第7章 静电场
- 格式:doc
- 大小:1.27 MB
- 文档页数:21
N⋅
⨯≈
m
9880c
10
/
通过曲面S 的总电通量 ⎰⎰⋅=Φ=ΦS S e e S d E d
S 为闭合曲面时 ⎰⋅=ΦS e S d E
无关,只与被球面所包围的电量q 有关
虚线表示等势面,实线表示电力线 二、场强与电势梯度的关系 电势与场强的积分关系:⎰⋅=零点
l d E U
,
求出场强分布后可由该式求得电势分布.
空腔内有带电体q时,空腔内表面感应电荷为-q,导体外表面感应电荷为静电屏蔽
)在导体内部有空腔时,空腔内的物体不受外电场的影响。
)接地的导体空腔,空腔内的带电物体的电场不影响外界。
三、有导体存在的静电场场强与电势的计算
有极分子电介质的极化:在外电场作用下分子偶极矩转向与外电场接近平行的方向,叫取向极化。
五、极化强度和极化电荷
极化强度P
)。
第七章⎪⎪⎪静电场第39课时 电荷守恒定律和库仑定律(双基落实课)点点通(一) 电荷、电荷守恒定律 1.电荷(1)三种起电方式:摩擦起电、接触起电、感应起电。
(2)两种电荷:自然界中只存在两种电荷——正电荷和负电荷。
同种电荷相互排斥,异种电荷相互吸引。
2.对元电荷的理解(1)元电荷是自然界中最小的电荷量,用e 表示,通常取e =1.6×10-19C ,任何带电体的电荷量都是元电荷的整数倍。
(2)元电荷等于电子所带的电荷量,也等于质子所带的电荷量,但元电荷没有正负之分。
(3)元电荷不是点电荷,电子、质子等微粒也不是元电荷。
3.电荷守恒定律电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变。
4.电荷均分原理(1)适用于完全相同的导体球。
(2)两导体球接触一下再分开,如果两导体球带同种电荷,总电荷量直接平分;如果两导体球带异种电荷,则先中和再平分。
[小题练通]1.(鲁科教材原题)下列现象中,不属于摩擦起电的有()A.将被毛皮摩擦过的塑料棒靠近碎纸屑,纸屑被吸起B.在干燥的天气中脱毛线衣时,会听到轻微的噼啪声C.用干燥的毛刷刷毛料衣服时,毛刷上吸附有许多细微的脏物D.把钢针沿着磁铁摩擦几次,钢针就能吸引铁屑解析:选D A、B、C三个选项为摩擦起电,D选项为磁化现象,故D正确。
2.(多选)把两个相同的金属小球接触一下再分开一小段距离,发现两球之间相互排斥,则这两个金属小球原来的带电情况可能是()A.两球原来带有等量异种电荷B.两球原来带有同种电荷C.两球原来带有不等量异种电荷D.两球中原来只有一个带电解析:选BCD接触后再分开,两球相互排斥,说明分开后两球带同种电荷,两球原来可能带同种电荷、不等量的异种电荷或只有一个带电,故B、C、D正确。
3.(鲁科教材原题)将一物体跟一带正电的验电器的金属球接触时,验电器的金属箔先合拢然后又张开,从这一现象可知,接触金属球以前,物体()A.带正电荷B.带负电荷C.不带电荷D.都有可能解析:选B验电器的金属箔先合拢后张开,说明接触验电器金属球的物体和验电器金属球所带电荷的种类不同,即物体带负电荷。
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。