华东师范大学626数学分析2015年考研专业课真题试卷
- 格式:pdf
- 大小:235.64 KB
- 文档页数:2
华东师范大学1997年攻读硕士学位研究生入学试题一.(10分)计算下列行列式:11222221122111112211...1(1)(1) (1)(1)(1)...(1)(1)(1)...(1)n n nn n n n n n x x x x x x x x x x x x x x x x x x ------------二.(15分)设5200200000520022A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭,求正交矩阵T,使'1T AT T AT -=为对角形矩阵,并写出这个对角形矩阵.三.(15分)设200201A a b c ⎛⎫⎪= ⎪ ⎪-⎝⎭是复矩阵.1.求出A 的一切可能的Jordan 标准形;2.给出A 可对角化的一个充要条件.四.(15分)已知3阶实数矩阵()ij A a =满足条件(,1,2,3)ij ij a A i j ==,其中ij A 是ij a 的代数余子式,且331a =-,求: 1.A2.方程组123001x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭的解.五.(15分)证明:一个非零复数α是某一有理系数非零多项式的根⇔存在一个有理系数多项式()f x 使得1().f αα=六.(15分)设A 是n 阶反对称阵。
证明:1.当n 为奇数时|A|=0.当n 为偶数时|A|是一实数的完全平方;2.A 的秩为偶数 .七.(15分)设V 是有限维欧氏空间.内积记为(,)αβ.又A 设是V 的一个正交变换。
记{}{}12|,,|V V V V ααααααα=A =∈=-A ∈,求证:1.12,V V 是v 的子空间;2. 12.V V V =⊕八.(15分)设n 阶实数方阵的特征值全是实数且A 的所有1阶主子式之和为0,2阶主子式之和也为0.求证:0n A =九.(15分)设A,B 均是正定矩阵,证明: 1 .方程0A B λ-=的根均大于0; 2 .方程0A B λ-=所有根等于1⇔A=B.华东师范大学1998年攻读硕士学位研究生入学试题一.(10分)计算下列行列式:131********...2223333 (336)...n n n n n n n n n n n n n n-------------二.(10分)证明:方程组111122121122221122...0...0(1) 0n n n ns s sn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的解全是方程1122...0(2)n n b x b x b x +++=的解的充分必要条件是:12(,...,)n b b b β=可由向量组12,...,s ααα线性表示,其中12(,,...,)(1,2,...,).i i i in i s αααα==三(15分)设32()f x x ax bx c =+++是整系数多项式,证明:若ac+bc 为奇数,则f(x)在有理数域上不可约.四(15分)设A 是非奇异实对称矩阵,B 是反对称实方阵。
华东师范大学数学分析历年考研真题(1997年-2010年)华东师范大学1997年攻读硕士学位研究生入学试题一(一(1212分)设f(x)f(x)是区间是区间I 上的连续函数。
证明:若f(x)f(x)为一一映射,则为一一映射,则f(x)在区间I 上严格单调。
二(二(1212分)设1,()0x D x x ì=íî为有理数,为无理数证明:若f(x), D(x)f(x) f(x), D(x)f(x) 在点在点x=0处都可导,且f(0)=0,f(0)=0,则则'(0)0f =三(三(1616分)考察函数f(x)=xlnx f(x)=xlnx 的凸性,并由此证明不等式:的凸性,并由此证明不等式:2()(0,0)a b a ba b ab a b +³>>四(四(1616分)设级数1nn an ¥=å收敛,试就1n n d ¥=å为正项级数和一般项级数两种情况分别证明1nn an n¥=+å也收敛。
五(五(2020分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数y=f(x)y=f(x)。
又设。
又设(,)Fx y 具有连续的二阶偏导数。
(1) 求''()f x(2)若0000(,)0,()F x y y f x ==为f(x)f(x)的一个极值,试证明:的一个极值,试证明:当00(,)y F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)y F x y 与00(,)xx F x y 异号时,0()f x 为极小值。
(3) 对方程2227xxy y ++=,在隐函数形式下(不解出y )求y=f(x)的极值,并用(的极值,并用(22)的结论判别极大或极小。
六(六(1212分)改变累次积分4204842(4)x x xI dxy dy --=-òò的积分次序,并求其值。
2015年考研数学二真题一、选择题:(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
