时变电磁场习题课
- 格式:doc
- 大小:75.00 KB
- 文档页数:2
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E 试求球内外各点的电位。
第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。
滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。
设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。
设、、,求回路中的感应电动势。
解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。
讨论这两种情况下导线内的电场强度E。
解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。
故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。
一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。
设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。
解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。
流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。
解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。
解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。
如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
题图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
解根据题意,电位满足的边界条件为①题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为题图①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
第 1 章 习 题1、 求函数()D Cz By Ax u +++=1的等值面方程。
解:根据等值面的定义:标量场中场值相同的空间点组成的曲面称为标量场的等值面,其方程为)( ),,(为常数c c z y x u =。
设常数E ,则,()E D Cz By Ax =+++1, 即:()1=+++D Cz By Ax E针对不同的常数E (不为0),对应不同的等值面。
2、 已知标量场xy u =,求场中与直线042=-+y x 相切的等值线方程。
解:根据等值线的定义可知:要求解标量场与直线相切的等值线方程,即是求解两个方程存在单解的条件,由直线方程可得:42+-=y x ,代入标量场C xy =,得到: 0422=+-C y y ,满足唯一解的条件:02416=⨯⨯-=∆C ,得到:2=C ,因此,满足条件的等值线方程为:2=xy3、 求矢量场z zy y y x xxy A ˆˆˆ222++=的矢量线方程。
解:由矢量线的微分方程:zy x A dz A dy A dx ==本题中,2xy A x =,y x A y 2=,2zy A z =, 则矢量线为:222zy dzy x dy xy dx ==,由此得到三个联立方程:x dy y dx =,z dz x dx =,zy dz x dy =2,解之,得到: 22y x =,z c x 1=,222x c y =,整理, y x ±=,z c x 1=,x c y 3±=它们代表一簇经过坐标原点的直线。
4、 求标量场z y z x u 2322+=在点M (2,0,-1)处沿z z y xy xx t ˆ3ˆˆ242+-=方向的方向导数。
解:由标量场方向导数的定义式:直角坐标系下,标量场u 在可微点M 处沿l 方向的方向导数为γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂α、β、γ分别是l 方向的方向角,即l 方向与z y xˆˆˆ、、的夹角。
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
第一章 电磁现象的普遍规律要求掌握§1—§6,其中重点是§3—§5。
具体要求是:1. 需要掌握的主要数学公式 (1) 矢量代数公式:cb a bc a c b a b a c a c b c b a)()()()()()(⋅-⋅=⨯⨯⨯⋅=⨯⋅=⨯⋅ (2) 梯度、散度和旋度定义及在直角坐标和球坐标中的表达式。
