高中数学必修四课件-1.1.2 弧度制(13)-人教A版
- 格式:ppt
- 大小:514.50 KB
- 文档页数:15
1.1.2 弧度制自主学习知识梳理 1.角的单位制(1)角度制:规定周角的________为1度的角,用度作为单位来度量角的单位制叫做角度制.(2)弧度制:把长度等于__________的弧所对的圆心角叫做1弧度的角,记作________. (3)角的弧度数求法:如果半径为r 的圆的圆心角α所对的弧长为l ,那么l ,α,r 之间存在的关系是:__________;这里α的正负由角α的____________________决定.正角的弧度数是一个________,负角的弧度数是一个________,零角的弧度数是______.23.我们已经学习过角度制下的弧长公式和扇形面积公式,请根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α).对点讲练知识点一 角度制与弧度制的换算例1 (1)把112°30′化成弧度;(2)把-7π12化成角度.回顾归纳 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可解.把弧度转化为角度时,直接用弧度数乘以180°π即可.变式训练1 将下列角按要求转化: (1)300°=________rad ;(2)-22°30′=________rad ; (3)8π5=________度.知识点二 利用弧度制表示终边相同的角例2 把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:(1)-1 500°; (2)23π6; (3)-4.回顾归纳 在同一问题中,单位制度要统一.角度制与弧度制不能混用. 变式训练2 将-1 485°化为2k π+α (0≤α<2π,k ∈Z )的形式是________.知识点三 弧长、扇形面积的有关问题例3 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?回顾归纳 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.变式训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式.易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.课时作业一、选择题 1.与30°角终边相同的角的集合是( )A.⎩⎨⎧⎭⎬⎫α|α=k ·360°+π6,k ∈Z B .{α|α=2k π+30°,k ∈Z } C .{α|α=2k ·360°+30°,k ∈Z }D.⎩⎨⎧⎭⎬⎫α|α=2k π+π6,k ∈Z 2.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π2,k ∈Z }的关系是( )A .A =B B .A ⊆BC .B ⊆AD .以上都不对3.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2C.2sin 1D .2sin 1 4.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于( ) A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π}5.扇形圆心角为π3,半径长为a ,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9二、填空题6.若扇形圆心角为216°,弧长为30π,则扇形半径为________.7.若2π<α<4π,且α与-7π6角的终边垂直,则α=________.8.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=____________.三、解答题9.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图所示).10. 如右图,已知扇形OAB 的中心角为4,其面积为2 cm 2,求扇形的周长和弦AB 的长.1.1.2 弧度制答案知识梳理1.(1)1360 (2)半径长 1 rad(3)|α|=lr终边的旋转方向 正数 负数 0解 半径为r ,圆心角n °的扇形弧长公式为l =n πr180,扇形面积公式为S 扇=n πr2360.∵l 2πr =|α|2π,∴l =|α|r . ∵S 扇S 圆=S 扇πr 2=|α|2π,∴S 扇=12|α|r 2.∴S 扇=12|α|r 2=12lr .对点讲练例1 解 (1)∵112°30′=112.5°=⎝⎛⎭⎫2252° =2252×π180=5π8. (2)-7π12=-7π12×⎝⎛⎭⎫180π°=-105°.变式训练1 (1)5π3 (2)-π8(3)288例2 解 (1)∵-1 500°=-1 800°+300° =-5×360°+300°.∴-1 500°可化成-10π+5π3,是第四象限角.(2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角.(3)∵-4=-2π+(2π-4),∴-4与2π-4终边相同,是第二象限角.变式训练2 -10π+7π4解析 ∵-1 485°=-5×360°+315°,∴-1 485°可以表示为-10π+7π4.例3 解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r .∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.所以当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2. 变式训练3 解 设扇形的半径为R ,弧长为l ,则2R +l =4,∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad. 