第二章 线性规划 运筹学讲义
- 格式:ppt
- 大小:1.25 MB
- 文档页数:73
第二章 线性规划教学重点:线性规划可行区域的几何结构,基本可行解及可行区域的基本定理,单纯形方法,两阶段法,对偶和对偶理论,灵敏度分析。
教学难点:线性规划可行区域的几何结构,基本可行解及可行区域的基本定理,单纯形方法,两阶段法,对偶性,灵敏度分析。
教学课时:24学时主要教学环节的组织:首先通过各种形式的例子归纳出线性数学规划的一般形式,然后在详细讲解主要内容的基础上,尽可能以图形和例题的形式给以形象的说明,使学生对知识点有更直观、具体的认识。
再通过大量习题巩固知识,也可以应用软件包解决一些实际问题。
第一节 线性规划问题教学重点:线性规划问题的实例,线性规划的一般形式、规范形式和标准形式教学难点:线性规划一般形式转换成标准形式。
教学课时:2学时主要教学环节的组织:首先通过几个实例总结出线性规划问题的一般形式,再介绍如何将一般形式转换成标准形式。
1、线性规划问题举例 生产计划问题某工厂用三种原料生产三种产品,已知的条件如下表所示,试制订总利润最大的生产计划可控因素(所求变量):设每天生产3种产品的数量分别为321,,x x x . 目标:使得每天的生产利润最大,就是使得利润函数:321453x x x ++ 达到最大. 受制条件:每天原料的需求量不超过可用量:原料1P :15003221≤+x x原料2P :8004232≤+x x原料3P :2000523321≤++x x x蕴含约束:产量为非负数0,,321≥x x x模型321453max x x x ++15003221≤+x xs.t. 8004232≤+x x2000523321≤++x x x0,,321≥x x x运输问题一个制造厂要把若干单位的产品从两个仓库2,1;=i A i 发送到零售点4,3,2,1;=j B j ,仓库 i A 能供应的产品数量为2,1;=i a i ,零售点 j B 所需的产品的数量为4,3,2,1;=j b j 。
第二章线性规划的对偶理论1.对偶问题的提出2.原问题与对偶问题3.对偶问题的基本性质4.影子价格5对偶单纯形法5.对偶单纯形法6.灵敏度分析7.参数线性规划1§1.对偶问题的提出原问题设某企业有m种资源用于生产n种不同产品,各种(i=1m)又生产单位第j种资源的拥有量分别为b i (i=1,…,m),又生产单位第j种产品(j=1,…,n)消费第i种资源a ij 单位,产值为c j 元。
用x 代表第j种产品的生产数量,为使该企业产值最大,可将上述问题建立线性规划模型j 将上述问题建立线性规划模型:max z =c 1x 1+c 2x 2+…+c n x n a 11x 1+a 12x 2+…+a 1n x n ≤b 1a 21x 1+a 22x 2+…+a 2n x n ≤b 2………………2a m 1x 1+a m 2x 2+…+a m n x n ≤b m x 1,x 2,…,x n ≥0§1.对偶问题的提出现在从另一角度提出问题:假定有另一企业欲将上述企业拥有的资源收买过来,至少应付出多少代价,才能使前一拥有的资源收买过来,至少应付出多少代价,才能使前企业愿意放弃生产活动,出让资源。
设用y i 代表收买该企业一单位i种资源时付给的代价,则总收买价为:ωb ω = b1y 1+…+b m y m 前一企业生产一单位第j种产品时,消耗各种资源的数量分别为a 1j ,a 2j ,…,a mj ,如果出让这些资源,价值应不低于单位j种产品的价值c j 元,因此:a 1 j y 1+ a 2 j y 2 + …+ a m j y m ≥ c j 3j j j j (j =1,…,n)§1.对偶问题的提出对后一企业来说,希望用最小代价把前一企业所有资源收过来此有有资源收买过来,因此有:min ω=b1y 1+b 2y 2+…+b m y m a11y 1+a 21y 2+…+a m 1y m ≥c 1a 12y 1+a 22y 2+…+a m 2y m ≥c 2………………a 1n y 1+a 2n y 2+…+a mn y m ≥c ny 1,y 2,…,y m ≥04§1对偶问题的提出§1.对偶问题的提出max z = c 1x 1+ c 2x 2+ … + c n x na x +a x ++a xb a 1 1x 1+ a 1 2x 2 + … + a 1 n x n ≤b 1a 2 1x 1+ a 2 2x 2 + … + a 2 n x n ≤b 2………………a m 1x 1+ a m 2x 2 + … + a m n x n ≤b mmin ω = b 1y 1+b 2y 2+…+b m y mx 1 ,x 2 ,… ,x n ≥0a 1 1y 1+ a 21 y 2 + … + a m 1y m ≥c 1a 1 2y 1+ a 22y 2 + … + a m 2y m ≥c 2………………a 1n y + a 2n y 2+ … + a y ≥c 51 n 12 n 2 mn m ny 1,y 2,… ,y m ≥0§2.原问题与对偶问题后一个线性规划问题是前一个问题从不同角度作的阐述如前者称为线性规划问的话的阐述。