(3) 矢量场论公式AB B A A A A A A⨯∇⋅∇±∇==⨯∇=⨯∇⋅∇=∇⨯∇∇-⋅∇∇=⨯∇⨯∇=,可引入=若,可引入若000)(0)()(2ϕϕ(4)复合函数“三度”公式:dudf uu f ∇=∇)(du A d u u A⋅∇=⋅∇)(duA d u u A⨯∇=⨯∇)((5)有关x x r '-=的一些常用公式:为常数矢量)a a r a r rr r r r r r r r r rr()(0),0(0,10,3,333=⋅∇=⨯∇≠=⋅∇-=∇=⨯∇=⋅∇=∇(6)积分变换公式:Sd A A l d A V d A s d SLVS⋅⨯∇=⋅⋅∇=⋅⎰⎰⎰⎰)(2. 麦克斯韦方程组建立的主要实验定律和假定电磁感应定律:⎰-=B dt d εS d⋅(实质:变化磁场激发电场)电荷守恒定律:0=∂∂+⋅∇t J ρ位移电流假定:tEJ D ∂∂=0ε(实质:变化电场可以激发磁场)感生电场i E : 0,=⋅∇∂∂-=⨯∇i i E tBE3. 真空中的麦克斯韦方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂+=⨯∇∂∂-=⨯∇00000B E t E J B t B E ερμεμ4.介质中的电磁性质方程仅讨论均匀介质:E P 00εχ=, p m H M ρχ,==P ⋅∇-,tE J H B E D t P J M J D P m ∂∂===∂∂=⨯∇=0,,,,εμε5.介中的麦克斯韦方程组微分方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂+=⨯∇∂∂-=⨯∇0,B D t D J H t B Eρ 积分方程⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅⋅+=⋅⋅-=⋅⎰⎰⎰⎰⎰⎰s S LL s S d B Q S d D Sd D dtd I l d H S d B dt d l d E 0 其中M BH P E D-=+=00,με6. 洛伦兹力公式:B J E f⨯+=ρ(适用于电荷分布情况)B v e E e F⨯+=(适用于单个带电粒子)7. 电磁场的边值关系⎪⎪⎩⎪⎪⎨⎧=-⨯=-⨯=-⋅=-⋅0)()(0)()(12121212E E n H H n B B n D D n f fασ其它有用的边值关系:12)(εσσP f E E n +=-⋅, P P P n σ-=-⋅)(12,tJ J n f ∂∂-=-⋅σ)(128. 电磁场的能量能流密度矢量H E S⨯=及其意义;均匀介质中的能量密度 )(21H B D E w⋅+⋅=;能量在场中传递,传递方向为S的方向三、 练习题(一) 单选题(在题干后的括号内填上正确选项前的序号,每题1分) 1.高斯定理→→⎰⋅E S d s=εQ中的Q 是 ( 4 )① 闭合曲面S 外的总电荷 ② 闭合曲面S 内的总电荷 ③ 闭合曲面S 外的自由电荷 ④ 闭合曲面S 内的自由电荷 2.高斯定理→→⎰⋅E S d s=0εQ中的E是 ( 3 )① 曲面S 外的电荷产生的电场强度 ② 曲面S 内的电荷产生的电场强度③ 空间所有电荷产生的电场强度 ④ 空间所有静止电荷产生的电场强度 3.下列哪一个方程不属于高斯定理 (3 )①→→⎰⋅E S d s=εQ②→→⎰⋅E S d S=V d V'⎰ρε01② ▽→⨯E =-tB∂∂→④→⋅∇E =ερ4.静电场方程▽→⨯E = 0 ( 1 )① 表明静电场的无旋性 ② 适用于变化电磁场 ③ 表明静电场的无源性 ④ 仅对场中个别点成立5.对电荷守恒定律下面哪一个说法成立 ( 3 )① 一个闭合面内总电荷保持不变 ② 仅对稳恒电流成立 ③ 对任意变化电流成立 ④ 仅对静止电荷成立6.在假定磁荷不存在的情况下,稳恒电流磁场是 ( 4 ) ① 无源无旋场 ② 有源无旋场 ③有源有旋场 ④ 无源有旋场7.下面哪一个方程适用于变化电磁场 ( 3 )① ▽→⨯B =→J 0μ ②▽→⨯E =0 ③→⋅∇B =0 ④ →⋅∇E =08.下面哪一个方程不适用于变化电磁场 ( 1 )① ▽→⨯B =→J 0μ ②▽→⨯E =-t B ∂∂→③▽•→B =0 ④ ▽•→E =0ερ 9.通过闭合曲面S 的电场强度的通量等于 ( 1 )① ⎰⋅∇VdV E )( ②⎰⋅⨯∇L l d E )( ③ ⎰⨯∇V dV E )( ④⎰⋅∇SdS E )(10.电场强度沿闭合曲线L 的环量等于 ( 2 )① ⎰⋅∇VdV E )( ② ⎰⋅⨯∇SS d E )( ③⎰⨯∇VdV E )( ④⎰⋅∇SdS E )(11.