2020高考数学一轮复习第八章平面解析几何8-10圆锥曲线的综合问题课时提升作业理
- 格式:doc
- 大小:373.00 KB
- 文档页数:12
高三一轮第八章平面解析几何8.10 圆锥曲线的综合问题【教学目标】1。
能根据直线与圆锥曲线的位置关系求参数的范围、最值等2。
能利用方程思想、数形结合思想解决圆锥曲线中的定点、定值、存在性问题.【重点难点】1。
教学重点:掌握直线与圆锥曲线的位置关系求参数的范围、最值、定点、定值、存在性问题;2。
教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】(3)使用点斜式设直线方程时,应考虑直线斜率不存在的情形.(4)涉及直线与圆锥曲线相交问题时,应考虑直线方程与圆锥曲线方程联立后得到的一元二次方程二次项系数不为零及判别式Δ>0两种情形.考点分项突破考点一:圆锥曲线中的证明问题1. (2015·福建高考)已知椭圆E:错误!+错误!=1(a>b〉0)过点(0,错误!),且离心率e=错误!.(1)求椭圆E的方程;忆,提高解题技能。
【解析】如图,设椭圆的左焦点为F1(-4,0),由|PF1|+|PF|=10得|PF|=10-|PF1|。
所以|PB|+|PF|=10+|PB|-|PF1|=10-(|PF1|-|PB|)≥10-|F1B|,当且仅当F1,B,P三点共线,即点P在点P2位置时取等号.又|F1B|=错误!=错误!.所以|PB|+|PF|的最小值为10-37。
【答案】10-错误!●命题角度2 建立目标函数求最值2.若P,Q分别为抛物线C:x2=4y与圆M:x2+(y-3)2=1上的两个动点,则|PQ|的最小值为________.【解析】先求圆心M(0,3)到点P的距离的最小值,法一(建立目标函数)设P(x,y),则x2=4y,|PM|=x2+y-32=错误!=错误!=y-12+8≥2错误!(当y=1时等号成立).∴|PQ|min=22-1.法二(数形结合)以点M为圆心作同心圆,当圆与抛物线相切时,点M到点P 的距离最小,设为r,则由,2](2)已知圆M:(x-2)2+y2=r2(r>0).若椭圆C:x2a2+错误!=1(a>b〉0)的右顶点为圆M的圆心,离心率为错误!。
高三一轮 第八章 平面解析几何8.10 圆锥曲线的综合问题 (检测学生版)时间:60分钟 总分:90分班级: 姓名:一、 选择题(共2小题,每题5分,共10分)1.如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是( )A.圆B.椭圆C.双曲线D.抛物线2.已知直线l 的斜率为2,M ,N 是直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个交点,若MN 的中点为P (2,1),则C 的离心率为( ) A. 2 B. 3 C.2D.2 2二、填空题(共2小题,每题5分,共10分)3.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________.4.若抛物线y =ax 2-1上恒有关于直线x +y =0对称的相异的两点A ,B ,则a 的取值范围是________.三、解答题(共5小题,每题10分,共50分)5.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点A (0,1).(1)求椭圆方程;(2)过A 作两条互相垂直的直线分别交椭圆于点M ,N ,求证:直线MN 恒过定点P ⎝⎛⎭⎫0,-35.6.已知中点在原点,焦点在x 轴上的椭圆C 的离心率为12,且经过点M ⎝⎛⎭⎫1,32. (1)求椭圆C 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆C 相交于不同的两点A ,B ,且满足P A →·PB →=PM →2?若存在,求出直线l 的方程;若不存在,请说明理由.7.(2016·江苏,22)如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.8.(2015·浙江,19)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).9.(2015·天津,19)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.。
8-10 圆锥曲线的综合问题课时规范练(授课提示:对应学生用书第317页)A 组 基础对点练1.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解析:(1)设F (c,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1. (2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2),将y =kx -2代入x 24+y 2=1得 (1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0, 即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d |PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t≥4,当且仅当t =2, 即k =±72时等号成立,且满足Δ>0,所以当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 2.