管理运筹学线性规划在工商管理中的应用
- 格式:pptx
- 大小:170.42 KB
- 文档页数:17
运筹学应⽤例题线性规划在⼯商管理中的应⽤⼀、⼈⼒资源分配的问题例1某昼夜服务的公交线路每天各时间段内所需司机和乘务⼈员⼈数如下表所⽰:设司机和乘务⼈员分别在各时间段开始时上班;并连续⼯作8⼩时,问该公交线路应怎样安排司机和乘务⼈员,既能满⾜⼯作需要,⼜使配备司机和乘务⼈员的⼈数最少?例2 ⼀家中型的百货商场对售货员的需求经过统计分析如下表所⽰:为了保证售货员充分休息,要求售货员每周⼯作五天,休息两天,并要求休息的两天是连续的,问应该如何安排售货员的休息⽇期,既能满⾜⼯作需要,⼜使配备的售货员的⼈数最少?⼆、⽣产计划问题例3 某公司⾯临⼀个是外包协作还是⾃⾏⽣产的问题。
该公司有甲、⼄、丙三种产品,这三种产品都要经过铸造、机械加⼯和装配三道⼯序。
甲、⼄两种产品的铸件可以外包协作,亦可以⾃⾏⽣产,但产品丙必须由本⼚铸造才能保证质量。
有关情况如下表所⽰,公司中可利⽤的总⼯时为:铸造8000⼩时,机械加⼯12000⼩时和装配10000⼩时。
为了获得最⼤利润,甲、⼄、丙三种产品各应⽣产多少件?甲、⼄两种产品的铸件有多少由本公司铸造?有多少为外包协作?三、套裁下料问题例4 某⼯⼚要做100套钢架,每套钢架需要长度分别为2.9⽶、2.1⽶、和1.5⽶的圆钢各⼀根。
已知原料每根长7.4⽶,问应如何下料,可使所⽤原料最省?四、配料问题例5某⼯⼚要⽤三种原料1、2、3混合调配出三种不同规格的产品甲、⼄、丙,产品的规格要求、产品的单价、每天能供应的原材料数量及原材料单价如下表所⽰:问该⼚应如何安排⽣产,才能使利润最⼤?五、投资问题例6 某部门现有资⾦200万元,今后五年内考虑给以下的项⽬投资:项⽬A :从第⼀年到第五年每年年初都可以投资,当年末能收回本利110%;项⽬B :从第⼀年到第四年每年年初都可以投资,次年末能收回本利125%,但规定每年最⼤投资额不能超过30万元;项⽬C :第三年初需要投资,到第五年末能收回本利140%,但规定每年最⼤投资额不能超过80万元;项⽬D :第⼆年初需要投资,到第五年末能收回本利155%,但规定每年最⼤投资额不能超过100万元。
管理运筹学第一章绪论P2 1.问题解决的过程的七个步骤:1)认清问题2)找出一些可供选择的方案3)确定目标或评估方案的标准4)评估各个方案5)选择一个最优方案6)执行此方案7)进行后评估:问题是否得到圆满解决P2 2.运筹学的分支:1)线性规划2)整数线性规划3)图与网络模型4)存储论5)排队论6)对策论7)排序与统筹论8)决策分析9)动态规划10)预测P3 3.运筹学在工商管理中的应用:1)生产计划2)库存管理3)运输问题4)人事管理5)市场营销6)财务和会计第二章线性规划的图解法1.线性规划问题的建模过程:(1)理解要解决的问题(2)定义决策变量(3)写出目标函数(4)表示约束条件2.一个“≤”约束条件中没有使用的资源或能力称之为松弛量,相应的变量称为松弛变量;对于“≥”约束条件,可以增加一些代表最低约束的超过量,称之为剩余变量。
把所有的约束条件都写出等式,称为线性规划模型的标准化,所得结果称为线性规划的标准形式。
3.灵敏度分析包括目标函数中的系数的灵敏度分析和约束条件中的常数项的灵敏度分析。
4.在约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量称之为这个约束条件的对偶价格。
当约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格就为零。
※第三章线性规划问题的计算机求解1.理解图3-3的数据的含义。
※2.相差值提供的数值表示相应的决策变量的目标系数需要改进的数量,使得该决策变量有可能取正数值,当决策变量已取正数值时相差值为零。
3.所谓的上限与下限是指目标的决策变量的系数在此范围内变化时,其线性规划的最优解不变。
※4.百分之一百法则:对于所有变化的目标函数决策变量系数,当其所有允许增加百分比和允许减少百分比之和不超过百分之一百时,最优解不变。
第四章线性规划在工商管理中的应用1.人力资源分配问题p39例1和例2.2.生产计划的问题p41例3和例4.3.套裁下料问题p46例5.4.投资问题p51例8.第七章运输问题1.p128运输问题的线性规划模型。
线性规划在工商管理中的应用摘要线性规划是运筹学的一个重要分支,它被广泛应用于工业、农业、商业等领域,来解决实际中的问题。
本文通过介绍线性规划及其在工商管理中应用的实例,来说明它在工商管理中的重要作用。
关键词运筹学;线性规划;方法;应用1.线性规划在工商管理中运用的广泛性工商管理[1]是研究工商企业经济管理基本理论和一般方法的学科,它通过运用现代管理的方法和手段来进行有效的企业管理和经营决策,保证企业的生存和发展。
