∈+∞时,()f x x '<,所以()()0g x f x x ''=-<, 所以()g x 在()0,∞+上单调递减,所以()g x 在R 上是减函数, 所以()()()()()()()221111111222g t g t f t t f t t f t f t t --=----+=--+-, 因为()()112f t f t t --≥-,所以()()10g t g t --≥,即()()1g t g t -≥, 所以1t t -≤,即12t ≥, 所以1,2t ⎡⎫∈+∞⎪⎢⎣⎭,故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查构造函数法利用导函数判断函数单调性,考查利用函数单调性比较大小,考查函数的奇偶性的应用.18.【分析】当时利用导数法得到函数的单调性与极值再由时作出函数的大致图象令将问题转化为方程有两个不等根且即各有3个根求解【详解】当时所以当时递增当时递减所以当时取得最大值1又当时所以的大致图象如图所示:解析:1,04⎛⎫- ⎪⎝⎭【分析】当1x <时,()()1xf x x e =-,利用导数法得到函数的单调性与极值,再由1≥x 时,()ln f x x =,作出函数()f x 的大致图象,令()f x t =,将问题转化为方程20t t a --=有两个不等根12,t t ,且12,(0,1)t t ∈即()()12,f x t f x t ==各有3个根求解.【详解】当1x <时,()()1xf x x e =-,所以()xf x xe '=-,当0x <时,()0f x '>,()f x 递增,当01x <<时,()0f x '<,()f x 递减, 所以当0x =时, ()f x 取得最大值1, 又当1≥x 时,()ln f x x =, 所以()f x 的大致图象如图所示:令()f x t =,则转化为方程20t t a --=有两个不等根12,t t ,且()()2121,(0,1),,t f x t f t x t ==∈各有3个根, 方程20t t a --=在(0,1)有两个不同的解,设2()g t t t a =--,所以(0)0140(1)0g a a g a =->⎧⎪∆=+>⎨⎪=->⎩,解得104a -<<. 故答案为:1,04⎛⎫- ⎪⎝⎭【点睛】本题主要方程的根与函数的零点问题,利用导数研究函数的单调性与极值,还考查了转化化归思想、数形结合思想和运算求解的能力,属于中档题.19.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-, 故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.20.【分析】根据得出再根据利用作差因式分解可得出的值【详解】由题意可得则即即故答案为:【点睛】本题考查利用极值点求代数式的值主要考查因式分解考查计算能力属于中等题 解析:3【分析】根据()00f x '=得出()2031a x =-,再根据()()10f x f x =利用作差因式分解可得出102x x +的值.【详解】()()31f x x ax b =---,()()231f x x a '∴=--,由题意可得()()200310f x x a '=--=,则()2031a x =-,10x x ≠,100x x ∴-≠,()()10f x f x =,()()33110011x ax b x ax b ∴---=---,()()()33101011x x a x x ∴---=-,()()()()()()22101100101111x x x x x x a x x ⎡⎤∴--+--+-=-⎣⎦,()()()()()22211000111131x x x x a x ∴-+--+-==-,()()()()221100111210x x x x ∴-+----=,()()()()1010111210x x x x ∴---⋅-+-=⎡⎤⎡⎤⎣⎦⎣⎦,即()()1010230x x x x -+-=,10230x x ∴+-=,即1023x x +=.故答案为:3. 【点睛】本题考查利用极值点求代数式的值,主要考查因式分解,考查计算能力,属于中等题.三、解答题21.(1)单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭;(2)(],1-∞. 【分析】(1)求导,判断导函数正负,进而判断函数单调区间; (2)()()f x g x ≥恒成立,可转化为不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,设()1ln h x x x=+,求导,判断单调性并求得最小值,()min a h x ≤. 【详解】(1)函数()2ln 2f x x x =-的定义域为0,,则()()()21212114'4x x x f x x x x x-+-=-==, 由题意120x +>,得 当10,2⎛⎫∈ ⎪⎝⎭x 时,()()'0,f x f x >递增, 当1,2⎛⎫∈+∞ ⎪⎝⎭x 时,令()()'0,f x f x <递减, 所以()f x 的单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞⎪⎝⎭; (2)对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立, 即不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, 令()1ln h x x x=+, 则()22111'x h x x x x-=-=, 当1,12x ⎡⎫∈⎪⎢⎣⎭时,()'0h x <, 函数()h x 单调递减, 当时()1,∈+∞x ,()'0h x >, 函数()h x 单调递增,所以当1x =时,()h x 有最小值()1ln111h =+=, 从而a 的取值范围是(],1-∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.(1)5a =;(2)13,927⎛⎫- ⎪⎝⎭. 【分析】(1)由条件可知'(3)0f =,求a 后再验证是否满足条件;(2)利用导函数的符号,推出函数的单调性,得到函数的极值,列不等式求解即可. 【详解】(1)()2323f x x ax =-+',由已知得()30f '=,得27630a -+=,5a = (2)()3253f x x x x m =-++,令()231030f x x x '=-+=,得3x =或13x =, 由()0f x '>得3x >或13x <,此时()f x 为增函数, 由()0f x '<得133x <<,此时()f x 为减函数, 即当13x =时,函数()f x 取得极大值,当3x =时,()f x 取得极小值, 即()()39f x f m ==-极小值,()113327f x f m ⎛⎫==+ ⎪⎝⎭极大值, 所以函数()f x 有三个不同零点,因此,只需()10330ff ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪<⎩,即1302790m m ⎧+>⎪⎨⎪-<⎩,解得13927m -<<, m 的范围是13,927⎛⎫- ⎪⎝⎭.【点睛】方法点睛:该题考查的是有关导数的问题,解题方法如下:(1)根据函数在极值点处导数等于零,求得参数的值,之后需要验证;(2)对函数求导,得到其极值,结合三次函数有三个零点的条件为极大值大于零,极小值小于零,列出不等式组,求得结果. 23.(1)1,2⎛⎫+∞ ⎪⎝⎭;(2)12a e ≥.【分析】(1)求出导函数()'f x ,在定义域内由()0f x '>得增区间;(2)分离参数得21ln x a x +≥.设()21ln x g x x +=,由导数求得()g x 最大值即可得结论. 【详解】(1)当2a =时,()()221ln ,0,f x x x x =--∈+∞.由()()()221211414x x x f x x x x x+--'=-==,令()0f x '>,得12x >, 所以()f x 的单调增区间为1,2⎛⎫+∞⎪⎝⎭. (2)由()21ln 0f x ax x =--≥,则21ln x a x +≥. 设()21ln x g x x +=,则()312ln x g x x--'=. 令()0g x '=,得12x e -=, 且当120,x e -⎛⎫∈ ⎪⎝⎭时,()0g x '>;当12,x e -⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 所以()g x 在120,e -⎛⎫ ⎪⎝⎭上单调递增,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递减, 所以当12x e -=到时,()g x 取得最大值为12e , 所以12a e ≥. 