(2016·高考北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.解析:(1)由题意得⎩⎪⎨⎪⎧ c a =32,12ab =1,a 2=b 2+c 2,解得a =2,b =1.所以椭圆C 的方程为x 24+y 2=1. (2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线PA 的方程为 y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2, 从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1, 从而|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1. 所以|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2· ⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4. 当x 0=0时,y 0=-1,|BM |=2,|AN |=2,。
第八节 圆锥曲线的综合问题[考纲传真] 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.1.直线与圆锥曲线的位置关系设直线l :Ax +By +C =0,圆锥曲线C :F (x ,y )=0, 由⎩⎪⎨⎪⎧Ax +By +C =0,Fx ,y =0消去y 得到关于x 的方程ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线l 与圆锥曲线C 有两个公共点;Δ=0⇔直线l 与圆锥曲线C 有一个公共点; Δ<0⇔直线l 与圆锥曲线C 有零个公共点.(2)当a =0,b ≠0时,圆锥曲线C 为抛物线或双曲线.当C 为双曲线时,l 与双曲线的渐近线平行或重合,它们的公共点有1个或0个. 当C 为抛物线时,l 与抛物线的对称轴平行或重合,它们的公共点有1个. 2.圆锥曲线的弦长公式设斜率为k 的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=1+1k2|y 1-y 2|=1+1k2·y 1+y 22-4y 1y 2.[常用结论]过一点的直线与圆锥曲线的位置关系 (1)过椭圆外一点总有两条直线与椭圆相切; 过椭圆上一点有且只有一条直线与椭圆相切; 过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)直线l 与椭圆C 相切的充要条件是直线l 与椭圆C 只有一个公共点.( )(2)直线l 与双曲线C 相切的充要条件是直线l 与双曲线C 只有一个公共点.( ) (3)过抛物线y 2=2px (p >0)焦点的弦中最短弦的弦长是2p .( )(4)若抛物线上存在关于直线l 对称的两点,则l 与抛物线有两个交点.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)直线y =k (x -1)+1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定A [直线y =k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.] 3.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [直线与双曲线相切时,只有一个公共点,但直线与双曲线相交时,也可能有一个公共点,例如:与双曲线的渐近线平行的直线与双曲线只有一个交点.故选A.]4.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有________条. 3 [结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0). ]5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________.4 [由题意可设直线l 的方程为y =m ,代入x 24-y 2=1得x 2=4(1+m 2),所以x 1=+m2=21+m 2,x 2=-21+m 2,所以|AB |=|x 1-x 2|=41+m 2≥4,即当m =0时,|AB |有最小值4.]第1课时 直线与圆锥曲线12,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条B [设该抛物线焦点为F ,A (x A ,y A ),B (x B ,y B ),则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且只有两条.]2.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5D [由于直线y =kx +1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<1m≤1且m ≠5,故m ≥1且m ≠5.]3.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-153,153 B.⎝ ⎛⎭⎪⎫0,153 C.⎝⎛⎭⎪⎫-153,0 D.