三角函数的最值求法
- 格式:doc
- 大小:26.00 KB
- 文档页数:5
求解三角函数的最大值和最小值三角函数是数学中常见的函数类型之一,包括正弦函数、余弦函数、正切函数等。
求解三角函数的最大值和最小值在数学和科学应用中具有重要意义。
本文将介绍三角函数的最大值和最小值的求解方法,并通过示例进行说明。
一、正弦函数的最大值和最小值正弦函数是一种周期性函数,其图像在[-1, 1]之间周期性波动。
该函数的最大值为1,最小值为-1。
当x为正弦函数的周期之一时,正弦函数取得最大值1;当x为周期的中点时,正弦函数取得最小值-1。
二、余弦函数的最大值和最小值余弦函数也是一种周期性函数,其图像同样在[-1, 1]之间周期性波动。
该函数的最大值为1,最小值为-1。
与正弦函数类似,余弦函数在周期的中点处取得最大值1,在周期的端点处取得最小值-1。
三、正切函数的最大值和最小值正切函数是一种无界函数,其值在整个数轴上波动。
正切函数的最大值、最小值并不存在。
然而,正切函数在特定点上取得无穷大或无穷小值。
例如,正切函数在90度的整数倍处(如90°、180°等)取得无穷大值,在90度的奇数倍处(如270°、360°等)取得无穷小值。
四、其他三角函数的最大值和最小值除了正弦函数、余弦函数和正切函数,还存在其他三角函数如余切函数、正割函数和余割函数。
这些函数的最大值和最小值的求解方法与正弦函数、余弦函数类似,但其值的范围会有所不同。
结论- 正弦函数的最大值为1,最小值为-1,取决于周期的位置。
- 余弦函数的最大值为1,最小值为-1,同样取决于周期的位置。
- 正切函数在特定点上取得无穷大或无穷小值,没有明确的最大值和最小值。
- 其他三角函数如余切函数、正割函数和余割函数的最大值和最小值的求解方法类似。
通过以上分析,我们可以了解到三角函数的最大值和最小值求解方法及其特点。
在实际应用中,我们需要根据具体情况选择正确的求解方法,以便有效地使用三角函数进行数学和科学问题的研究和计算。
求三角函数最值的四种方法求解三角函数最值问题的基本途径与其他函数最值问题相同,一方面要利用三角函数的特殊性质,例如有界性,另一方面要将问题转化为我们熟悉的函数的最值问题。
以下介绍几种常见的求解三角函数最值的策略。
1.配方转化策略对于能够化为形如y = a sin x + b sin x + c或y = a cos x +b cos x + c的三角函数最值问题,可以将其看作是sin x或cosx的二次函数最值问题,常常利用配方转化策略来解决。
例如,对于函数y = 5 sin x + cos 2x的最值问题,可以将其转化为y = -2 sin x + 5 sin x + 1,然后利用sin x的范围[-1.1]求得最小值为-6,最大值为4.2.有界转化策略对于能够通过变形化为形如y = A sin(ωx + φ)等形式的三角函数,可以利用其有界性来求解最值。
这是常用的求解三角函数最值问题的策略之一。
3.单调性转化策略借助函数单调性是求解函数最值问题常用的一种转化策略。
对于三角函数来说,常常是先化为y = A sin(ωx + φ) + k的形式,然后利用三角函数的单调性求解。
4.导数法对于一些较为复杂的三角函数最值问题,可以利用导数法求解。
通过对函数求导,找到其临界点,然后比较临界点和函数在端点处的取值,即可求得函数的最值。
在求解三角函数最值问题时,需要注意将三角函数准确变形为sin x或cos x的二次函数的形式,正确配方,并把握sinx或cos x的范围,以防止出错。
1,即y=−x+2设点P的坐标为(x,y),则y−0=y−yPx−2=x−xP解得xP=cosx,yP=sinx代入直线方程得y=−(cosx−2)+2=4−cosx所以y的最小值为3,当x=π/2时取到最小值。
答案]3。
常见的三种三角函数值域的求法三角函数是高中数学中常见的一个概念,它是指正弦函数、余弦函数和正切函数,这三个函数在计算中十分常用,下面将详细介绍三种三角函数值域的求法。
一、正弦函数值域的求法正弦函数的值域在[-1, 1]之间。
具体求法如下:1. 代数法:由正弦函数的定义可知,y=sin x,其中-1≤y≤1。
即y 的取值范围为[-1, 1]。
2. 图像法:正弦函数的图像在[-π/2,π/2]内单调递增,且满足y的取值范围为[-1, 1]。
3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的正弦值等于这段弧上点的y坐标。
而当角度为0和π时,y坐标分别为0和1,因此正弦函数的值域为[-1,1]。
二、余弦函数值域的求法余弦函数的值域在[-1,1]之间。