【点睛】 方法点睛:本题考查用导数求函数的单调区间,研究不等式恒成立问题.不等式恒成立问题的解题方法通常是利用分离参数法分离参数,然后引入新函数,利用导数求得新函数的最值,则可得参数范围.24.(1)答案见解析;(2)答案见解析.【分析】(1)讨论0a ≤,0a >两种情况,确定()'f x 的正负,利用导数求()f x 的单调性;(2)设()()g x h x x=,利用导数得出()h x 的单调性,进而得出最小值,讨论最小值大于、小于、等于0的情况结合零点存在性定理确定()h x 的零点个数,即()g x 零点的个数. 【详解】解:(1)函数()f x 的定义域为R ,()2x f x ae '=-.①当0a ≤时,()0f x '<,所以()f x 在R 上单调递减;②当0a >时,令()0f x '=得2lnx a =. 若2,lnx a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<; 若2ln ,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>;所以()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. 综上所述,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减;()f x 在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. (2)()ln 21x g x ae x x x =+-+ 设函数()1()ln 2x g x ae h x x x x x==++- ()2221(1)(1)11()x x ae x ae x h x x x x x +--'=+-= 因为0a >,所以()0h x '=得1x =.当(0,1)x ∈时,()0h x '<,()h x 在(0,1)上单调递减.当(1,)x ∈+∞时,()0h x '>,()h x 在(1,)+∞上单调递增.所以当1x =时,()h x 取最小值,最小值为(1)1h ae =-. 若1a e =时,(1)0h =,所以函数()h x 只有1个零点; 若1a e>时,()(1)0h x h ≥>,所以函数()h x 无零点; 若10a e <<时,(1)0h <,()222222240e e h e a e e e---=-+->->, ()22221220e e h e a e e=++->,故()2(1)0h h e -<,()2(1)0h h e <; 所以函数()h x 在()21,e -和()21,e 各有一个零点,所以函数()h x 有两个零点. 综上所述,当1a e =时,函数()g x 只有1个零点;当1a e >时,函数()g x 无零点; 当10a e<<时,函数()g x 有两个零点 【点睛】 方法点睛:研究含参函数()g x 的零点问题,即方程()0g x =的实根问题,通常选择参变分离,得到()a g x 的形式,后借助数形结合(几何法)思想求解;若无法参变分离,则整体含参讨论函数()g x 的单调性、极值符号,由数形结合可知函数()g x 的图象与x 轴的交点情况即函数()g x 的零点情况.25.(1)单调递增区间为,2a ⎛⎫+∞⎪⎝⎭,单调递减区间为0,2a ⎛⎫ ⎪⎝⎭;(2)证明见解析. 【分析】(1)对()f x 求导,分别由()'0f x >和()'0f x <可求得单调递增和单调递减区间;(2)由题意只需证明()2max 2aa f x e ≤-即可,讨论当12a ≤,即02a <≤,()f x 在1,a e ⎡⎤⎣⎦上单调递增,()()max a f x f e =;当2a >时先证明12a a e a >>>,可得()()max a f x f e =或()()max 11f x f ==,比较即可求证.【详解】(1)由题意得:()1,02a f x x x '=->, 由()'0f x >,得2a x >, 由()'0f x <,得02a x <<, 所以()f x 的单调递增区间为,2a ⎛⎫+∞⎪⎝⎭,单调递减区间为0,2a ⎛⎫ ⎪⎝⎭. (2)若12a ≤,即02a <≤,由(1)知()f x 在1,a e ⎡⎤⎣⎦上单调递增, 所以()()22max22a a a a a f x f e e e ==-≤-成立; 若12a >,即2a >,设()a g a e a =-, 则当2a >时,()'10a g a e =->,所以()()2220g a g e >=->, 所以2a a e a >>,从而1,2a a e ∈⎡⎤⎣⎦. 结合(1)可知,()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,2a a e ⎛⎤ ⎥⎝⎦上单调递增, 下面比较()22a aa f e e =-和()11f =的大小, 设()22aa h a e =-,当2a >时,()'0,a h a e a =-> 所以()()2221h a h e >=->, 即()()1af e f >,而()()2max 2a a a f x f e e ==-, 所以当1,a x e ∈⎡⎤⎣⎦时,()22a a f x e ≤- 综上所述:当1,a x e ∈⎡⎤⎣⎦时,()22aa f x e ≤-.【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.26.(Ⅰ)2||1e MN e =-;(Ⅱ)证明见解析. 【分析】(Ⅰ)求出导函数,得切线方程,然后求得交点,M N 坐标后可得线段长MN ;(Ⅱ)由零点存在定理得()'f x 存在一个零点0(1,2)x ∈,并求出最小值0()f x ,利用0()0f x '=化简0()f x 后根据0(1,2)x ∈可证上得结论.【详解】解:(Ⅰ)函数()f x 的导函数为11()1ln 1ln f x x x x x'=+--=-. 所以1(1)1,()1f f e e''=-=-.又因为(1)0,()0f f e ==, 因此()y f x =在1x =和x e =处的切线方程分别为1y x =-+和1()e y x e e -=-. 令1y =,可得M 和N 的坐标分别为(0,1)和2,11e e ⎛⎫ ⎪-⎝⎭,故2||1e MN e =-. (Ⅱ)因为1()ln f x x x'=-在(0,)+∞上单调递增,而1(1)10,(2)ln 202f f ''=-<=->, 所以必然存在0(1,2)x ∈,满足()00f x '=,且当()00,x x ∈)时()0f x '<,当()0,x x ∈+∞时()0f x '>.即()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,当0x x =时,()f x 取得最小值()00000ln 1ln f x x x x x =+--.由()00f x '=可得001ln x x =,所以()00012f x x x ⎛⎫=-+ ⎪⎝⎭. 当0(1,2)x ∈时,00152,2x x ⎛⎫+∈ ⎪⎝⎭,所以()0102f x -<<. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数求函数的最值.求最值时在极值点0x 不能直接求出时,对极值点(最值点)0x 进行定性分析:确定其取值范围,利用注意0()0f x '=得出0x 满足的性质,代入0()f x 化简表达式后再求解.。