⎝⎛⎭⎪⎫-153,-1 D [由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2--k 2->0,x 1+x 2=4k 1-k 2>0,x 1x 2=-101-k 2>0,解得-153<k <-1, 即k 的取值范围是⎝ ⎛⎭⎪⎫-153,-1.] [规律方法] 直线与圆锥曲线位置关系的判定方法►考法1 【例1】 斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455C.4105D.8105C [设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=t 2-5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×t 2-5=425·5-t 2, 当t =0时,|AB |m ax =4105.]►考法2 中点弦问题【例2】 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 D [设A (x 1,y 1),B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0,所以x 1+x 2=6b 2a 2+b 2=2,又因为a 2-b 2=9,解得b 2=9,a 2=18,方程为x 218+y 29=1.] ►考法3 与弦长有关的综合问题【例3】 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[解] (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2,解得a =2,b =3,所以椭圆方程为x 24+y 23=1. (2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k(x -1).将直线AB 方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k2, 所以|AB |=k 2+1|x 1-x 2|=k 2+1·x 1+x 22-4x 1x 2=k 2+3+4k2.同理,|CD |=12⎝ ⎛⎭⎪⎫1k 2+13+4k2=k 2+3k 2+4.所以|AB |+|CD |=k 2+3+4k2+k 2+3k 2+4=k 2+2+4k2k 2+=487, 解得k =±1,所以直线AB 的方程为x -y -1=0或x +y -1=0. 当弦的两端点坐标易求时,可直接利用两点间的距离公式求解联立直线与圆锥曲线方程,联立直线与圆锥曲线方程,消元得到关于或的一元二次方程,利用根与系数的关系得到x 1-22,y 1-22,代入两点间的距离公式.当弦过焦点时,可结合焦半径公式求解弦长设椭圆M :a 2+b2=1(a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M 的方程;(2)若直线y =2x +1交椭圆M 于A ,B 两点,P (1,2)为椭圆M 上一点,求△PAB 的面积.[解] (1)由题可知,双曲线的离心率为2,则椭圆的离心率e =c a =22, 由2a =4,c a =22,b 2=a 2-c 2,得a =2,c =2,b =2, 故椭圆M 的方程为y 24+x 22=1.(2)联立方程⎩⎪⎨⎪⎧y =2x +1,x 22+y 24=1,得4x 2+22x -3=0,且⎩⎪⎨⎪⎧x 1+x 2=-22,x 1x 2=-34,所以|AB |=1+2|x 1-x 2|=3·x 1+x 22-4x 1x 2=3·12+3=422. 又P 到直线AB 的距离为d =13,所以S △PAB =12|AB |·d =12·422·13=144.。
【2019最新】精选高考数学一轮复习第八章平面解析几何8-10圆锥曲线的综合问题课时提升作业理(25分钟60分)一、选择题(每小题5分,共25分)1.已知点F1,F2为椭圆+y2=1的左、右焦点,点P(x,y)为椭圆上一点,则点P到两焦点距离之积的最大值是( )A.8B.2C.10D.4【解析】选A.设椭圆长半轴的长为a,则a2=8,因为·≤==a2=8(当且仅当=时取等号)2.斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为( )A.2B.C.D.【解析】选C.设直线l的方程为y=x+t,代入+y2=1,消去y得x2+2tx+t2-1=0,由题意得Δ=(2t)2-5(t2-1)>0,即t2<5.弦长|AB|=4×≤.3.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )A. B.[-2,2]C.[-1,1]D.[-4,4]【解析】选C.因为y2=8x,所以Q(-2,0),设过Q点的直线l方程为y=k(x+2).l与抛物线有公共点,联立得方程组整理得k2x2+(4k2-8)x+4k2=0.当k=0时,直线与抛物线有一个交点,当k≠0时,Δ=(4k2-8)2-16k4≥0,即0<k2≤1.又因为k=0符合题意,所以-1≤k≤1.4.P是双曲线-=1的右支上一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( )A.6B.7C.8D.9【解题提示】注意两圆圆心的坐标是双曲线的焦点,利用双曲线的定义即可解决.【解析】选D.设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,易知(|PM|-|PN|)max=(|PF1|+2)-(|PF2|-1)=|PF1|-|PF2|+3=2×3+3=9.5.过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们到直线x=-2的距离之和等于5,则这样的直线( )A.