具体求法如下:1. 代数法:由余弦函数的定义可知,y=cos x,其中-1≤y≤1。
即y 的取值范围为[-1, 1]。
2. 图像法:余弦函数的图像在[0,π]内单调递减,且满足y的取值范围为[-1, 1]。
3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的余弦值等于这段弧上点的x坐标。
而当角度为0和π/2时,x坐标分别为1和0,因此余弦函数的值域为[-1,1]。
三、正切函数值域的求法正切函数的值域为实数集。
具体求法如下:1. 代数法:由正切函数的定义可知,y=tan x,其中y可取遍所有实数。
因此,正切函数的值域为实数集。
2. 图像法:正切函数的图像在(π/2n,π/2n+1)(n∈Z)上有无限个垂直渐近线。
这说明正切函数可以取遍所有实数,因此正切函数的值域为实数集。
3. 应用法:正切函数在实际应用中十分重要,比如在三角定位中,我们经常需要根据已知的两条边求第三条边的长度,这时就需要用到正切函数。
正切函数值域为实数集,可以表示所有可能的长度。
综上所述,正弦函数的值域为[-1,1],余弦函数的值域为[-1,1],正切函数的值域为实数集。
三角函数的不等式与最值三角函数是数学中重要的一类函数,它们在不等式求解和最值问题中具有广泛的应用。
本文将介绍三角函数的不等式求解方法以及如何找到三角函数的最值。
1. 正弦函数的不等式与最值1.1 不等式求解方法对于不等式sin(x)>0,我们需要找到使得正弦函数大于零的x的取值范围。
由于正弦函数在单位圆上的坐标表示sin(x)=y,因此正弦函数大于零的范围可以表示为y>0。
在单位圆上,y>0对应着角度在0到π之间的位置。
因此,不等式sin(x)>0的解集为x∈(0, π)。
1.2 最值求解方法最值问题通常需要找到函数的最大值或最小值。
对于正弦函数sin(x),它的最大值为1,最小值为-1。
这是因为正弦函数在单位圆上的y坐标的范围是[-1, 1]。
因此,最大值为1,最小值为-1。
2. 余弦函数的不等式与最值2.1 不等式求解方法对于不等式cos(x)<0,我们需要找到使得余弦函数小于零的x的取值范围。
由于余弦函数在单位圆上的坐标表示cos(x)=x,因此余弦函数小于零的范围可以表示为x<0。
在单位圆上,x<0对应着角度在π/2到3π/2之间的位置。
因此,不等式cos(x)<0的解集为x∈(π/2, 3π/2)。
2.2 最值求解方法对于余弦函数cos(x),它的最大值为1,最小值为-1。
这是因为余弦函数在单位圆上的x坐标的范围是[-1, 1]。
因此,最大值为1,最小值为-1。
3. 正切函数的不等式与最值3.1 不等式求解方法对于不等式tan(x)>0,我们需要找到使得正切函数大于零的x的取值范围。
正切函数可表示为tan(x)=sin(x)/cos(x)。
根据正切函数的性质,当sin(x)和cos(x)的符号相同时,tan(x)大于零;当它们的符号不同时,tan(x)小于零。
因此,正切函数大于零的范围可以表示为sin(x)和cos(x)同号。
在单位圆上,sin(x)>0且cos(x)>0的范围对应着角度在0到π/2之间和角度在2π到5π/2之间的位置。
求最大值和最小值的公式三角函数在数学中,我们经常需要找出函数的最大值和最小值,特别是在三角函数中。
通过对三角函数的分析和观察,我们可以找到一些公式和方法来求解函数的最大值和最小值。
正弦函数(Sine Function)正弦函数是一种常见的三角函数,通常用符号sin表示。
正弦函数的最大值和最小值是固定的,分别为1和-1。
具体而言,正弦函数的最大值出现在角度为90度或π/2弧度时,即sin(90°) = sin(π/2) = 1;最小值出现在角度为270度或3π/2弧度时,即sin(270°) = sin(3π/2) = -1。
余弦函数(Cosine Function)余弦函数是另一种常见的三角函数,通常用符号cos表示。
余弦函数的最大值和最小值也是固定的,同样为1和-1。
最大值出现在角度为0度或0弧度时,即cos(0°) = cos(0) = 1;最小值出现在角度为180度或π弧度时,即cos(180°) =cos(π) = -1。
正切函数(Tangent Function)正切函数是三角函数中的另一种重要函数,用符号tan表示。
正切函数在某些角度下可能没有最大值或最小值,但在一些特定情况下有最大值或最小值。
在正切函数的图像中,我们可以观察到周期性的最大值和最小值。
具体计算最大值和最小值的方法需要通过导数等方法来求解。