一、选择题1.已知函数()2ln (0,)f x ax bx x a b R =+->∈,若对任意0x >,有()()1f x f ≥,则( ) A .ln 2a b <-B .ln 2a b >-C .ln 2a b =-D .ln 2a b ≥-2.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .(],e -∞3.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充分必要条件4.已知函数()2()xxf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<5.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >6.已知函数ln ,0()(2),0x xx f x x x e x ⎧>⎪=⎨⎪+≤⎩,若函数()()g x f x a =-仅有一个零点,则实数a的取值范围为( ). A .(2,)+∞B .31(2,),e ⎛⎫+∞⋃-∞-⎪⎝⎭C .311,2,e e⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭D .31,e ⎛⎫-∞-⎪⎝⎭7.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>8.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .29.已知函数,0(),0x e x f x x x ⎧≥=⎨-<⎩(其中e 为自然对数的底数),若函数2()y f x ax =-恰有三个零点,则()A.24ea>B.24ea C.22ea>D.2ea>10.设函数()xf x e x=-,直线y ax b=+是曲线()y f x=的切线,则+a b的最大值是()A.11e-B.1 C.1e-D.22e-11.()f x是R上的偶函数,当()0,x∈+∞时,()()0xf x f x'->,且()30f=,则不等式()f xx>的解集为()A.()3,+∞B.()(),33,-∞-+∞C.()()3,03,-⋃+∞D.()()3,00,3-12.已知函数()2xf x=,2()g x x ax=+(其中a R∈).对于不相等的实数12,x x,设1212()()f x f xmx x-=-,1212()()g x g xnx x-=-.现有如下命题:(1)对于任意不相等的实数12,x x,都有0m>;(2)对于任意的a及任意不相等的实数12,x x,都有0n>;(3)对于任意的a,存在不相等的实数12,x x,使得m n=;(4)对于任意的a,存在不相等的实数12,x x,使得m n=-.其中真命题的个数有()A.3个B.2个C.1个D.0个二、填空题13.已知函数()2ln()x ax a ax x Rf=--∈的图象与x轴交于不同两点,则实数a的取值范围为______.14.已知()f x满足()()431f f=-=,()f x'为其导函数,且导函数()y f x'=的图象如图所示,则()1f x<的解集是_________.15.定义在R上的函数()f x满足:()()22f x f x x-+=,且当0x≤时,()2f x x'<,则不等式()()25510f x x xf+-+≥的解集为______.16.如图,现有一个圆锥形的铁质毛坯材料,底面半径为6,高为8.某工厂拟将此材料切割加工成一个圆柱形构件,并要求此材料的底面加工成构件的一个底面,则可加工出该圆柱形构件的最大体积为__________.17.已知函数,0()(1),0xlnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是________.18.如图,两条距离为4的直线都与y 轴平行,它们与抛物线()22014y px p =-<<和圆()2249x y -+=分别交于A ,B 和C ,D ,且抛物线的准线与圆相切,则22AB CD ⋅的最大值为______.19.设定义在R 上的连续函数()f x 的导函数为()f x ',已知函数()y x f x =⋅'的图象(如图)与x 轴的交点分别为()2,0-,()0,0,()2,0.给出下列四个命题:①函数()f x 的单调递增区间是()2,0-,(2,)+∞; ②函数()f x 的单调递增区间是(–,2)∞-,(2,)+∞; ③2x =-是函数()f x 的极小值点; ④2x =是函数()f x 的极小值点. 其中,正确命题的序号是__________.20.函数31()3f x x ax =-的极大值为a =__________. 三、解答题21.已知函数()2ln f x x a x x=--. (1)已知()f x 在点()()1,1f 处的切线方程为2y x =-,求实数a 的值; (2)已知()f x 在定义域上是增函数,求实数a 的取值范围. 22.已知函数()()222ln f x x mx x m m R =+++∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)函数()f x 有两个不同的极值点()1212,x x x x <,求()211f x x x +的取值范围. 23.已知()21ln f x ax x =--(1)当2a =时,求()f x 的单调增区间; (2)若()0f x ≥,求实数a 的取值范围. 24.已知函数32()392f x x x x =-++-.(1)求函数()y f x =的图象在点()()1,1f 处的切线方程; (2)求()f x 的单调区间.25.已知e 是自然对数的底数,函数()122x f x eax -=-,其中a R ∈.(1)当1a =时,若()()g x f x '=,求()g x 的单调区间; (2)若()f x 在R 上恰有三个零点,求a 的取值范围. 26.(1)证明:1x e x ≥+; (2)证明:ln 1≤-x x ; (3)证明:1ln(1)x e x ->+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据()()1f x f ≥,可得x =1是()f x 的极小值点,即()01f '=,可得a ,b 的关系,对ln a 与2b -的作差,可得ln (2)ln 24a b a a --=+-,构造()ln 42,(0)g x x x x =-+>,即可求得()g x 的极大值1()1ln 404g =-<,化简整理,即可得答案. 【详解】由题意得1()2f x ax b x'=+-, 因为()()1f x f ≥,所以()f x 在x =1处取得最小值,即为x =1是()f x 的极小值点, 所以(1)210f a b '=+-=,即12b a =-, 所以ln (2)ln 2ln 24a b a b a a --=+=+-, 令()ln 42,(0)g x x x x =-+>,则114()4x g x x x-'=-=, 令()0g x '=,解得14x =, 当1(0,)4x ∈时,()0g x '>,所以()g x 为增函数,当1(,)4x ∈+∞时,()0g x '<,所以()g x 为减函数,所以11()()ln 121ln 4044g x g ≤=-+=-<,所以()ln 42ln (2)0g a a a a b =-+=--<,即ln 2a b <-.故选:A 【点睛】解题的关键是熟练掌握利用导函数求解函数极值,判断单调性的方法,并灵活应用,比较两式大小,常用作差法或作商法,难点在于构造()g x 并求极大值,属中档题.2.A解析:A 【分析】 由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案. 【详解】 由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-,故12a ≤-. 故选:A. 【点睛】本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.3.D解析:D 【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项. 【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数,0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D 【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.4.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.5.A解析:A 【分析】 构造函数()()3xf xg x e=,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''', 因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减, 所以()()10g g <,即()()3010f f e e <,即()()310f e f <, 故选:A. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.6.C解析:C转化为()y f x =的图象与直线y a =仅有一个交点,利用导数得到函数的性质,根据函数的性质作出函数的图象,根据图象可得解. 