有且仅有一条B.只有两条C.有无穷多条D.不存在【解析】选D.设点A(x1,y1),B(x2,y2).因为A,B两点到直线x=-2的距离之和等于5,所以x1+2+x2+2=5.所以x1+x2=1.由抛物线的定义得|AB|=x1+1+x2+1=3.而抛物线的焦点弦的最小值(当弦AB⊥x轴时,是最小焦点弦)为4,所以不存在满足条件的直线.【误区警示】解答本题易出现以下错误:由于忽略焦点弦的最小值,从而导致错误结论.二、填空题(每小题5分,共15分)6.(2016·邯郸模拟)如图所示,正方形ABCD与正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则= .【解析】由题意可得C,F,将C,F两点的坐标分别代入抛物线方程y2=2px中,得因为a>0,b>0,p>0,两式相比消去p得=,化简整理得a2+2ab-b2=0.此式可看作是关于a的一元二次方程,由求根公式得a==(-1±)b,取a=(-1)b,从而==+1.答案:+17.若双曲线-=1(a>0,b>0)的一条渐近线的倾斜角为,离心率为e,则的最小值为.【解析】由题意,=,所以b=a,所以c=2a,e=2,==+≥(当且仅当a=2时取等号),则的最小值为.答案:8.(2016·衡水模拟)已知双曲线-=1(a>0,b>0)上一点C,过双曲线中心的直线交双曲线于A,B两点,记直线AC,BC的斜率分别为k1,k2,当+ln|k1|+ln|k2|最小时,双曲线的离心率为.【解析】设A(x1,y1),C(x2,y2),由题意知点A,B为过原点的直线与双曲线-=1的交点,所以由双曲线的对称性得A,B 关于原点对称,所以B(-x1,-y1),所以k1k2=·=.因为点A,C都在双曲线上,所以-=1,-=1,两式相减,可得k1k2=>0,对于+ln|k1|+ln|k2|=+ln|k1k2|,函数y=+lnx(x>0),由y′=-+=0,得x=0(舍)或x=2,x>2时,y′>0,0<x<2时,y′<0,所以当x=2时,函数y=+lnx(x>0)取得最小值,所以当+ln(k1k2)最小时,k1k2==2,所以e==.答案:三、解答题(每小题10分,共20分)9.(2016·唐山模拟)已知椭圆E长轴的一个端点是抛物线y2=12x的焦点,且椭圆焦点与抛物线焦点的距离是1.(1)求椭圆E的标准方程.(2)若A,B是椭圆E的左、右端点,O为原点,P是椭圆E上异于A,B的任意一点,直线AP,BP分别交y轴于点M,N,问·是否为定值,说明理由.【解析】(1)由抛物线y2=12x,得焦点为(3,0),由已知可知椭圆的焦点在x轴,且a=3,又a-c=1,则c=2,所以b2=a2-c2=5,故椭圆E的方程为+=1;(2)设P(x0,y0),则5+9=45,且A(-3,0),B(3,0),又直线PA:y=(x+3),直线PB:y=(x-3),令x=0,得:=,=,故·===5为定值.【加固训练】(2015·陕西高考)如图,椭圆E:+=1(a>b>0)经过点A(0,-1),且离心率为.(1)求椭圆E的方程.(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.【解题提示】(1)先由已知求出椭圆长半轴长,进而得出椭圆的标准方程.(2)将直线方程代入椭圆方程,得两根之和与两根之积与k的关系式,将之代入直线AP 与AQ的斜率之和整理式消k后得证.【解析】(1)由题意知=,b=1,综合a2=b2+c2,解得a=,所以,椭圆的方程为+y2=1.(2)由题设知,直线PQ的方程为y=k(x-1)+1,代入+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0,由已知Δ>0,设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=,从而直线AP与AQ的斜率之和kAP+kAQ=+=+=2k+(2-k)=2k+(2-k)=2k+(2-k)=2k-2(k-1)=2.10.(2016·深圳模拟)设F1,F2分别是椭圆+y2=1的左、右焦点.(1)若P是该椭圆上的一个动点,求·的最大值和最小值.(2)设过定点M(0,2)的直线l与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率的取值范围.【解析】(1)由已知得,F1(-,0),F2(,0),设点P(x,y),则+y2=1,且-2≤x≤2.所以·=(--x,-y)·(-x,-y)=x2-3+y2=x2-3+1-=x2-2,当x=0,即P(0,±1)时,(·)min=-2;当x=±2,即P(±2,0)时,(·)max=1.(2)由题意可知,过点M(0,2)的直线l的斜率存在.设l的方程为y=kx+2,由消去y,化简整理得(1+4k2)x2+16kx+12=0,Δ=(16k)2-48(1+4k2)>0,解得k2>.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=,又∠AOB为锐角,所以·>0,即x1x2+y1y2>0,即x1x2+(kx1+2)(kx2+2)=(1+k2)x1x2+2k(x1+x2)+4>0,所以(1+k2)·-2k·+4>0,解得k2<4,所以<k2<4,即k∈∪.(20分钟40分)1.(5分)(2016·长沙模拟)已知抛物线C:y2=4x,点P(m,0),O为坐标原点,若在抛物线C上存在一点Q,使得∠OQP=90°,则实数m的取值范围是( )A.(4,8)B.(4,+∞)C.(0,4)D.(8,+∞)【解析】选B.