第一节 数列极限的定义与性质
- 格式:ppt
- 大小:973.50 KB
- 文档页数:19
大学数列的极限知识点归纳总结数列是数学中常见且重要的概念之一,它含有很多有趣而具有挑战性的性质。
其中,数列的极限是数学分析中的重要内容之一,它在微积分、实变函数等领域中有广泛的应用。
本文将对大学数列的极限知识点进行归纳总结,帮助读者更好地理解和掌握这一概念。
一、数列的定义及性质1. 数列的定义:数列是按照一定顺序排列的一串数字。
2. 数列的记法:一般用 {an} 表示数列,其中 an 表示数列的第n项。
3. 数列的性质:数列可以是有界的或无界的。
二、数列极限的概念1. 数列极限的定义:对于数列 {an},如果存在一个常数A,使得对于任意给定的正数ε,存在正整数N,使得当n>N时,|an-A|<ε,那么称数列的极限为A,记作lim (n→∞) an = A。
2. 数列极限的几何解释:数列的极限可以理解为当n趋向于无穷大时,数列的项趋向于某个常数。
三、数列极限的性质1. 数列极限的唯一性:对于一个数列,如果其极限存在,则该极限是唯一的。
2. 数列极限与数列项的关系:如果数列的极限存在,那么对于任意大于极限的数M,存在正整数N,使得当n>N时,an>M。
3. 数列极限与数列的有界性的关系:如果数列的极限存在,那么这个数列一定是有界的。
四、常见数列的极限1. 等差数列的极限:对于等差数列 {an} = a1, a1+d, a1+2d, ...,其中a1为首项,d为公差,其极限为lim (n→∞) an = a1。
2. 等比数列的极限:对于等比数列 {an} = a1, a1r, a1r^2, ...,其中a1为首项,r为公比(r≠0),其极限存在的条件是|r|<1,极限为lim(n→∞) an = 0。
3. 斐波那契数列的极限:斐波那契数列 {Fn} = 1, 1, 2, 3, 5, 8, ...,其中每一项等于前两项之和。
斐波那契数列的极限不存在,即lim (n→∞) Fn 不存在。
数列极限的性质与计算数列是数学中一种重要的概念,它是由一系列按照一定规律排列的数所组成的。
在数学中,我们经常会遇到数列的极限问题。
数列极限是指当数列中的数趋于无穷时,数列的某个特定值。
本文将探讨数列极限的性质与计算方法。
一、数列极限的定义与性质数列极限的定义:设有数列{an},如果存在一个实数a,使得对于任意给定的正数ε,总存在正整数N,使得当n>N时,有|an-a|<ε成立,那么数a就是数列{an}的极限,记作lim(n→∞)an=a。
数列极限的性质:1. 极限的唯一性:如果数列{an}存在极限,那么该极限是唯一的,不会有其他极限存在。
2. 极限的有界性:如果数列{an}存在极限,那么这个数列必然是有界的,即对于某个正数M,对于任意的n,有|an|≤M成立。
3. 极限的保序性:如果数列{an}存在极限,且由an≤bn(n为任意正整数)可得an的极限不大于bn的极限;由an≥bn可得an的极限不小于bn的极限。
二、数列极限的计算方法根据数列极限的定义,可以通过以下几种方法来计算数列的极限。
1. 递推法:对于一些简单的数列,可以通过递推公式来计算其极限。
例如,斐波那契数列的递推公式是an = an-1 + an-2,初始值为a1=1,a2=1。
通过递推公式计算,可以得到斐波那契数列的极限为黄金分割比(约为1.618)。
2. 常用极限法则:利用一些已知的数列极限的性质,可以计算复杂数列的极限。
例如,对于数列an=(n+1)/(3n+2),可以利用极限的四则运算法则,将该数列拆分成两个已知的数列的极限,从而计算得到极限为1/3。
3. 夹逼准则:夹逼准则也是一种常用的计算数列极限的方法。
它可以用来证明极限的存在,并且在计算极限时也非常有用。
夹逼准则的思想是通过找到两个数列,一个比待求数列始终大,另一个比待求数列始终小,且两个数列的极限相等,从而确定待求数列的极限。