总结通过对正弦函数、余弦函数和正切函数的分析,我们可以得出它们的最大值和最小值的规律。
这些规律不仅有助于我们求解函数的最值,也有助于更深入地理解三角函数的特性和性质。
在实际问题中,我们可以利用这些公式和规律来简化计算,提高求解效率。
通过以上分析,我们可以看到三角函数中求最大值和最小值的公式都具有一定的规律和特点,掌握这些规律将有助于我们更好地理解和利用三角函数。
希望这些内容对您有所帮助!希望本文对你有所启发,谢谢阅读!。
三角函数最值问题的几种常见解法一 、配方法若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理。
例1 函数3cos 3sin 2+--=x x y 的最小值为( ).A . 2B . 0C . 41- D . 6 [分析]本题可通过公式x x 22cos 1sin -=将函数表达式化为2cos 3cos 2+-=x x y ,因含有cosx 的二次式,可换元,令cosx=t ,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0min =y ,选B.例2 求函数y=5sinx+cos2x 的最值[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。
()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ 二 、引入辅助角法例3已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。
[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。
解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ三 、利用三角函数的有界性在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。
三角函数最值问题的十种常见解法解法一:利用图像性质求解利用三角函数的图像性质,首先将函数图像画出来,观察函数在指定区间上的最大值和最小值所对应的点的坐标。
解法二:使用导数求解通过对三角函数进行求导,然后将导数等于零进行求解,可以得到函数的关键点,进而通过函数的变化趋势确定最值。
解法三:使用平均值不等式求解根据平均值不等式的性质,可以得到三角函数的最值。
例如,对于正弦函数sin(x),可以利用平均值不等式得到最值。
解法四:使用二次函数的性质求解将三角函数转化为二次函数的形式,然后利用二次函数的性质求解最值。
例如,可以将正弦函数sin(x)转化为二次函数的形式。
解法五:使用三角函数的周期性质求解三角函数的周期性质可以帮助我们确定最值所在的区间。
通过观察函数的周期性质,可以得到函数的最大值和最小值。
解法六:使用三角函数的反函数求解利用三角函数的反函数,可以将问题转化为求解反函数的最值问题。
通过对反函数的最值进行求解,可以得到原函数的最值。
解法七:使用三角函数的恒等式求解利用三角函数的恒等式,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用和差公式将三角函数的角度转化为相对简单的形式。
解法八:使用三角函数的基本关系求解利用三角函数的基本关系,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用正切函数和余切函数的基本关系求解最值。
解法九:使用三角函数的积分求解通过对三角函数进行积分,可以得到函数的积分表达式,并通过积分表达式求解最值。
例如,可以通过对正弦函数进行积分得到函数的积分表达式。
解法十:使用泰勒级数展开求解利用泰勒级数展开,可以将三角函数转化为幂级数形式,进而求解最值问题。
通过计算前几项幂级数的和,可以得到函数的近似值,并进一步求解最值。
三角函数最值或值域的求法(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--三角函数最值或值域的求法三角函数的最值问题是本章的一个重要内容,要求掌握求三角函数最值的常见方法。
类型一:利用1cos 1sin ,≤≤x x 这一有界性求最值。
例1:求函数xx y sin 21sin --=的值域。
解:由x x y sin 21sin --=变形为(1)sin 21y x y +=+,知1y ≠-,则有21sin 1y x y +=+,由21|sin |||11y x y +=≤+22221||1(21)(1)1y y y y +⇒≤⇒+≤++203y ⇒-≤≤,则此函数的值域是2[,0]3y ∈-类型二:x b x a y cos sin +=型。