【详解】当0x >时,ln ()x fx x=,21ln ()x x x f x x ⋅-'=21ln xx -=, 当0x e <<时,()'f x 0>,当x e >时,()0f x '<,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以()f x 在x e =处取得极大值为1()f e e=,当0x ≤时,()(2)x f x x e =+,()(2)(3)x x xf x e x e x e '=++=+,当3x <-时,()0f x '<,当3x >-时,()0f x '>, 所以()f x 在(,3)-∞-上递减,在(3,0]-上递增,所以()f x 在3x =-处取得极小值为331(3)f e e --=-=-,又(0)2f =, 因为函数()()g x f x a =-仅有一个零点,所以()y f x =的图象与直线y a =仅有一个交点,作出函数()f x 的图象,如图:由图可知:12a e <≤或31a e<-. 故实数a 的取值范围为311,2,e e ⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭.故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.7.C【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可. 【详解】构造函数'()(2)()(1)xxf x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增.因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<,所以642()()()753f f f >>,即c b a >>.故选:C 【点睛】关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键.8.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0. 故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.9.A解析:A 【分析】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x =≠,令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点,利用导数研究函数()y g x =的性质并作出示意图可求得答案. 【详解】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x =≠, 令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点, 当0x >时,2()x e g x x =,则4(2)()x xe x g x x-'=, 则()g x 在(0,2)上递减,在(2,)+∞上递增,当2x =时,()g x 有最小值为2(2)4e g =,当0x →时,()g x →+∞,作出()y g x =的示意图如图所示:由图知,若函数()2y f x ax =-恰有三个零点,则24e a >. 故选:A. 【点睛】方法点睛:求函数()f x 的零点个数的方法如下:直接解方程()0f x =,求出零点可得零点个数.; 数形结合法:转化为两个函数的交点;参变分离法:将参数分离出来,再作函数的图像进而转化为y a =与()y g x =(分离后的函数)的交点问题.10.C解析:C 【分析】先设切点写出曲线的切线方程,得出a 、b 的值,再利用构造函数利用导数求+a b 的最大值即可. 【详解】解:由题得()1x f x e '=-,设切点(t ,())f t ,则()tt f t e =-,()1t f t e '=-;则切线方程为:()(1)()t ty e t e x t --=--, 即(1)(1)tty e x e t =-+-,又因为y ax b =+, 所以1t a e =-,(1)tb e t =-, 则12t t a b e te +=-+-,令()12ttg t e te =-+-,则()(1)tg t t e '=-,则有1t >,()0g t '<;1t <,()0g t '>,即()g t 在(),1-∞上递增,在()1,+∞上递减, 所以1t =时,()g t 取最大值(1)121g e e e =-+-=-, 即+a b 的最大值为1e -. 故选:C. 【点睛】本题考查了利用导数求曲线的切线方程和研究函数的最值,属于中档题.11.C解析:C 【分析】 构造函数()()f xg x x=,求导,利用()g x 的单调性和奇偶性解不等式. 【详解】 设()()f xg x x=(0x ≠), 则()()()2xf x f x g x x '-'=,∵当()0,x ∈+∞时,()()0xf x f x '->, ∴()0g x '>,即()g x 在()0,∞+上单调递增, 又()f x 是R 上的偶函数,∴()()()()f x f x g x g x x x--==-=--, 即()g x 是()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上单调递增, ∵()30f =, ∴()()()33303f g g -=-=-=. 而不等式()0f x x>等价于()0g x >, ∴30x -<<或3x >. 故选:C. 【点睛】本题主要考查函数的单调性与奇偶性的应用,利用条件构造函数,然后利用导数研究函数的单调性是解决本题的关键,属于中档题.12.B解析:B 【分析】运用指数函数的单调性,即可判断(1);由二次函数的单调性,即可判断(2); 通过函数2()2x h x x ax =+-,求出导数判断单调性,即可判断(3); 通过函数2()2x h x x ax =++,求出导数判断单调性,即可判断(4). 【详解】解:对于(1),由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则(1)正确;对于(2),由二次函数的单调性可得()g x 在(,)2a -∞-递减,在(2a-,)+∞递增,则0n >不恒成立,则(2)错误;对于(3),由m n =,可得1212()()()()f x f x g x g x -=-,即为1122()()()()g x f x g x f x -=-,考查函数2()2x h x x ax =+-,()222x h x x a ln '=+-, 当a →-∞,()h x '小于0,()h x 单调递减,则(3)错误;对于(4),由m n =-,可得1212()()[()()]f x f x g x g x -=--,考查函数2()2x h x x ax =++,()222x h x x a ln '=++,对于任意的a ,()h x '不恒大于0或小于0,则(4)正确. 故选:B . 【点睛】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键,属于中档题.二、填空题13.【分析】先由题意得到关于的方程在上有两不等实根即在上有两不等实根令对其求导判定其单调性以及的取值情况即可得出结果【详解】因为函数的图象与x 轴交于不同两点所以关于的方程在上有两不等实根即在上有两不等实 解析:1a >【分析】先由题意,得到关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a +=在()0,∞+上有两不等实根,令()2ln x x g x x+=,对其求导,判定其单调性,以及()g x 的取值情况,即可得出结果. 【详解】因为函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,所以关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a+=在()0,∞+上有两不等实根,令()2ln x x g x x +=,则()2ln x x g x x+=与直线1y a =有两个不同交点, 又()()24311ln 212ln x x x x x x x g x x x ⎛⎫+-+⋅ ⎪--⎝⎭'==, 令()12ln h x x x =--,则()210h x x'=--<在()0,∞+上恒成立,则()12ln h x x x =--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()312ln 0x xg x x--'=>,则()g x 单调递增; 当()1,x ∈+∞时,()0h x <,即()312ln 0x xg x x--'=<,则()g x 单调递减; 所以()()max 110g x g ==>,又211101eg e e -⎛⎫=< ⎪⎝⎭,所以存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()0g x =; 因此当()00,x x ∈时,()0g x <;当()0,1x x ∈时,()0g x >;又当1x >时,ln 0x >,所以()0g x >; 因此,为使()2ln x x g x x +=与直线1y a =有两个不同交点,只需101a<<,解得1a >. 