) (1)下列反常积分中收敛的是 (A)∫√x 2dx (B)∫lnxx +∞2dx (C)∫1xlnx +∞2dx (D) ∫xe x+∞2dx【答案】D 。
【解析】题干中给出4个反常积分,分别判断敛散性即可得到正确答案。
∫√x +∞2=2√x|2+∞=+∞;∫lnx x+∞2dx =∫lnx +∞2d(lnx)=12(lnx)2|2+∞=+∞;∫1xlnx+∞2dx =∫1lnx+∞2d(lnx)=ln (lnx)|2+∞=+∞; ∫x e x +∞2dx =−∫x +∞2de −x =−xe −x |2+∞+∫e −x +∞2dx =2e −2−e −x |2+∞=3e −2, 因此(D)是收敛的。
综上所述,本题正确答案是D 。
【考点】高等数学—一元函数积分学—反常积分 (2)函数f (x )=lim t→0(1+sin t x)x2t 在(-∞,+∞)内(A)连续(B)有可去间断点(C)有跳跃间断点 (D)有无穷间断点 【答案】B【解析】这是“1∞”型极限,直接有f (x )=lim t→0(1+sin t x)x 2t=elim t→0x 2t(1+sin t x −1)=ex limt→0sintt=e x (x ≠0),f (x )在x =0处无定义,且lim x→0f (x )=lim x→0e x =1,所以 x =0是f (x )的可去间断点,选B 。
综上所述,本题正确答案是B 。
【考点】高等数学—函数、极限、连续—两个重要极限 (3)设函数f (x )={x αcos 1x β,x >0,0,x ≤0(α>0,β>0).若f ′(x )在x =0处连续,则(A)α−β>1(B)0<α−β≤1(C)α−β>2 (D)0<α−β≤2 【答案】A 【解析】易求出f′(x )={αxα−1cos 1x β+βx α−β−1sin 1xβ,x >0,0,x ≤0 再有 f +′(0)=lim x→0+f (x )−f (0)x=lim x→0+x α−1cos1x β={0, α>1,不存在,α≤1,f −′(0)=0于是,f ′(0)存在⟺α>1,此时f ′(0)=0. 当α>1时,lim x→0x α−1cos1x β=0,lim x→0βxα−β−1sin1x β={0, α−β−1>0,不存在,α−β−1≤0,因此,f′(x)在x=0连续⟺α−β>1。
华东师范大学 数学分析考研试题一、判别题(6*6=30分)(正确的说明理由,错误的举出反例)1.数列{}∞=1n n a 收敛的充要条件是对任意0>ε,存在正整数N ,使得当N n >时,恒有ε<-n n a a 2。
2.若),(y x f 在),(00y x 处可微,则在),(00y x 的某个邻域内yfx f ∂∂∂∂,存在。
3.设)(x f 在[]b a ,上连续,且()0=⎰dx x f ba,则)(x f 在[]b a ,上有零点。
4.设级数∑∞=1n n a 收敛,则∑∞=1n nn a 收敛。
5.设),(y x f 在),(00y x 的某个邻域内有定义且()()()00,,lim lim ,lim lim 0000y x f y x f y x f x x y y y y x x ==→→→→,则),(y x f 在),(00y x 处连续。
6. 对任意给定的R x ∈0,任意给定的严格增加正整数列 ,2,1,=k n k ,存在定义在R 上的函数)(x f 使得 ,2,1,0)(0)(==k x fk n ,()(0)(x f k 表示)(x f 在点0x 处的k 阶导数)。
二、计算题 (10*3=30分)(计算应包括必要的计算步骤)1.求 [].11sin )1(1lim41--++→xx e x x2.设 ()y x z z ,= 为由方程组⎪⎩⎪⎨⎧===uvz v e y ve x uu sin cos 所确定的隐函数。
求.,,2y x z y z x z ∂∂∂∂∂∂∂3.计算,321333dxdy r z dzdx r y dydz r x iS -+-+-⎰⎰其中 ()()()222321-+-+-=z y x r ,()()()1321:2221=-+-+-z y x S ,()()()1332211:2222=-+-+-z y x S ,积分沿曲面的外侧。
2015年全国硕士研究生入学统一考试数学(二)试题解析戴又发一、选择题 共8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选选项前的字母填在答题纸指定位置上. (1) 下列反常积分收敛的是( )(A )dx x⎰+∞21(B )dx x x ⎰+∞2ln (C )dx x x ⎰+∞2ln 1 (D )dx e x x ⎰+∞2 【解析】22222331lim 3)1(lim lim --+∞→--+∞→+∞→+∞=+-=++-==⎰⎰e e e e t e dx e x dx ex t t t t t x t x . 故选D .(2)函数tx t x t x f 2sin 1lim )(⎪⎭⎫⎝⎛+=+∞→ 在),(+∞-∞内 ( ) (A )连续 (B )有可去间断点 (C )有跳跃间断点 (D )有无穷间断点【解析】ttx t x t tx t x t x t x f sin sin sin 1lim sin 1lim )(2⨯+∞→+∞→⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=,当0≠x 时,由e x t tx t =⎪⎭⎫⎝⎛++∞→sin sin 1lim ,x ttx t =+∞→sin lim,得x e x f =)(, 故函数在),(+∞-∞内有可去间断点,故选B .