此类型通常可以可化为sin cos )y a x b x x ϕ=+=+求其最值(或值域)。
例2:求函数)3sin()6sin(ππ++-=x x y (R x ∈)的最值。
解法1:)12sin(2]4)6sin[(2)6cos()6sin(πππππ+=+-=-+-=x x x x y ,∴函数的最大值为2,最小值为2-。
分析2:运用公式sin (α±β) = sin αcos β ± cos αsin β解法2:x x y cos 213sin 213-++= ∴函数的最大值为2,最小值为2-。
分析3:观察发现角)3(π+x 与角)6(π-x 的差恰好为2π,故将)6(π-x 看成基本量,将函数化归为同一角)6(π-x 的函数式。
解法3: (运用和差化积公式 ))4cos()12sin(2ππ-+=x y )12sin(2π+=x ∴函数的最大值为2,最小值为2-。
类型三:)0(sin sin 2≠++=a c x b x a y 型。
此类型可化为)0(2≠++=a c bt at y 在区间]1,1[-上的最值问题。
三角函数最大值和最小值求法
三角函数是在坐标系中反比例表示的函数,它以弧度为变量,可以在一定范围内变化。
三角函数是数学中具有极大意义的函数,也是物理和化学中经常使用的函数。
一般来说,要求三角函数的最大值和最小值,首先要知道这个三角函数的范围。
比如,正弦函数的变化范围是 -π/2到π/2。
根据三角函数的定义,给定范围内它的最大值
就是最大数值,最小值就是最小数值。
除正弦函数外,另外还有余弦函数、正切函数等多种三角函数。
对于余弦函数,它的
变化范围是0到2π,其最大值为1,最小值为-1;对于正切函数来说,它的变化范围是 -
π/2到π/2,其最大值为无穷大,最小值为无穷小。
总之,只要知道三角函数可变化的范围,就可以求出最大值和最小值,它们的计算有
一定的规律可循。
师说新语332019年第25期求三角函数最值及值域常用的策略◎ 任彩霞/平遥现代工程技术学校三角函数的最值问题是三角函数中重要的一个知识点,题型较多、方法较碎,是同学们学习的一个难点,由于题型灵活,容易考查思维能力,因而也是高考中热点题型,现对三角函数最值求法中常见的策略加以归类,常用方法加以总结,以达快速正确求解。
一、利用三角函数的有界性求最值1、形如y=asinx+bcosx+c 型,引入辅助角公式化为22b a +sin(x+φ)+c ,再求值域。
例1、求函数f(x)=2sinx+cos(x+3π)的值域解:f(x)=2sinx+21cosx -23sinx=(2-23)sinx+21cosx=)sin()21()232(22φ++−x ,故f(x)∈[]2、形如y=asin 2x+bsinxcosx+ccos 2x 型,通过降幂转化为Asinx+Bcosx ,再求值域。
例2、f(x)=23asinx·cosx-2asin 2x+1(a>0)的值域解:f(x)= 3asin2x+acos2x-a+1=2asin(2x+6π)-a+1∵a>0,sin(2x+6π)-a+1∴f(x)∈[-3a-1,a+1]二、用换元法化为二次函数求值域1、形如y=sin 2x+bsinx+c 型,令sinx=t 转化为二次函数再求值域。
例3、k<-4,求y=cos 2x+k(cosx-1)的值域解:y=2cos 2x-1+kcosx-k y=2cos 2x+kcosx-k-1,设t=cosx ,t ∈[-1,1]则y=2t2+kt-k-1,对称轴x=-4k,由于k<-4,则-4k >1,故当t=1时,ymin=1,当t=-1时,ymax=1-2k ,即y ∈[1,1-2k]2、形如y=asinx·cosx+b (sinx ±cosx )+c 型,令sinx ±cosx=t转化为二次函数在]2,2[−上的值域问题例4、求函数y=sinx·cosx+sinx+cosx 的值域。
三角函数的最值求法
掌握三角函数的单调性和有界性,能够利用三角函数的单调性及有界性来求得一些三角函数的最大值和最小值,是近年高考的热点内容之一.三角函数的最值问题,其本质上是对含有三角函数的复合函数求最值,因此,求函数最值得方法都能适用.当然还其他特殊的方法.三角函数的最值都是在限定区间上取得的,因而要特别注意题设中所给的区间.求三角函数最值时,一般要进行一些代数变换和三角变换,要注意函数有意义的条件、弦函数的有界性及变换的等价性.选择适当的方法是解题的关键.下面就例谈几种解决三角函数最值的方法.