以OP为直径的圆的方程为+y2=,将y2=4x代入整理可得x2+(4-m)x=0,所以x=0或x=m-4,因为在抛物线C上存在一点Q,使得∠OQP=90°,所以m-4>0,所以m>4.2.(5分)(2016·邯郸模拟)已知抛物线C:y2=4x的焦点为F,过F的直线l与抛物线C 相交于A,B两点,则|OA|2+|OB|2(O为坐标原点)的最小值为( )A.4B.8C.10D.12【解析】选 C.当直线l的斜率不存在,即直线l垂直于x轴时,方程为x=1,则A(1,2),B(1,-2),|OA|2+|OB|2=5+5=10.当直线l的斜率存在时,设直线l的方程为:y=k(x-1),设A(x1,y1),B(x2,y2),由得k2x2-(2k2+4)x+k2=0,所以x1+x2=,x1x2=1,|OA|2+|OB|2=+++=+4x1++4x2=(x1+x2)2-2x1x2+4(x1+x2)=-2+4设=t,则t>2,|OA|2+|OB|2=t2+4t-2=(t+2)2-6(t>2),所以|OA|2+|OB|2>10.综上可知:|OA|2+|OB|2的最小值为10.3.(5分)已知曲线-=1与直线x+y-1=0相交于P,Q两点,且·=0(O为原点),则-的值为.【解析】设P(x1,y1),Q(x2,y2),由题意得则(b-a)x2+2ax-a-ab=0.所以x1+x2=-,x1x2=,y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2,根据·=0,得x1x2+y1y2=0,得1-(x1+x2)+2x1x2=0,因此1++2×=0,化简得=2,即-=2.答案:24.(12分)已知椭圆C1:+y2=1(a>1)的长轴、短轴、焦距分别为A1A2,B1B2,F1F2,且|F1F2|2是与|B1B2|2的等差中项.(1)求椭圆C1的方程.(2)若曲线C2的方程为(x-t)2+y2=(t2+t)2,过椭圆C1左顶点的直线l与曲线C2相切,求直线l被椭圆C1截得的线段长的最小值.【解析】(1)由题意得|B1B2|=2b=2,|A1A2|=2a,|F1F2|=2c,a2-b2=c2,又2×(2c)2=(2a)2+22,解得a2=3,c2=2,故椭圆C1的方程为+y2=1.(2)由(1)可取椭圆的左顶点坐标为A1(-,0),易知直线l的斜率存在,设直线l的方程为y=k(x+).由直线l与曲线C2相切得=(t+)t,整理得=t.又因为0<t≤,所以0<≤,解得0<k2≤1.联立消去y整理得(3k2+1)x2+6k2x+9k2-3=0.直线l被椭圆C1截得的线段一端点为A1(-,0),设另一端点为B,解方程可得点B的坐标为,所以|A1B|==.令m=(1<m≤),则|A1B|==.由函数y=3m-的性质知y=3m-在区间(1,]上是增函数,所以当m=时,y=3m-取得最大值2,从而|A1B|min=.5.(13分)(2016·临汾模拟)如图,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分别是矩形四条边的中点,分别以HF,EG所在的直线为x轴,y轴建立平面直角坐标系,已知=λ,=λ,其中0<λ<1.(1)求证:直线ER与GR′的交点M在椭圆Γ:+y2=1上.(2)若点N是直线l:y=x+2上且不在坐标轴上的任意一点,F1,F2分别为椭圆Γ的左、右焦点,直线NF1和NF2与椭圆Γ的交点分别为P,Q和S,T.是否存在点N,使得直线OP,OQ,OS,OT的斜率kOP,kOQ,kOS,kOT满足kOP+kOQ+kOS+kOT=0?若存在,求出点N的坐标;若不存在,请说明理由.【解析】(1)由已知,得F(,0),C(,1).由=λ,=λ,得R(λ,0),R′(,1-λ).又E(0,-1),G(0,1),则直线ER的方程为y=x-1,①直线GR′的方程为y=-x+1.②由①②,得M.因为+===1,所以直线ER与GR′的交点M在椭圆Γ:+y2=1上.(2)假设存在满足条件的点N(x0,y0),则直线NF1:y=k1(x+1),其中k1=,直线NF2:y=k2(x-1),其中k2=,由消去y并化简,得(2+1)x2+4x+2-2=0,设P(x1,y1),Q(x2,y2),则x1+x2=-,x1x2=,因为OP,OQ的斜率存在,所以x1≠0,x2≠0,所以≠1,所以kOP+kOQ=+=+=2k1+k1·=k1=-.同理,得kOS+kOT=-,所以kOP+kOQ+kOS+kOT=-2=-2·=-,因为kOP+kOQ+kOS+kOT=0,所以-=0,即(k1+k2)(k1k2-1)=0,由点N不在坐标轴上,知k1+k2≠0,所以k1k2=1,即·=1,③又y0=x0+2,④解③④得,x0=-,y0=,所以满足条件的点N存在,其坐标为.【加固训练】(2015·北京高考)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示).(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.【解析】(1)椭圆+=1(a>b>0)过P(0,1),所以b2=1,离心率e====,所以a=,所以椭圆方程为+y2=1.因为P(0,1),A(m,n),所以直线PA的方程为y-1=x,直线PA与x轴交于M,令y=0,则xM=,所以M.(2)因为P(0,1),B(m,-n),所以直线PB的方程为y-1=x,直线PB与x轴交于N,令y=0,则xN=,所以N.设Q(0,y0),tan∠OQM==,tan∠ONQ==,因为∠OQM=∠ONQ,所以tan∠OQM=tan∠ONQ,所以=.所以===2,所以y0=±.因此,存在点Q(0,±),使∠OQM=∠ONQ.。