故答案为:1a >. 【点睛】 思路点睛:利用导数的方法处理由函数零点个数求参数问题时,一般需要根据函数零点个数,得到对应方程的根的个数,再分离参数,构造新的函数,对新函数求导,利用导数的方法判定其单调性,确定函数的取值情况,进而可求出结果.(也可利用数形结合的方法求解)14.【分析】利用导数分析函数的单调性分和两种情况解不等式由此可得出原不等式的解集【详解】由函数的图象可知当时此时函数单调递减;当时此时函数单调递增因为当时由可得;当时由可得综上所述不等式的解集时故答案为 解析:()3,4-【分析】利用导数分析函数()f x 的单调性,分0x ≤和0x >两种情况解不等式()1f x <,由此可得出原不等式的解集. 【详解】由函数()y f x '=的图象可知,当0x <时,()0f x '<,此时函数()f x 单调递减; 当0x >时,()0f x '>,此时函数()f x 单调递增.因为()()431f f =-=,当0x ≤时,由()()13f x f <=-,可得30x -<≤; 当0x >时,由()()14f x f <=,可得04x <<. 综上所述,不等式()1f x <的解集时()3,4-.故答案为:()3,4-. 【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下: (1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式 ,从而求解出不等式的解集.15.【分析】令问题转化为根据函数的单调性求出不等式的解集即可【详解】因为所以令则所以为奇函数又因为当时所以在上单调递减即在上单调递减而不等式所以所以故答案为:【点睛】构造辅助函数是高中数学中一种常用的方解析:5,2⎛⎤-∞ ⎥⎝⎦ 【分析】令()()2g x f x x =-,问题转化为()()5g x x g -≥,根据函数的单调性求出不等式的解集即可. 【详解】因为()()22f x f x x -+=,所以()()()220f x x f x x ---+-=,令()()2g x f x x =-,则()()0g x g x -+=,所以()g x 为奇函数.又因为当0x ≤时,()()20g x f x x ''=-<, 所以()g x 在(],0-∞上单调递减, 即()g x 在R 上单调递减.而不等式()()()()()()()2225510555f x f x x f x x f x x g x g x +≥-+⇔-≥---⇔≥-,所以5x x ≤-,所以52x ≤. 故答案为:5,2⎛⎤-∞ ⎥⎝⎦【点睛】构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.16.【分析】利用几何体的轴截面进行计算结合导数求得圆柱形构件的最大体积【详解】画出圆锥及圆柱的轴截面如下图所示其中四边形为矩形设圆柱的底面半径为即则即所以圆柱的体积为由于所以在区间上单调递增;区间上单调 解析:1283π 【分析】利用几何体的轴截面进行计算,结合导数求得圆柱形构件的最大体积. 【详解】画出圆锥及圆柱的轴截面如下图所示.其中8,6AG GC GB ===,AG BC ⊥,四边形HIDE 为矩形. 设圆柱的底面半径为()06x x <<,即GI GH x ==, 则AG DI CG IC =,即()844686633DI DI x x x =⇒=-=--. 所以圆柱的体积为()()22332444886333V x x x x x x x πππ⎛⎫⎛⎫=⨯⨯-=⨯-=-+ ⎪ ⎪⎝⎭⎝⎭,06x <<.()()()()'22431244443V x x x x x x x πππ=-+=-⨯-=-⨯⨯-, 由于06x <<,所以()V x 在区间()0,4上()'0V x >,()V x 单调递增;区间()4,6上()'0V x <,()V x 单调递减.所以()V x 在4x =处取得极大值也即是最大值为:()()()3244412824646496323333V ππππ=-+⨯=-+=⨯=. 故答案为:1283π【点睛】本小题主要考查圆锥的最大内接圆柱有关计算,考查利用导数求最值,属于中档题.17.【分析】利用导数判断出函数的单调区间作出函数的图象数形结合即可得解;【详解】解:当时函数单调递增;当时则时且时时故当时在上单调递减在上单调递增在处取极小值极小值为;作出函数的图象如图:函数恰有3个零解析:()2,0e --【分析】利用导数判断出函数()f x 的单调区间,作出函数()f x 的图象,数形结合即可得解; 【详解】解:当0x >时,函数()f x lnx =单调递增;当0x 时,()(1)xf x e x =+,则()(2)0x f x e x '=+=时,2x =-,且2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x 时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,()f x 在2x =-处取极小值,极小值为2(2)f e --=-; 作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个零点,由图可知,20e c --<<, 故答案为:()2,0e --. 【点睛】本题考查函数零点与方程根的关系,涉及利用导数判断函数单调性,数形结合思想等,属于中档题.18.【分析】先设直线的方程为再利用直线与圆锥曲线的位置关系将用表示再利用导数求函数的最值即可得解【详解】解:由抛物线的准线与圆相切得或7又∴设直线的方程为则直线的方程为则设令得;令得即函数在为增函数在为 解析:3【分析】先设直线AB 的方程为()03x t t =-<<,再利用直线与圆锥曲线的位置关系将AB CD ⋅用t 表示,再利用导数求函数的最值即可得解. 【详解】解:由抛物线的准线与圆相切得12p=或7,又014p <<,∴2p =. 设直线AB 的方程为()03x t t =-<<,则直线CD 的方程为4x t =-, 则())2224298903AB CD t t t t t ⋅=-=-<<.设()()()2903f t t tt =-<<,()2'93f t t=-,令()'0f t >,得03t <<()'0f t <33t <<.即函数()f t 在(3为增函数,在)3,3为减函数,故()max363f t f ==22AB CD ⋅的最大值为28633⨯=故答案为:3843 【点睛】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.19.②④【分析】根据函数和图象可得的单调区间和单调性从而得到答案【详解】由函数和图象可得当时得所以函数单调递增当时得所以函数单调递减当时得所以函数单调递减当时得所以函数单调递增所以①错误;②正确;③是函解析:②④ 【分析】根据函数()y x f x =⋅'和图象可得()f x 的单调区间和单调性,从而得到答案. 【详解】由函数()y x f x =⋅'和图象可得,当2()–,x ∞-∈时,0y <,得()0f x '>,所以函数()f x 单调递增, 当()2,0x ∈-时,0y >,得()0f x '<,所以函数()f x 单调递减, 当(0,2)x ∈时,0y <,得()0f x '<,所以函数()f x 单调递减, 当(2,)x ∈+∞时,0y >,得()0f x '>,所以函数()f x 单调递增, 所以①错误;②正确;③2x =-是函数()f x 的极大值点,错误;④正确. 故答案为:②④. 【点睛】本题结合图象考查函数的单调性和判断极值,属于基础题.20.3【分析】求导数取导数为0计算代入原函数计算极大值得到答案【详解】函数的极大值为由题意知:当时有极大值所以故答案为3【点睛】本题考查了函数的极大值意在考查学生的计算能力解析:3 【分析】求导数,取导数为0,计算x =. 【详解】函数31()3f x x ax =-的极大值为 2()f x x a '=- 由题意知:0,a x >⇒=当x =(f =所以3a = 故答案为3 【点睛】本题考查了函数的极大值,意在考查学生的计算能力.三、解答题21.(1)2a =;(2)(-∞.【分析】(1)由题意可得出()11f '=,由此可求得实数a 的值;(2)求出函数()f x 的定义域为()0,∞+,由题意可知,()2210af x x x'=+-≥在()0,∞+上恒成立,利用参变量分离法得出min 2a x x ⎛⎫≤+ ⎪⎝⎭,利用基本不等式求出2x x +在()0,∞+上的最小值,由此可得出实数a 的取值范围.