题型一:用换元法求函数的最值
例1:若,求函数的最小值.
思路:注意到函数的特征,若用万能公式,能将它化为关于的有理函数,从而不难用判别式方法求解.
解析:令=t,,,则,
当t=-1时,y=0;当y 0时,由于t为实数,
从而有或.
由于,
故函数的最小值为.
点评:展开函数式,得到一个含有、的对称式,运用变换“ ”同样可解得上一题.
题型二:用均值不等式法求函数的最值
例2:已知,且,求的最大值.
思路:在三角函数关系的条件下,要求得角的最值,一般应设法转化为求该角的某一三角函数的最值.依题意,本题可以优先求y的正切的最值.
解析:,
且,
当且仅当,即时,,
又函数在上单调递增,.
点评:选函数来求的角的最值时,必须注意选定函数的单调性,若选定的函数与角的最值取得时刻相同时,解题较为方便.
题型三:利用三角函数的有界性来求函数的最值
例3:求函数的最小值,并求出取得最小值时x的值.
思路:先化简函数,再由正、余弦函数的有界性来思考,同时应注意角度的限定范围.
解析:由降幂公式和倍角公式,得
=
= .
的最小值是,此时.
点评:形如(a、b、c、d为常数)的式子,都能仿照上例变形为形如的式子,从而有关问题可在变形式的基础上求解.另外,求最值时不能忽视对定义域的思考.
例4:已知圆的半径为R,其内接三角形ABC有成立,求的面积S的最大值.
解析:由已知式可得
,.
=
=
当时,
点评:利用三角函数的性质来求三角函数的最值问题,是最常见的基本方法.因此,在解题时要认真解题,看该题结构特点是否能化为一个三角函数式,若能,要充分利用所有三角函数公式化为一个三角函数式,从而利用三角函数性
质,求出最值.望大家在解题时注意.
题型四:转化为二次函数求函数的最值
例5:是否存在实数,使得函数在闭区间上的最大值是1?若存在,求出对应的a值,若不存在,试说明理由.
解析:
=
当时,
若,即,则当时,
(舍去)
若即,则当时,
即或(舍去),
若,即,则当时,
(舍去)
综上所述,存在符合题设.
点评:求包含参数的三角函数最值时,应根据三角函数或本身的取值范围来进行分类讨论.
题型五:轮换对偶求函数的最值
例6:已知、、为锐角,且,求函数的最小值.
解析:由
= ,
令,
结合,得
+ - 得,所以
当且仅当时,等号成立.
故.
题型六:利用判别式法求函数的最值
例7:求函数的最值.
解析:原式化为
即
当时,
得到
当时,代入原方程
综上.
点评:求分式形式的含正、余切三角函数的最值时,应考虑到用判别式法来求得.
题型七:利用斜率求函数的最值
例8:求函数的最值.
解析:设平面上两点的坐标为,,
则AB的斜率为.
又A为定点,B在单位圆上,故直线AB:是圆的切线时得k值为函数y的最值,
此时
点评:求分式形式含正、余弦的三角函数的最值时,应考虑巧用斜率来求得.
求三角函数最值的方法有:配方法、化为一个角的三角函数、换元法、基本不等式法等.三角函数的最值都是在给定区间上取得的,因而要加更注意题设中
所给出的区间.求三角函数的最值时,一般要进行一些三角变换以及代数换元,须注意函数有意义的条件和弦函数的有界性.在求包含参数函数的最值时,解题要注意参数的作用和影响.。