在当今社会,随着市场竞争的日益加剧,如何统筹安排,合理利用有限的人力、物力、财力等资源,使总的经济效益最好,已经成为企业经营管理过程中实现利益最优必须解决的问题。
例如:人力资源分配:用最少的劳动力来满足工作的需要?产品生产计划:合理利用人力、物力、财力等,使获利最大?套裁下料:如何在保证生产的条件下,下料最少?配料问题:在原料供应量的限制下如何获取最大利润?投资问题:从投资项目中选取方案,使投资回报最大?运输问题:如何制定调运方案,使总运费最小?这样的问题常常可以化成或近似地化成“线性规划”(Linear Programming, 简记为LP)问题。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题[2]。
利用线性规划我们可以解决很多问题,例如上述人力资源分配、计划安排、套裁下料等诸多方面的问题,在本文的后面我们将用线性规划方法对企业在生产中的具体问题进行探讨。
2.线性规划的模型线性规划[2]是运筹学的一个重要分支。
自1947年丹捷格(G. B. Dantzig)提出了一般线性规划问题求解的方法——单纯形法之后,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在电子计算机能处理成千上万个约束条件和决策的线性规划问题之后,线性规划的适用领域更为广泛了,它已是现代科学管理的重要手段之一了。
线性规划在工商管理中的应用
一、引言
线性规划是一种数学优化方法,可以帮助在给定约束条件下找到最优解,其在工商管理中有着广泛的应用。
本文将探讨线性规划在工商管理中的具体应用情况。
二、供应链管理中的线性规划应用
供应链管理是工商管理中一个重要的领域,线性规划可以帮助优化供应链中的货物流动和库存管理。
通过优化运输路线和库存水平,企业可以降低成本,提高效率。
三、生产计划中的线性规划应用
线性规划可以帮助企业制定最优生产计划,平衡生产能力和市场需求之间的关系。
通过合理安排生产资源和生产顺序,企业可以实现生产成本最小化和生产效率最大化。
四、营销策略中的线性规划应用
在制定营销策略时,线性规划可以帮助企业确定最优的销售推广方式和渠道选择,以最大化收益。
通过考虑市场需求和销售成本等因素,企业可以制定更具有效果的营销策略。
五、人力资源管理中的线性规划应用
线性规划在人力资源管理中也有着重要的应用,例如员工排班和资源分配等方面。
通过线性规划方法,企业可以合理安排员工工作时间和工作任务,以提高员工效率和满足企业需求。
六、财务管理中的线性规划应用
在财务管理中,线性规划可以帮助企业进行财务规划和资金管理。
通过优化投资组合和资金分配,企业可以实现财务风险的最小化和资金利用效率的最大化。
结论
综上所述,线性规划在工商管理中有着广泛的应用,可以帮助企业优化决策和提高经营效率。
在实际运营中,企业可以结合线性规划方法,制定更科学合理的管理策略,从而实现经济效益的最大化。
第 2 章 线性规划的图解法a.可行域为 OABC 。
b.等值线为图中虚线所示。
c.由图可知,最优解为 B 点,最优解: x 1=1215x 2=, 最优目标函数值: 69 。
77x 1=0.2有唯一解 x 2= 0.6 函数值为 3.6b 无可行解c 无界解d 无可行解e 无穷多解f 有唯一解3、解:a 标准形式:x1x2==20383函数值为923max f= 3x1+2x2+ 0s1+ 0s2+ 0s3 x+91+ =2x s30x+31x+21222 1+ s=x22+ s=139b 标准形式:x1x23s s, x2, s1, ,2 3≥ 0max f= −x x s s41− 63− 01− 023 − x− s= 6x12 1x+ + =1 2x s2 2107 x1− 6x2= 4c 标准形式:x1, x2, , ss12= − +x'x'≥ 0' −max f 2 − 2x s s0 − 021−x+2x' −2 1' + =x s3 5 5 701 2 2 12x'− 5x'+ 5x'= 501x'+312x'−222' −=2x s30x', x2',x2',, s 2 ≥ 024、解:1s 12z = x + x + + max 10 5 s s标准形式: 1 2 0 0x + 31x + 514 2 1+ s = x 21+ s = x 229 82s 1= 2, s 2= 0x 1, x 2, , s s 12≥ 05 、解:f = x + x + ++ min118s s s 标准形式:12x + 101x +2 1− s = x 21− =220331x +413x s 2 2− =9xs1836s 1= 0, s 2= 0, s 3= 13 6 、解: b 1 ≤ c 1≤ 3c 2 ≤ c 2≤ 6x 1= 6x123s s , x 2, s 1, ,23≥ 0 de x 2= 4x 1∈ [ ]8x = 16 − 2x221f 变化。