【详解】 (1)()2ln f x x a x x =--,()221af x x x'∴=+-,()13f a '∴=-,又()f x 在点()()1,1f 处的切线方程为2y x =-,()131f a '∴=-=,解得2a =; (2)()f x 的定义域为()0,∞+,()f x 在定义域上为增函数,()2210af x x x'∴=+-≥在()0,∞+上恒成立, 2a x x∴≤+在()0,∞+上恒成立,min 2a x x ⎛⎫∴≤+ ⎪⎝⎭,由基本不等式2x x +=≥x时等号成立,故min 2x x ⎛⎫+= ⎪⎝⎭ 故a的取值范围为(-∞. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立. 22.(1)()4230m x y m +-+-=;(2)(),4-∞-. 【分析】(1)对()y f x =求导,切线斜率为()1f ',再求切点坐标,利用点斜式即可写出切线方程;(2)由题意可得1x ,2x 是方程()0f x '=的两个不等式的实根,等价于1x ,2x 是方程210x mx ++=的两个根,由根与系数的关系可得12x x m +=-,121=x x ,将()211f x x x +转化为关于2x ()21x >的函数,再利用单调性求最值即可求解. 【详解】(1)由题意知()0,x ∈+∞,因为()222f x x m x'=++, 所以()142f m '=+,()113f m =+,所以所求切线方程为()()()13421y m m x -+=+-,即()4230m x y m +-+-=;(2)由(1)知()()221222x mx f x x m x x++'=++=, 因为()1212,x x x x <是()f x 的两个不同的极值点,所以1x ,2x 是方程210x mx ++=的两个根,可得12x x m +=-,121=x x ,221m x x ⎛⎫=-+ ⎪⎝⎭,易得21>x ,所以()22122211222ln 1f x x x mx x m x x x +++++=22222222222222211122ln 2ln 211x x x x x x x x x x x x x ⎛⎫⎛⎫-++-++ ⎪ ⎪--+-⎝⎭⎝⎭==()3222222222ln 1x x x x x x =---+>,()()32222222222ln 1g x x x x x x x =---+>,()()2222232ln g x x x x '=-+-,()2221621g x x x ⎛⎫''=-+- ⎪⎝⎭,因为21>x 可得2110x -<,260x -<所以()20g x ''<,()()2222232ln g x x x x '=-+-在()1,+∞单调递减,()()()2132ln1150g x g ''<=-+-=-<,所以()2g x 在()1,x ∈+∞上单调递减,()()214g x g <=-, 从而()211f x x x +的取值范围为(),4-∞-. 【点睛】方法点睛:求曲线切线方程的一般步骤是(1)求出()y f x =在0x x =处的导数,即()y f x =在点P 00(,())x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在P 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程'00()()y y f x x x -=⋅-.23.(1)1,2⎛⎫+∞ ⎪⎝⎭;(2)12a e ≥.【分析】(1)求出导函数()'f x ,在定义域内由()0f x '>得增区间;(2)分离参数得21ln x a x +≥.设()21ln xg x x+=,由导数求得()g x 最大值即可得结论. 【详解】(1)当2a =时,()()221ln ,0,f x x x x =--∈+∞.由()()()221211414x x x f x x x x x+--'=-==, 令()0f x '>,得12x >, 所以()f x 的单调增区间为1,2⎛⎫+∞⎪⎝⎭. (2)由()21ln 0f x ax x =--≥,则21ln xa x +≥. 设()21ln x g x x +=,则()312ln xg x x--'=. 令()0g x '=,得12x e -=,且当120,x e -⎛⎫∈ ⎪⎝⎭时,()0g x '>;当12,x e -⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<,所以()g x 在120,e -⎛⎫ ⎪⎝⎭上单调递增,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递减,所以当12x e -=到时,()g x 取得最大值为12e , 所以12a e ≥. 【点睛】方法点睛:本题考查用导数求函数的单调区间,研究不等式恒成立问题.不等式恒成立问题的解题方法通常是利用分离参数法分离参数,然后引入新函数,利用导数求得新函数的最值,则可得参数范围.24.(1)1230x y --=;(2)单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-.【分析】(1)求出导函数()'f x ,然后计算导数得斜率,从而得切线方程;(2)由()0f x '>得增区间,()0f x '<得减区间. 【详解】解:(1)∵32()392f x x x x =-++-, ∴2()369f x x x '=-++, ∴()112f '=. 又∵()19f =,∴函数()y f x =的图象在点()()1,1f 处的切线方程为912(1)y x -=-, 即1230x y --=.(2)由(1),得2()3693(1)(3)f x x x x x '=-++=-+-,令()0f x '=,解得1x =-或3x =; 当()0f x '<时,1x <-或3x >; 当()0f x '>时,13x.∴()f x 的单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-. 【点睛】关键点点睛:本题考查导数的几何意义,考查求函数的单调区间.解题方法是求出导函数()'f x ,计算0()f x '得切线斜率,由点斜式写出切线方程并整理成一般式.而求单调区间只要解不等式()0f x '>即得增区间,解不等式()0f x '<即得减区间.25.(1)()g x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞;(2)2e ⎛⎫+∞ ⎪⎝⎭,. 【分析】(1)当1a =时()122x f x ex -=-,先对()f x 求导得()g x 的解析式,再对()g x 求导,由()0g x '<得单间区间,由()0g x '>得单增区间; (2)由题意可得方程()1202x f x eax --==有三个不等的实根,等价于方程122x e a x-=有三个不等的实根,即y a =与122()(0)x eh x x x-=≠两个函数图象有三个不同的交点,对()h x 求导判断其单调性,作出其图象,数形结合即可求解.【详解】(1)当1a =时,1()22x f x e x -'=-, 令()()g x f x '=,则1()22x g x e -'=-,当1x <时()0g x '<,()g x 在(,1)-∞上单调递减; 当1x >时()0g x '>,()g x 在(1,)+∞上单调递增.所以()g x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞; (2)2(0)0f e=≠,0x ∴≠, 所以若()f x 在R 上恰有三个零点等价于()1202x f x eax --==有三个不等的实根,等价于方程122x e a x -=有三个不等的实根, 设122()(0)x e h x x x-=≠, 则y a =与122()(0)x eh x x x-=≠两个函数图象有三个不同的交点, 因为1211432222(2)()x x x e x e x e x h x x x---⋅-⋅-'== 令()0h x '=,得2x =,且(2)2eh =当()x ∈∞-,0时,()0h x '>,()h x 单调递增且()()0,h x ∈+∞,当()0,2x ∈时,()0h x '<,()h x 单调递减且()+2e h x ⎛⎫∈∞ ⎪⎝⎭,, 当()0,x ∈+∞时,()0h x '>,()h x 单调递增且()+2e h x ⎛⎫∈∞ ⎪⎝⎭,作出其图象如图所示:当2x =时,2122(2)22e eh -==, 由图知当2ea >时,y a =与()y h x =的图象有三个交点, 即()f x 有三个不同的零点,所以a 的取值范围是2e ⎛⎫+∞ ⎪⎝⎭,. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.26.(1)证明见解析;(2)证明见解析;(3)证明见解析. 