课时作业 1.D 2.A3.C [r =1sin 1,∴l =|α|r =2sin 1.]4.D [集合A 限制了角α终边只能落在x 轴上方或x 轴上.]5.B [设扇形的半径为R ,扇形内切圆半径为r ,则R =r +rsinπ6=r +2r =3r .∴S 内切=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切∶S 扇形=2∶3.] 6.25解析 216°=216×π180=6π5,l =30π=α·r =6π5r ,∴r =25.7.7π3或10π3解析 -7π6+7π2=14π6=7π3,-7π6+9π2=20π6=10π3. 8.-11π3,-5π3,π3,7π3解析 由题意,角α与π3终边相同,则π3+2π=7π3, π3-2π=-5π3,π3-4π=-11π3. 9.解 (1)⎩⎨⎧⎭⎬⎫α|2k π-π6≤α≤2k π+5π12,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α|2k π-34π≤α≤2k π+3π4,k ∈Z .(3)⎩⎨⎧⎭⎬⎫α|k π+π6≤α≤k π+π2,k ∈Z .10.解 设AB 的长为l ,半径OA =r ,则S 扇形=12lr =2,∴lr =4, ①设扇形的中心角∠AOB 的弧度数为α,则|α|=lr =4,∴l =4r , ② 由①、②解得r =1,l =4.∴扇形的周长为l +2r =6 (cm), 如图作OH ⊥AB 于H ,则AB =2AH =2r sin 2π-42=2r sin(π-2)=2r sin 2(cm).。
必修4目录第一章:三角函数1.1任意角和弧度制1.1.1任意角(1课时)1.1.2弧度制(1课时)1.2任意角的三角函数1.2.1任意角的三角函数(2课时)1.2.2同角三角函数的基本关系(1课时)1.3三角函数的诱导公式1.3三角函数的诱导公式(2课时)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象(1课时)1.4.2正弦函数、余弦函数的性质(2课时)1.4.3正切函数的性质与图象(1课时)1.5函数y=Asin(ωx+φ) 的图象1.5函数y=Asin(ωx+ϕ)的图象(2课时)1.6三角函数模型的简单应用1.6三角函数模型的简单应用(2课时)第二章:平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念 2.1.2向量的几何表示(1课时)2.1.3相等向量与共线向量(1课时)2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义(1课时) 2.2.3向量数乘运算及其几何意义(1课时)2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理 2.3.2平面向量的正交分解及坐标表示(1课时) 2.3.3平面向量的坐标表示 2.3.4平面向量共线是坐标表示(1课时)2.4平面向量的数量积2.4.1平面向量数量积的物理背景及含义(1课时)2.4.2平面向量数量积的坐标表示、模、夹角(1课时)2.5平面向量应用举例2.5.1平面几何中的向量方法(1课时)2.5.2向量在物理中的应用举例(1课时)第三章:三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式(1课时)3.1.2两角和与差的正弦、余弦、正切公式(1课时)3.1.3二倍角的正弦、余弦、正切公式(1课时)3.2简单的三角恒等变换3.2简单的三角恒等变换(3课时)。
1.1.2弧制度教学目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的 集合与实数集R 一一对应关系的概念。
教学重点:会将一个角度制的角化为弧度制,将弧度制角化为角度制角。
教学难点:1弧度角化为角度,1度角化为弧度角的理解。
教学过程一、复习提问任意角包括哪些角?有最大角、最小角吗?终边相同的角的集合如何表示?二、新课1、提出课题:弧度制-—另一种度量角的单位制定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
它的单位是rad 读作 弧度。
如图:AOB=1rad ,AOC=2rad 周角=2rad(1)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 (2)角的弧度数的绝对值 rl =α(l 为弧长,r 为半径)(3)用角度制和弧度制来度量零角,单位不同,但数量相同(都是0),用角度制和 弧度制来度量任一非零角,单位不同,量数也不同。
2、角度制与弧度制的换算抓住:360=2rad ∴180= rad ∴ 1=rad rad 01745.0180≈π'185730.571801οοο=≈⎪⎭⎫ ⎝⎛=πrad 例1、 把'3067ο化成弧度o rC 2rad 1rad r l=2r o A A B解:οο⎪⎭⎫ ⎝⎛=2167'3067 ∴ rad rad ππ832167180'3067=⨯=ο 例2、 把rad π53化成度。
解:οο1081805353=⨯=rad π 注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad sin 表示rad 角的正弦3.一些特殊角的度数与弧度数的对应值应该记住(见课本P9表)4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
任意角的集合 实数集R3、练习(P10 练习1 、2)例3、 用弧度制表示:1终边在x 轴上的角的集合;2终边在y 轴上的角的集合 3终边在坐标轴上的角的集合. 解:1终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ 2终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ 3终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 4、 小结:1.弧度制定义 2.与弧度制的互化5、作业:P11习题1.1A6、7、8、9、10正角 零角 负角 正实数 零 负实数。