磁感应强度沿闭合曲线L 的环量等于 ( 2 )① l d B L⋅⨯∇⎰)( ② ⎰⋅⨯∇SS d B )( ③⎰⨯SS d B ④⎰⋅∇VdV B )(12. 位置矢量r的散度等于 ( 2 )①0 ②3 ③r1④r 13.位置矢量r的旋度等于 ( 1 )①0 ②3 ③r r ④3rr14.位置矢量大小r 的梯度等于 ( 3 )①0 ② r 1 ③ r r ④3rr15.)(r a⋅∇=? (其中a 为常矢量) ( 4 )① r ② 0 ③ rr④a16.r1∇=? ( 2 )① 0 ② -3rr ③ r r④ r17.⨯∇ 3rr=? ( 1 )① 0 ② r r③ r ④r118.⋅∇ 3rr=?(其中r ≠0) ( 1 )①0 ② 1 ③ r ④r119.)]sin([0r k E ⋅⋅∇ 的值为(其中0E和k 为常矢量) ( 3 )①)sin(0r k k E ⋅⋅②)cos(0r k r E ⋅⋅③)cos(0r k k E ⋅⋅④)sin(0r k r E⋅⋅20.对于感应电场下面哪一个说法正确 ( 4 )①感应电场的旋度为零 ②感应电场散度不等于零③感应电场为无源无旋场 ④感应电场由变化磁场激发21.位移电流 ( 4 )①是真实电流,按传导电流的规律激发磁场 ②与传导电流一样,激发磁场和放出焦耳热 ③与传导电流一起构成闭合环量,其散度恒不为零 ④实质是电场随时间的变化率22.麦氏方程中tBE ∂∂-=⨯∇ 的建立是依据哪一个实验定律 ( 3 )①电荷守恒定律 ②安培定律 ③电磁感应定律 ④库仑定律23.麦克斯韦方程组实际上是几个标量方程 ( 2 )①4个 ②6个 ③8个 ④10个24.从麦克斯韦方程组可知变化电场是 ( 2? )①有源无旋场 ②有源有旋场 ③无源无旋场 ④无源无旋场25.从麦克斯韦方程组可知变化磁场是 ( 3 4 )①有源无旋场 ②有源有旋场 ③无源无旋场 ④无源无旋场26.束缚电荷体密度等于 ( 3 )①0 ②P ⨯∇ ③-P⋅∇ ④)(12P P n-⋅27.束缚电荷面密度等于 ( 4 )①0 ②P ⨯∇ ③-P ⋅∇ ④-)(12P P n -⋅28.极化电流体密度等于 ( 4 )①0 ②M ⋅∇ ③M ⨯∇ ④tP∂∂29.磁化电流体密度等于 ( 1 )①M ⨯∇ ②M ⋅∇ ③tM ∂∂④)(12M M n -⋅30.对于介质中的电磁场 ( 3 )①(E,H )是基本量,(D ,B )是辅助量②(D ,B )是基本量,(E,H )是辅助量 ③(E,B )是基本量,(D ,H )是辅助量 ④(D ,H )是基本量,(E,B )是辅助量31. 电场强度在介质分界面上 ( )①法线方向连续,切线方向不连续 ②法线方向不连续,切线方向不连续③法线方向连续,切线方向连续 ④法线方向不连续,切线方向连续32.磁感应强度在介质分界面上 ( )①法线方向连续,切线方向不连续 ②法线方向不连续,切线方向不连续③法线方向连续,切线方向连续 ④法线方向不连续,切线方向连续33.玻印亭矢量S( )①只与E垂直 ②H 垂直 ③与E 和H 均垂直 ④与E 和H均不垂直(二)填空题(在题中横线上填充正确的文字或公式)1.连续分布的电荷体系)(/x ρ产生的电场强度=)(x E ___________________。
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
时变电磁场习题课
1.无源真空中,已知时变电磁场的磁场强度(,)H r t 为;12(,)sin(4)cos()cos(4)sin() /x z H r t e A x t y e A x t y A m ωβωβ=-+-,其中A 1、A 2为常数,求位移电流密度J d 。
2.在均匀导电媒质(介电常数ε,磁导率μ,电导率γ)中,若忽略位移电流,证明:电场强度E 和磁场强度H 满足微分方程为:
22E E t H H t μγμγ∂⎧∇=⎪⎪∂⎨∂⎪∇=⎪∂⎩
3.如图所示,一尺寸为a b ⨯的矩形线框与无限长直导线共面:
(1)若长直导线中载有电流m sin i I t ω=,求矩形线框中感应电动势的大小。
(2)求两导体的互感系数。
(3)若长直导线不载电流,而矩形线框中载有电流m sin i I t ω=,那么长直导线上的感应电动势为多少?
4.如图所示,一个尺寸为a b ⨯的矩形线框位于载有反向电流i I t =m cos ω的平行双导线之间
并与其共面,求线框中的感应电动势e 。
5.在线性各向同性的无损耗均匀媒质中,写出用E 和H 表示的无源麦克斯韦方程组的微分
形式,并由此推导出E 和H 所满足的波动方程,媒质的介电常数为ε,磁导率为μ,电导率为零。
i
6.球形电容器的内、外半径分别为R1、R2,电极间的介质为空气。
设电极间外加缓变电压
m t
u U eτ-
=,τ为常数。
(1)求内外导体之间的电场强度E;(2)求电容器的位移电流
d
i。