例如,对于数列an=sin(πn/2),可以利用夹逼准则证明其极限不存在。
数列极限知识点总结一、数列的极限定义数列是一系列按照一定次序排列的数的集合,通常表示为{an},其中an表示数列的第n 个元素。
数列的极限是数列中的元素随着n的增大而逐渐接近某个值L,当n趋于无穷大时,数列的所有元素都逼近于L。
我们用极限符号lim(n→∞)an=L来表示数列{an}的极限为L。
对于一个给定的数列{an},如果它的极限存在且为L,我们称{an}收敛于L,记作lim(n→∞)an=L。
如果数列的极限不存在,我们称数列发散。
二、数列极限的性质1. 唯一性:数列的极限值是唯一的,即如果数列{an}收敛于L1和L2,那么L1=L2。
2. 有界性:收敛数列是有界的,即存在一个实数M,使得对于所有的n,有|an|<M。
3. 保号性:如果数列{an}收敛于L>0,那么存在一个正整数N,使得当n>N时,an>0;如果数列{an}收敛于L<0,那么存在一个正整数N,使得当n>N时,an<0。
三、数列极限的收敛定理1. 夹逼定理:设{an}、{bn}、{cn}是三个数列,如果存在一个正整数N,使得当n>N时,有an≤bn≤cn,并且lim(n→∞)an=lim(n→∞)cn=L,那么数列{bn}也收敛于L。
2. 复合函数极限定理:设{an}是一个数列,f(x)是一个定义在R上的函数,如果lim(n→∞)an=a存在,f(x)在x=a周围有定义,并且lim(x→a)f(x)=L存在,那么lim(n→∞)f(an)=L。
3. 唯一性定理:如果一个数列存在极限,那么它的极限是唯一的。
四、数列极限的经典例题1. 例题一:计算数列lim(n→∞)(1+1/n)n。
解析:利用自然对数的极限定义可得lim(n→∞)(1+1/n)n=e。
2. 例题二:利用夹逼定理证明数列lim(n→∞)(1/n)=0。
解析:由于-1/n≤1/n≤1/n,且lim(n→∞)(-1/n)=lim(n→∞)(1/n)=0,根据夹逼定理可得lim(n→∞)(1/n)=0。
数列极限的定义和性质数列是指按照一定规律排列的一系列数,而数列极限是数列理论中的重要概念之一。
在本文中,我们将探讨数列极限的定义和性质,并对其应用进行简要介绍。
一、数列极限的定义在数列中,当它的项逐渐趋于某个值时,我们称这个值为该数列的极限。
形式化地说,设有数列{an},若对于给定的数ϵ(ϵ>0),总存在正整数N,使得当n>N时,数列的每一项an与极限值之差的绝对值|an - A|<ϵ都成立,则称极限A为数列{an}的极限,记为lim(an) = A。
要注意的是,数列的极限并不一定要存在,可能是有限的,也可能是无穷的。
二、数列极限的性质1. 数列极限的唯一性:若数列{an}的极限存在,那么它是唯一的,即一个数列只能有一个极限。
2. 数列收敛的必要条件:若数列{an}收敛,那么它是有界的。
即如果一个数列存在极限,那么它必然是有上下界的。
3. 数列极限的保号性:若数列{an}的极限为A,并且A>0(或A<0),那么当n充分大时,数列的每一项an也大于0(或小于0)。
4. 收敛数列的四则运算性质:设有两个收敛数列{an}和{bn},它们的极限分别为A和B,则:(1) 数列和的极限:lim(an + bn) = A + B(2) 数列差的极限:lim(an - bn) = A - B(3) 数列积的极限:lim(an * bn) = A * B(4) 数列商的极限(假设B≠0):lim(an / bn) = A / B5. 数列极限与数列项的关系:若数列{an}的极限为A,则对于任意正整数m,都有:lim(an) = Alim(am) = A三、数列极限的应用1. 数列极限在微积分中的应用:数列极限是极限的概念之一,而极限是微积分中的基本概念。
在微积分中,我们经常使用数列极限来定义导数和积分等重要概念。
2. 数列极限在数学分析中的应用:数列极限是数学分析中的重要内容,它也是许多数学定理的基础。