(3)设函数⎪⎩⎪⎨⎧≤>=0,00,1cos )(x x xx x f α)0,0(>>βα,若)(x f '在0=x 处连续,则( ) (A )1>-βα (B )10≤-<βα (C )2>-βα (D )20≤-<βα 【解析】显然0<x 时0)(='x f ,当0>x 时111sin 1cos)(---⋅+='ββαβαβαx xx x x x f ββαβαβαxx x x 1sin 1cos11---+=,由0,0>>βα,)(x f '在0=x 处连续,有01,01>-->-βαα, 所以1>-βα,故选A .(4)设函数)(x f 在),(+∞-∞内连续,其2阶导数)(x f ''的图形如右图所示,则曲线)(x f y =的拐点个数为( )(A ) 0 (B )1 (C )2 (D )3【解析】若函数)(x f 的2阶导数存在,那么使函数2的阶导数)(x f ''为零,且三阶导数不为零的点是函数)(x f 的拐点,当2阶导数不存在时,只要在某点处的2阶导数改变符号,该点就是拐点,显然)(x f y =的拐点个数为2,故选C . (5)设函数),(v u f 满足22),(y x xy y x f -=+,则11==∂∂v u uf 与11==∂∂v u vf 依次是( )(A )21,0 (B )0,21 (C )21-,0 (D )0,21-【解析】记 x y v y x u =+=, ,得v uvy v u x +=+=1,1,于是22)1()1(),(),(v uv v u v u f x y y x f +-+==+,所以222)1(2)1(2v uv v u u f +-+=∂∂,011=∂∂==v u uf ;3222232)1(2)1(2)1(2v v u v vu v u v f +++-+-=∂∂,2141214111-=+--=∂∂==v u uf,故选D.(6)设D 是第一象限中的曲线14,12==xy xy 与直线x y x y 3,==围成的平面区域,函数),(y x f 在D 上连续,则⎰⎰=Ddxdy y x f ),(( )(A )⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (rdr r r f d(B )⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (rdr r r f d(C )⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (dr r r f d(D )⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (dr r r f d【解析】记 θθsin ,cos r y r x ==,区域D 可表示为,θθ2sin 212sin 1≤≤r ,34πθπ≤≤,θrdrd dxdy =,于是 ⎰⎰=Ddxdy y x f ),(⎰⎰θθππθθθ2sin 12sin 2134)sin ,cos (rdr r r f d ,故选B.(7)设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛24121111a a ,⎪⎪⎪⎭⎫ ⎝⎛=21d d b ,若集合{}2,1=Ω,则线性方程组b Ax =有无穷多解的充分必要条件为( )(A )Ω∉Ω∉d a , (B )Ω∈Ω∉d a , (C )Ω∉Ω∈d a , (D )Ω∈Ω∈d a ,【解析】由方程组b Ax =有无穷多解,得3)()(<=A r A r , 而当0)12)(2)(1(=---=a a A 时,2,1==a a ,当1=a 时,⎪⎪⎪⎭⎫ ⎝⎛+--→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛=23000101011111030101011111411211111222d d d d d d d A 3)(<A r ,所以1=d 或2=d .当2=a 时,⎪⎪⎪⎭⎫ ⎝⎛+--→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛=23000111011111330111011114412211111222d d d d d d d A 3)(<r ,所以1=d 或2=d .故选D.(8)设二次型),,(321x x x f 在正交变换PY X =下的标准型为2322212y y y -+,其中),,(321e e e P =,若),,(231e e e Q -=,则),,(321x x x f 在正交变换QY X =下的标准型为( )(A )2322212y y y +- (B )2322212y y y -+ (C )2322212y y y -- (D )2322212y y y ++ 【解析】设二次型对应的矩阵为A ,由),,(321x x x f 经正交变换PY X =化为标准型2322212y y y -+,得 ⎪⎪⎪⎭⎫⎝⎛-=-1121AP P ,其中),,(321e e e P =,又因为),,(231e e e Q -=,于是有 ⎪⎪⎪⎭⎫⎝⎛-=-1121AQ Q , 所以),,(321x x x f 在正交变换QY X =下的标准型为2322212y y y +-.