【分析】(1)令()(1)x f x e x =-+,求出导函数()'f x ,确定单调性得最小值,从而证得不等式成立;(2)令()ln (1)(0)g x x x x =-->,求导确定单调性得最大值后可证得不等式成立; (3)(1)变形得1x e x -≥,(2)变形可得ln(1)x x ,两个等号不同时成立,可证得不等式成立. 【详解】证明:(1)令()(1)x f x e x =-+,则有()1xf x e =-'.令()0f x '<得,0x <,令()0f x '>得,0x >所以()f x 在(,0)-∞单调递减,(0,)+∞上单调递增.所以0()(0)10f x f e ≥=-=,即(1)0x e x +≥-.所以1x e x ≥+.(2)令()ln (1)(0)g x x x x =-->,则1()1g x x'=-. 令()0g x '<得,0x >,令()0g x '>得,01x <<.所以()g x 在(0,1)单调递增,(1,)+∞上单调递减,所以()(1)ln1(11)0g x g ≤=--=,即ln (1)0x x --≤, 所以ln 1≤-x x .(3)由(1)得1x e x ≥+,所以1(1)1x e x x -≥-+=(当且仅当1x =时取等号)①.由(2)得ln 1≤-x x ,所以ln(1)(1)1x x x +≤+-=(当且仅当0x =时取等号)② 因为①式与②式取等号的条件不同,所以1ln(1)x e x ->+. 【点睛】结论点睛:本题考查用导数证明不等式,证明方法是引入函数,用导数确定函数的单调性得到函数的最值,从而可证不等式成立.1x e x ≥+和ln 1≤-x x 是两个典型的不等式,例如它可变形得1x e x -≥,ln(1)x x ,有许多函数不等式都是考查这两个不等式的应用.请务必注意掌握.。
(新课标)2017-2018学年北师大版高中数学选修1-1第四章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=(x-3)e x的单调递减区间是( )A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)[答案] A[解析] f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x,令f′(x)<0,解得x<2,即函数f(x)的单调递减区间是(-∞,2).2.已知f(x)=x2+2xf′(1),则f′(0)等于( )A.0 B.-4C.-2 D.2[答案] B[解析] f′(x)=2x+2f′(1),∴f′(1)=2+2f′(1),即f′(1)=-2,∴f′(x)=2x-4,∴f′(0)=-4.3.函数f(x)=x3-3x2+6x-10在区间[-1,1]上的最大值是( )A.-3 B.-6C.-2 D.0[答案] B[解析] f′(x)=3x2-6x+6=3(x-1)2+3,∴f′(x)>0在[-1,1]上恒成立,即f(x)在[-1,1]上是单调递增的,故当x =1时,f(x)max =-6.4.(2014·浙江杜桥中学期中)已知函数f(x)=x 3+ax 2+3x -9在x =-3时取得极值,则a =( )A .2B .3C .4D .5[答案] D[解析] f ′(x)=3x 2+2ax +3,由条件知,x =-3是方程f ′(x)=0的实数根,∴a =5. 5.(2014·淄博市临淄区学分认定考试)下列函数中,x =0是其极值点的函数是( ) A .f(x)=-x 3 B .f(x)=-cosxC .f(x)=sinx -xD .f(x)=1x[答案] B[解析] 对于A ,f ′(x)=-3x 2≤0恒成立,在R 上单调递减,没有极值点;对于B ,f ′(x)=sinx ,当x ∈(-π,0)时,f ′(x)<0,当x ∈(0,π)时,f ′(x)>0,故f(x)=-cosx 在x =0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x =0是f(x)的一个极小值点;对于C ,f ′(x)=cosx -1≤0恒成立,在R 上单调递减,没有极值点;对于D ,f(x)=1x 在x =0没有定义,所以x =0不可能成为极值点,综上可知,答案选B.6.已知函数f(x)=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,-3)∪(3,+∞)B .(-3,3) C .(-∞,-3]∪[3,+∞) D .[-3,3][答案] D[解析] f ′(x)=-3x 2+2ax -1,∵f(x)在(-∞,+∞)上是单调函数,且f ′(x)的图像是开口向下的抛物线,∴f ′(x)≤0恒成立,∴Δ=4a 2-12≤0,∴-3≤a ≤3,故选D.7.如图是函数y =f(x)的导函数的图像,给出下面四个判断:①f(x)在区间[-2,-1]上是增函数; ②x =-1是f(x)的极小值点;③f(x)在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x =2是f(x)的极小值点. 其中,所有正确判断的序号是( ) A .①② B .②③ C .③④ D .①②③④[答案] B[解析] 由函数y =f(x)的导函数的图像可知:(1)f(x)在区间[-2,-1]上是减函数,在[-1,2]上是增函数,在[2,4]上是减函数; (2)f(x)在x =-1处取得极小值,在x =2处取得极大值.故②③正确.8.(2014·银川九中二模)已知f(x)=14x 2+sin(π2+x),f ′(x)为f(x)的导函数,则f ′(x)的图像是( )[答案] A[解析] f(x)=14x 2+cosx ,f ′(x)=12x -sinx , ∵-1≤sinx ≤1,且f ′(-x)=-f ′(x),∴f ′(x)为奇函数,排除B 、D ;令g(x)=12x -sinx ,则g ′(x)=12-cosx ,当x ∈(0,π3)时,g ′(x)<0,∴g(x)在(0,π3)上为减函数,即f ′(x)在(0,π3)上为减函数,排除C ,故选A.9.(2013·华池一中高二期中)若关于x 的方程x 3-3x +m =0在[0,2]上有根,则实数m 的取值范围是( )A .[-2,2]B .[0,2]C .[-2,0]D .(-∞,-2)∪(2,+∞)[答案] A[解析] 令f(x)=x 3-3x +m ,则f ′(x)=3x 2-3=3(x +1)(x -1),显然当x<-1或x>1时,f ′(x)>0,f(x)单调递增,当-1<x<1时,f ′(x)<0,f(x)单调递减,∴在x =-1时,f(x)取极大值f(-1)=m +2,在x =1时,f(x)取极小值f(1)=m -2.∵f(x)=0在[0,2]上有解,∴⎩⎪⎨⎪⎧f (1)<0,f (2)>0,∴⎩⎪⎨⎪⎧m -2≤0,2+m ≥0,∴-2≤m ≤2. 10.(2014·天门市调研)已知函数f(x)=asinx -bcosx 在x =π4时取得极值,则函数y =f(3π4-x)是( ) A .偶函数且图像关于点(π,0)对称B .偶函数且图像关于点(3π2,0)对称C .奇函数且图像关于点(3π2,0)对称D .奇函数且图像关于点(π,0)对称 [答案] D[解析] ∵f(x)的图像关于x =π4对称,∴f(0)=f(π2),∴-b =a ,∴f(x)=asinx -bcosx =asinx +acosx =2asin(x +π4),∴f(3π4-x)=2asin(3π4-x +π4)=2asin(π-x)=2asinx.显然f(3π4-x)是奇函数且关于点(π,0)对称,故选D.二、填空题(本大题共5个小题,每小题5分,共25分,将正确答案填在题中横线上) 11.已知函数f(x)=13x 3-12x 2+cx +d 有极值,则c 的取值范围为________. [答案] c<14[解析] ∵f ′(x)=x 2-x +c 且f(x)有极值, ∴f ′(x)=0有不等的实数根,即Δ=1-4c>0. 解得c<14.12.函数y =f(x)=lnx -x 在区间(0,e]上的最大值为________. [答案] -1[解析] f ′(x)=1x-1,令f ′(x)=0,即x =1.当x 变化时,f ′(x),f(x)的变化情况如下表:x (0,1) 1 (1,e) e f ′(x) + 0 - f(x)单调递增极大值-1单调递减1-e由于f(e)=1-e ,而-1>1-e ,从而f(x)max =f(1)=-1.13.(2014·沈阳质检)已知函数f(x)=x(x -a)(x -b)的导函数为f ′(x),且f ′(0)=4,则a 2+2b 2的最小值为________.[答案] 82[解析] ∵f(x)=x(x -a)(x -b), ∴f ′(x)=(x -a)(x -b)+x[(x -a)(x -b)]′, ∴f ′(0)=ab =4,∴a 2+2b 2≥22ab =82.14.