故选A.二、填空题:9~14每小题4分,共24分.请将答案写在答题纸指定位置上.(9)设⎩⎨⎧+==33arctan t t y t x ,则==122t dx y d .【解析】233t dt dy += ,211t dt dx +=, 363)1)(33(2422++=++=t t t t dx dy ,22232322)1(12)1)((12111212)(t t t t t t t t dt dx dt dx dy d dxy d +=++=++==. 所以==122t dx y d 48.(10)函数x x x f 2)(2⋅=在0=x 处的n 阶导数为=)0()(n f .【解析】因为)2ln 2(22ln 222)(22x x x x x f x x x +=⋅+⋅=',0)0(='f ;))2(ln 2ln 42(22ln )2ln 2(2)2ln 22(2)(222x x x x x x f x x x ++=+++='',222)0(0=⋅=''=x x f ;2ln ))2(ln 2ln 42(2))2(ln 22ln 4(2)(222x x x x f x x ++++='''))2(l n )2(l n 62ln 6(2322x x x ++=,2ln 62ln 62)0(0=⋅='''=x xf ; 2ln ))2(ln )2(ln 62ln 6(2))2(ln 2)2(ln 6(2)(32232)4(x x x x f x x ++++=))2(ln ))2(ln 8)2(ln 12(24232x x x ++=,202)4()2(ln 12)2(ln 122)0(=⋅==x x f ;202)()2)(ln 1()2)(ln 1(2)0(-=--=-⋅=n x n x n n n n n f .(11)设函数)(x f 连续,由方程⎰=2)()(x dt t xf x ϕ,若5)1(,1)1(='=ϕϕ,则=)1(f . 【解析】由⎰⎰==22)()()(x x dt t f x dt t xf x ϕ,得)(2)()(202x f x x dt t f x x ⋅⋅+='⎰ϕ,又5)1(2)()1(1=+='⎰f dt t f ϕ,1)()1(10==⎰dt t f ϕ,所以2)1(=f .(12)设函数)(x y y =是微分方程02=-'+''y y y 的解,且在0=x 处)(x y 取得极值3,则=)(x y .【解析】由022=-+λλ,得2,1-==λλ,于是微分方程的特解为x x e C e C y 221-+=,由022)0(21221=-=-='-C C eC e C y xx,3)0(21=+=C C y ,得1,221==C C ,所以x x e e x y 22)(-+=.(13)若函数),(y x z z =由方程132=+++xyz e z y x 确定,则=)0,0(dz.【解析】由dy yzdx x z dz ∂∂+∂∂=, 方程132=+++xyz e z y x 两边对x 求导,0)31(32=+∂∂+∂∂+++yz xzxy x z e z y x , 代入0,0==y 得310-=∂∂=x xz;方程132=+++xyz e z y x 两边对y 求导,0)32(32=+∂∂+∂∂+++xz yzxy y z e z y x , 代入0,0==y 得32-=∂∂=y yz;所以dy dx dz3231)0,0(--=.(14)设三阶矩阵A 的特征值为1,2,2-,E A A B +-=2,其中E 为3阶单位矩阵,则行列式=B .【解析】由矩阵A 的特征值为1,2,2-, 且E A A B +-=2,可知矩阵B 的特征值为1,7,3,所以21=B .三、解答题:15~23小题,共94分。
华东师范大学2015年攻读硕士学位研究生入学试题
数学分析
2015年1月5
一、判断下列命题是否正确,若正确给出证明,若错误举出反例(每小题6分,共36分)
(1)如果∀ε>0,∃N ∈N +,当n >N 时,有|a n −a N |<ε,则数列{a n }收敛.
(2)如果函数列{f n (x )}在[a,b ]上一致收敛于连续函数f (x ),则∀n ∈N +,均有{f n (x )}在[a,b ]上连续.
(3)如果函数f (x )在x 0点连续,且
lim n →∞
f (x 0+1n
)−f (x 0)1
n 存在,则f (x )在x 0点的右导数存在.
(4)如果函数f (x ),g (x )在[a,b ]上连续,则∃ξ∈[a,b ],使得
b a f (x )g (x )d x =f (ξ) b a g (x )d x.
(5)如果函数f (x,y )的偏导数在点P 0(x 0,y 0)的某邻域内存在且有界,则f (x,y )在点P 0(x 0,y 0)连续.(6)如果函数f (x )在[a,+∞)上的非负连续,且 +∞a f (x )d x 收敛,则lim x →+∞
f (x )=0.二、求解下列各题(每小题9分,共36分)
(1)
lim n →∞2n +1n !n n
.(2)计算积分
S (x 2+y −z 3)d s,
其中S 为[−1,1]×[−1,1]×[−1,1]的表面.
1。