若函数y =-x 3+6x 2+m 的极大值等于13,则实数m 等于________. [答案] -19[解析] y ′=-3x 2+12x ,由y ′=0,得x =0或x =4,容易得出当x =4时函数取得极大值,所以-43+6×42+m =13,解得m =-19.15.(2014·哈六中期中)已知函数f(x +2)是偶函数,x>2时f ′(x)>0恒成立(其中f ′(x)是函数f(x)的导函数),且f(4)=0,则不等式(x +2)f(x +3)<0的解集为________.[答案] (-∞,-3)∪(-2,1)[解析] ∵函数y =f(x +2)是偶函数,∴其图像关于y 轴对称,∵y =f(x +2)的图像向右平移两个单位得到y =f(x)的图像,∴函数y =f(x)的图像关于直线x =2对称,∵x>2时,f ′(x)>0,∴f(x)在(2,+∞)上单调递增,在(-∞,2)上单调递减,又f(4)=0,∴f(0)=0,∴0<x<4时,f(x)<0,x<0或x>4时,f(x)>0,由(x +2)f(x +3)<0得⎩⎪⎨⎪⎧x +2<0,f (x +3)>0,(1)或⎩⎪⎨⎪⎧x +2>0,f (x +3)<0.(2) 由(1)得⎩⎪⎨⎪⎧x<-2,x +3<0或x +3>4,∴x<-3;由(2)得⎩⎪⎨⎪⎧x>-2,0<x +3<4.∴-2<x<1,综上知,不等式的解集为(-∞,-3)∪(-2,1)三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.已知函数f(x)=x 3+ax 2+b(a ∈R ,b ∈R).若a>0,且f(x)的极大值为5,极小值为1,求f(x)的解析式.[答案] f(x)=x 3+3x 2+1[解析] ∵f(x)=x 3+ax 2+b ,∴f ′(x)=3x 2+2ax. 令f ′(x)=0,得x =0或x =-2a3.又∵a>0,∴-2a3<0.∴当x<-2a3或x>0时,f ′(x)>0;当-2a3<x<0时,f ′(x)<0.∴f(x)在(-∞,-2a 3)和(0,+∞)上是增函数,在(0,2a3)上是减函数.∴f(-2a3)是f(x)的极大值,f(0)是f(x)的极小值,即f(-2a 3)=(-2a 3)3+a(-2a3)2+b =5;f(0)=b =1,解得a =3,b =1.∴所求的函数解析式是f(x)=x 3+3x 2+1.17.已知函数f(x)=x 3+(1-a)x 2-a(a +2)x +b(a ,b ∈R)(1)若函数f(x)的图像过原点,且在原点处的切线斜率是-3,求a ,b 的值; (2)若函数f(x)在区间(-1,1)上不单调,求a 的取值范围. [答案] (1)a =-3或a =1,b =0 (2)(-5,-12)∪(-12,1)[解析] (1)f ′(x)=3x 2+2(1-a)x -a(a +2),由于函数f(x)的图像过原点,则f(0)=0,从而b =0, 又函数图像在原点处的切线斜率是-3,则f ′(0)=-3, 所以-a(a +2)=-3,解得a =-3或a =1.(2)令f ′(x)=0,即3x 2+2(1-a)x -a(a +2)=0,解得x 1=a ,x 2=-a +23.由于函数f(x)在区间(-1,1)上不单调,则有⎩⎪⎨⎪⎧-1<a<1a ≠-a +23,或⎩⎪⎨⎪⎧-1<-a +23<1a ≠-a +23,解得⎩⎪⎨⎪⎧-1<a<1a ≠-12,或⎩⎪⎨⎪⎧-5<a<1a ≠-12.所以a 的取值范围是(-5,-12)∪(-12,1).18.(2015·北京文,19)设函数f(x)=x 22-kln x ,k >0.(1)求f(x)的单调区间和极值;[答案] (1)f(x)的单调递减区间是(0,k),单调递增区间是(k ,+∞);极小值k (1-ln k )2(2)略[解析] (1)由f(x)=x 22-kln x ,(k >0)得f ′(x)=x -k x =x 2-kx .由f ′(x)=0解得x =k.f(x)与f ′(x)在区间(0,+∞)上的情况如下:x (0,k)k (k ,+∞) f ′(x) -0 +f(x)k (1-ln k )2所以,f(x)的单调递减区间是(0,k),单调递增区间是(k ,+∞);f(x)在x =k 处取得极小值f(k)=k (1-ln k )2.(2)由(1)知,f(x)在区间(0,+∞)上的最小值为f(k)=k (1-ln k )2.因为f(x)存在零点,所以k (1-ln k )2≤0,从而k ≥e.当k =e 时,f(x)在区间(1,e)上单调递减,且f(e)=0,所以x =e 是f(x)在区间(1,e]上的唯一零点.当k >e 时,f(x)在区间(0,e)上单调递减,且f(1)=12>0,f(e)=e -k 2<0,所以f(x)在区间(1,e]上仅有一个零点.19.在边长为60cm 的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子如图,箱底的边长是多少时,箱子的容积最大?最大容积是多少?[答案] 箱底的边长是40cm 时,容积最大,最大容积16000cm 3[解析] 设箱底边长为xcm ,则箱高h =60-x 2cm ,得箱子容积V(x)=x 2h =60x 2-x 32(0<x<60),V ′(x)=60x -3x 22(0<x<60).令V ′(x)=60x -3x 22=0,解得x =0(舍去),x =40,并求得V(40)=16000.由题意可知,当x 过小(接近0)或过大(接近60)时,箱子容积很小, 故当x =40cm 时,箱子的容积最大,最大容积是16000cm 3. 20.已知函数f(x)=2lnx -x 2+ax(a ∈R).(1)当a =2时,求f(x)的图像在x =1处的切线方程;(2)若函数g(x)=f(x)-ax +m 在[1e,e]上有两个零点,求实数m 的取值范围.[答案] (1)y =2x -1 (2)(1,2+1e 2][解析] (1)当a =2时,f(x)=2lnx -x 2+2x ,f ′(x)=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1.(2)g(x)=2lnx -x 2+m ,则g ′(x)=2x -2x =-2(x +1)(x -1)x. ∵x ∈[1e ,e],∴当g ′(x)=0时,x =1.当1e<x<1时,g ′(x)>0;当1<x<e 时,g ′(x)<0.故g(x)在x =1处取得极大值g(1)=m -1.又g(1e )=m -2-1e 2,g(e)=m +2-e 2,g(e)-g(1e )=4-e 2+1e 2<0,则g(e)<g(1e). ∴g(x)在[1e,e]上的最小值是g(e).而g(x)在[1e,e]上有两个零点,则 ⎩⎪⎨⎪⎧ g (1)=m -1>0g (1e )=m -2-1e 2≤0,解得1<m ≤2+1e 2, ∴实数m 的取值范围是(1,2+1e 2]. 21.(2014·韶关市曲江一中月考)已知函数f(x)=ax 3+cx +d(a ≠0)是R 上的奇函数,当x =1时,f(x)取得极值-2.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间和极大值;(3)证明:对任意x 1、x 2∈(-1,1),不等式|f(x 1)-f(x 2)|<4恒成立.[答案] (1)f(x)=x 3-3x (2)增区间(-∞,-1),(1,+∞);减区间(-1,1) 极大值2 (3)略[解析] (1)∵f(x)是R 上的奇函数,∴f(-x)=-f(x),即-ax 3-cx +d =-ax 3-cx -d ,∴d =-d ,∴d =0(或由f(0)=0得d =0).∴f(x)=ax 3+cx ,f ′(x)=3ax 2+c ,又当x =1时,f(x)取得极值-2,∴⎩⎪⎨⎪⎧ f (1)=-2,f ′(1)=0,即⎩⎪⎨⎪⎧ a +c =-2,3a +c =0,解得⎩⎪⎨⎪⎧ a =1,c =-3.∴f(x)=x 3-3x.(2)f ′(x)=3x 2-3=3(x +1)(x -1),令f ′(x)=0,得x =±1,当-1<x<1时,f ′(x)<0,函数f(x)单调递减;当x<-1或x>1时,f ′(x)>0,函数f(x)单调递增;∴函数f(x)的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1).因此,f(x)在x =-1处取得极大值,且极大值为f(-1)=2.(3)由(2)知,函数f(x)在区间[-1,1]上单调递减,且f(x)在区间[-1,1]上的最大值为M =f(-1)=2.最小值为m =f(1)=-2.∴对任意x 1、x 2∈(-1,1),|f(x 1)-f(x 2)|<M -m =4成立.即对任意x 1、x 2∈(-1,1),不等式|f(x 1)-f(x 2)|<4恒成立.。